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A LEVI–CIVITA EQUATION ON MONOIDS, TWO WAYS

Bruce Ebanks

Abstract. We consider the Levi–Civita equation

f(xy) = g1(x)h1(y) + g2(x)h2(y)

for unknown functions f, g1, g2, h1, h2 : S → C, where S is a monoid. This
functional equation contains as special cases many familiar functional equa-
tions, including the sine and cosine addition formulas. In a previous paper we
solved this equation on groups and on monoids generated by their squares un-
der the assumption that f is central. Here we solve the equation on monoids
by two different methods. The first method is elementary and works on a gen-
eral monoid, assuming only that the function f is central. The second way
uses representation theory and assumes that the monoid is commutative. The
solutions are found (in both cases) with the help of the recently obtained so-
lution of the sine addition formula on semigroups. We also find the continuous
solutions on topological monoids.

1. Introduction

Let S be a semigroup and C the set of complex numbers. Our main focus
is the Levi–Civita functional equation

(1.1) f(xy) = g1(x)h1(y) + g2(x)h2(y), x, y ∈ S,
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for unknown functions f, g1, g2, h1, h2 : S → C. This equation contains as spe-
cial cases both the sine and cosine addition formulas, respectively

(1.2) f(xy) = f(x)g(y) + g(x)f(y), x, y ∈ S,

and

(1.3) g(xy) = g(x)g(y)− f(x)f(y), x, y ∈ S,

which play important roles in the solution of (1.1).
General methods have been developed to describe the forms of the solu-

tions of Levi–Civita functional equations

f(xy) =

n∑
j=1

gj(x)hj(y), x, y ∈ S,

of which (1.1) is the case n = 2. These methods use representation theory
(see [6], [7, Chapter 5]) or, if S is an Abelian group, spectral synthesis (see
[9, Chapter 10]). For either method, further calculations are needed to get
explicit solution formulas. For small values of n it may be more efficient to
solve the given equation by an ad hoc method.

In [1] we solved (1.1) by elementary methods, assuming that S is a group
or a monoid generated by its squares and that f is central. Here we solve (1.1)
in two different ways. The first method is elementary, as in [1], solving (1.1) on
a general monoid assuming that the function f is central. The second method
uses representation theory, applying results from the author’s joint paper [5]
with Che Tat Ng, and solves (1.1) on a general commutative monoid.

The outline is as follows. Sections 2 and 3 introduce notation and termi-
nology, as well as stating known results about (1.2) and (1.3) and making a
small extension of one of them. In section 4 we use elementary methods to
find the solutions of (1.1) for central f on monoids. The process is simplified
relative to the method used in [1]. In section 5 we use representation theory
to get the solutions of (1.1) on commutative monoids. The main results are
Theorems 4.4 and 5.3. Both methods rely on a recent result (Proposition 3.1)
giving the solutions of the sine addition formula (1.2) on semigroups. Some
examples applying the results are given in section 6.

Generally our results are presented in their topological versions, but one
may choose the discrete topology.
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2. Notation and terminology

Throughout this paper S denotes a semigroup. We call S a monoid (with
identity e) if there exists an e ∈ S such that ex = xe = x for all x ∈ S.

An additive function on S is a homomorphism from S into (C,+).
A multiplicative function on S is a homomorphism from S into (C, ·). If

χ : S → C is multiplicative and χ 6= 0, then we say χ is an exponential on S.
We define the nullspace of a multiplicative χ by

Iχ := {x ∈ S | χ(x) = 0}.

If Iχ 6= ∅ then it is a two-sided ideal of S and is called the null ideal of χ.
An ideal I ⊂ S is said to be a prime ideal if I 6= S and whenever xy ∈ I

it follows that either x ∈ I or y ∈ I (so S \ I is a nonempty subsemigroup of
S). There is a very close connection between prime ideals and exponentials on
semigroups. For any exponential χ it is easy to see that if Iχ 6= ∅ then Iχ is a
prime ideal. Conversely, if I is any prime ideal of S and we define χ(x) = 0
for x ∈ I, χ(x) = 1 for x ∈ S \ I, then χ : S → C is an exponential with null
ideal Iχ = I.

For any subset T ⊆ S we define T 2 := {t1t2 | t1, t2 ∈ T}. In addition to
the nullspace Iχ for a multiplicative χ : S → C, the subset

Pχ :={p ∈ Iχ \ I2χ | up, pv, upv ∈ Iχ \ I2χ for all u, v ∈ S \ Iχ}

also plays an important role in our story.
A function F on S is said to be central if F (xy) = F (yx) for all x, y ∈ S.
That a function F is nonzero means F 6= 0.
For a topological space X, let C(X) denote the algebra of continuous

functions from X into C. Let C∗ = C \ {0}.

3. Preliminary results

The following is [4, Theorem 3.1].

Proposition 3.1. Let S be a topological semigroup, and suppose f, g : S →
C satisfy the sine addition law (1.2) with f 6= 0 and f ∈ C(S). Then the
pair (f, g) belongs to one of the following families, where χ1, χ2 ∈ C(S) are
multiplicative functions.
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(a) For χ1 6= χ2 there exists b ∈ C∗ such that f = b(χ1 − χ2) and g =
(χ1 + χ2)/2.

(b) For χ1 = χ2 =: χ, we have g = χ and

(3.1) f(x) =


A(x)χ(x) for x ∈ S \ Iχ,
ρ(x) for x ∈ Pχ,
0 for x ∈ Iχ \ Pχ,

where A ∈ C(S \ Iχ) is additive and ρ ∈ C(Pχ). In addition we have the
following conditions.
(i) f(qt) = f(tq) = 0 for all q ∈ Iχ \ Pχ and t ∈ S \ Iχ.
(ii) If x ∈ {up, pv, upv} for p ∈ Pχ and u, v ∈ S \ Iχ, then x ∈ Pχ and

we have respectively ρ(x) = ρ(p)χ(u), ρ(x) = ρ(p)χ(v), or ρ(x) =
ρ(p)χ(uv).

(c) For χ1 = χ2 = 0, we have g = 0, S 6= S2, and

(3.2) f(x) =

{
f0(x) for x ∈ S \ S2,

0 for x ∈ S2,

where f0 ∈ C(S \ S2) is an arbitrary nonzero function.
Conversely, if the pair (f, g) is given by the formulas in (a), (b) with

conditions (i) and (ii), or (c), then (f, g) satisfies (1.2).

Since functions having the form of f in part (b) above will occur repeatedly
in this article, we introduce the following notation for convenience.

Notation 3.2. Let χ : S → C be an exponential. We denote by Φ: S → C
any solution of the special sine addition law

(3.3) Φ(xy) = Φ(x)χ(y) + χ(x)Φ(y), x, y ∈ S.

Usage of this notation means that any function labeled Φ has the form of
f given in (3.1) and carries all the properties attached to f in part (b) of
Proposition 3.1.

Note that if S has no prime ideals then χ(x) 6= 0 for all x ∈ S. In this
case, dividing (3.3) by χ(xy) yields that Φ/χ is an additive function A on S
and we have Φ = Aχ. This is the case not only on groups but also on other
semigroups such as ((0, 1), ·) and (N,+).

We will need the following small extension of Proposition 3.1.
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Corollary 3.3. Let S be a topological semigroup, and suppose f, g : S →
C satisfy

(3.4) f(xy) = f(x)g(y) + g(x)f(y) + cf(x)f(y), x, y ∈ S,

with f 6= 0, f ∈ C(S), and c ∈ C. Then f, g have the following forms, where
χ, χ1, χ2 ∈ C(S) are multiplicative functions, b ∈ C∗, Φ: S → C (as defined
in Notation 3.2) is continuous, and f0 ∈ C(S \ S2) is an arbitrary nonzero
function.
(a) For χ1 6= χ2,

f = b(χ1 − χ2), g =
1

2
(χ1 + χ2)− c

2
f.

(b) For χ 6= 0 we have f = Φ and g = χ− c
2Φ.

(c) For S 6= S2, f has the form (3.2) and g = − c2f .
Conversely, any pair (f, g) given by the formulas in (a), (b), or (c) satis-

fies (3.4).

Proof. We begin by re-writing (3.4) as

f(xy) = f(x)g′(y) + g′(x)f(y), x, y ∈ S,

where g′ : S → C is defined by g′ := g + c
2f . Thus (f, g′) is a solution of

the sine addition formula (1.2). Conversely, if f, g′ : S → C satisfy (1.2) and
g = g′ − c

2f then f, g satisfy (3.4). The rest is Proposition 3.1. �

The next result is essentially [3, Theorem 3.2] (with a small technical
improvement in part (c) as stated in [4]).

Proposition 3.4. Let S be a topological semigroup, and suppose g, f ∈
C(S) satisfy the cosine addition law (1.3). Then the pair (g, f) belongs to one
of the following families, where χ, χ1, χ2 ∈ C(S) are multiplicative functions
with χ 6= 0, χ1 6= χ2, Φ ∈ C(S), and f0 ∈ C(S \ S2) is an arbitrary nonzero
function.
(a) g = f = 0.

(b) g =
c−1χ1 + cχ2

c−1 + c
and f =

χ1 − χ2

i(c−1 + c)
, where c ∈ C∗ \ {±i}.

(c) g = χ± Φ and f = Φ.
(d) If S 6= S2, then g = ±f and f has the form (3.2).

Conversely, the pair (g, f) in each family is a solution of (1.3).

The following observation will be useful.
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Remark 3.5. Let S be a semigroup, let χ : S → C be an exponential, and
let Φ: S → C be as defined in Notation 3.2 with Φ 6= 0. Then it is not difficult
to see that {Φ, χ} is linearly independent (see [4, Lemma 5.1(b)]).

4. Solution of(1.1) by elementary methods

We follow the general plan of sections 4 and 5 in [1]. The first step is to
consider the functional equation

(4.1) f(xy) = f(x)h(y) + g(x)f(y), x, y ∈ S,

with g 6= h so that it differs from the sine addition law. As pointed out in
[8, Example 1], even when S is a group the functional equation (4.1) may
have non-central solutions. Thus there may exist solutions which cannot be
expressed in terms of multiplicative functions and functions of the form Φ as
defined in Notation 3.2. That is why we assume f is central here.

Lemma 4.1. Let S be a topological semigroup, and let f, g, h : S → C
satisfy (4.1) with f 6= 0, f ∈ C(S), g 6= h, and f central. The solutions
are given by the following families, where χ, χ1, χ2 ∈ C(S) are multiplicative,
Φ ∈ C(S), f0 ∈ C(S \ S2) is an arbitrary nonzero function, and b, c ∈ C∗.
(a) For χ1 6= χ2,

f = b(χ1 − χ2), h =
1

2
(χ1 + χ2)− c

2
f, g =

1

2
(χ1 + χ2) +

c

2
f.

(b) For χ 6= 0, we have f = Φ, h = χ− c
2Φ, and g = χ+ c

2Φ.
(c) For S 6= S2, f has the form (3.2), h = − c2f , and g = c

2f .

Proof. As in the proof of [1, Corollary 4.1], the interchange of x and y
in (4.1) and comparison of the results leads to g = h+cf for some c ∈ C∗, since
f 6= 0 and g 6= h. Consequently the pair (f, h) is a solution of (3.4). Applying
Corollary 3.3 we get the solutions shown above, which clearly satisfy (4.1). �

The next step is to treat the partial Pexiderization

(4.2) g(xy) = g(x)g(y) + h(x)k(y), x, y ∈ S,

of the cosine addition law.
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Lemma 4.2. Let S be a topological semigroup. The solutions g, h, k ∈ C(S)
of (4.2) with g central and g 6= 0 are the following, where χ, χ1, χ2 ∈ C(S)
are multiplicative functions, Φ ∈ C(S), and b ∈ C∗.
(i) g = χ 6= 0, h = 0, k arbitrary in C(S).
(ii) g = χ 6= 0, k = 0, h arbitrary in C(S).
(iii) For χ1 6= χ2 and c ∈ C∗ \ {±i},

g =
c−1χ1 + cχ2

c−1 + c
, h =

b(χ1 − χ2)

c−1 + c
, k =

χ1 − χ2

b(c−1 + c)
.

(iv) For χ 6= 0 we have

g = χ± Φ, h = ibΦ, k = iΦ/b.

(v) If S 6= S2, then g ∈ C(S)\{0} has the form (3.2), h = ibg, and k = ig/b.

Proof. As in the proof of [1, Corollary 4.2], the interchange of x and
y in (4.2) and comparison of the results yields h(x)k(y) = h(y)k(x) for all
x, y ∈ S. This leads to solution (i) or (ii) if h = 0 or k = 0. Henceforth we
assume that h 6= 0 and k 6= 0, so that h = ak for some constant a ∈ C∗.
Now (4.2) becomes

g(xy) = g(x)g(y) + ak(x)k(y), x, y ∈ S.

Putting f = −ibk where b2 = a, we arrive at the cosine addition formula (1.3)
and take the solutions for f, g from Proposition 3.4. In each case note that
the solutions for k, h are given by k = if/b and h = iaf/b = ibf .

Case (a) of Proposition 3.4 does not occur here since g 6= 0. In case (b)
we get g of the form shown in (iii) and f = (χ1 − χ2)/[i(c−1 + c)] for c ∈
C∗ \ {±i}. The forms shown for h, k in (iii) follow. Cases (c) and (d) lead
respectively to the solution forms in (iv) and (v). All solutions are easily
verified by substitution. �

Our third lemma (generalizing [1, Lemma 5.1]) concerns a functional equa-
tion which is a partial Pexiderization of both the sine and cosine addition
formulas.

Lemma 4.3. Let S be a topological semigroup, and suppose f, g, h, k ∈ C(S)
where f 6= 0, g 6= 0, f is central, and {h, k} is linearly independent. Then the
solutions of

(4.3) f(xy) = f(x)h(y) + g(x)k(y), x, y ∈ S,
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are given by the following families, where χ, χ1, χ2 ∈ C(S) are exponentials
with χ1 6= χ2, and Φ ∈ C(S) is nonzero.
(a) f, g, h, k ∈ span{χ1, χ2}, specifically

f = a1χ1 + a2χ2, g = b1χ1 + b2χ2, h = c1χ1 + c2χ2, k = d1χ1 + d2χ2,

where the constants ai, bi, ci, di ∈ C satisfy (a1, a2) 6= (0, 0) 6= (b1, b2),
c1d2 6= d1c2, and

(4.4)
(
a1 b1
a2 b2

)(
c1 c2
d1 d2

)
=

(
a1 0
0 a2

)
.

(b) f, g, h, k ∈ span{χ,Φ}, specifically

f = a1χ+ a2Φ, g = b1χ+ b2Φ, h = c1χ+ c2Φ, k = d1χ+ d2Φ,

where the constants ai, bi, ci, di ∈ C satisfy (a1, a2) 6= (0, 0) 6= (b1, b2),
c1d2 6= d1c2, and

(4.5)
(
a1 b1
a2 b2

)(
c1 c2
d1 d2

)
=

(
a1 a2
a2 0

)
.

(c) f = aχ, g = bχ, h = χ − b
ak, where a, b ∈ C∗ and k ∈ C(S) \ {0} is any

function that is not a scalar multiple of χ.

Proof. Suppose f, g, h, k ∈ C(S) satisfy (4.3) with f 6= 0, g 6= 0, f cen-
tral, and {h, k} linearly independent. Then

(4.6) f(x)h(y) + g(x)k(y) = f(xy) = f(yx) = f(y)h(x) + g(y)k(x)

for all x, y ∈ S. Since h 6= 0 this shows that f ∈ span{g, h, k}, say f =
a′g + b′h+ c′k. Putting this into (4.6) we find after some rearrangement that

g(x)[a′h(y) + k(y)] = h(x)[a′g(y) + c′k(y)] + k(x)[g(y)− c′h(y)].

By the linear independence of {h, k} this shows that g ∈ span{h, k}, so f ∈
span{h, k}. Thus we can write

(4.7) f = ah+ bk

for some a, b ∈ C with (a, b) 6= (0, 0). Here we divide the proof into two cases.
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Case 1: Suppose a = 0. Then (4.7) shows that f = bk, and since b 6= 0 we
have k = f/b. With this (4.3) becomes

f(xy) = f(x)h(y) + g′(x)f(y)

where g′ := g/b. If g′ = h then this is the sine addition law. By Proposition
3.1 we have either f, h(= g′) ∈ span{χ1, χ2} for multiplicative functions χj ∈
C(S) with χ1 6= χ2, or f, h ∈ span{χ,Φ} for Φ ∈ C(S) and exponential
χ ∈ C(S). By (4.7) and g = bh we see that g, k ∈ span{f, h}. If on the other
hand g′ 6= h then Lemma 4.1 leads to the conclusion that f, g′, h belong to
either span{χ1, χ2} or span{χ,Φ} (case (c) of Lemma 4.1 is eliminated because
{f, h} is linearly independent). Again it follows that g, k ∈ span{f, h}. Thus
we have the general forms for f, g, h, k displayed in (a) and (b). Moreover
χ1, χ2,Φ must all be nonzero since {h, k} is linearly independent.

Case 2: Suppose a 6= 0. Then from (4.7) we get h = (f − bk)/a, and (4.3)
gives

af(xy) =f(x)[f(y)− bk(y)] + ag(x)k(y)

=f(x)f(y) + [ag(x)− bf(x)]k(y).

Defining f ′ := f/a, g′ := (ag − bf)/a2 this equation transforms into

f ′(xy) = f ′(x)f ′(y) + g′(x)k(y),

with solutions given by Lemma 4.2. Case (i) of Lemma 4.2 yields f ′ = χ,
g′ = 0, and k arbitrary (subject to {h, k} linearly independent), where χ ∈
C(S) is an exponential since f 6= 0. This is solution family (c). Case (ii) of
Lemma 4.2 can be eliminated since k = 0 contradicts the linear independence
of {h, k}. Case (iii) of Lemma 4.2 yields f ′, g′, k ∈ span{χ1, χ2} for distinct
multiplicative functions χ1, χ2 ∈ C(S). It follows that f, g, h ∈ span{χ1, χ2}
also. Moreover χ1, χ2 are again exponentials by the linear independence of
{h, k}. Similarly, case (iv) of Lemma 4.2 gives f ′, g′, k ∈ span{χ,Φ} for some
Φ ∈ C(S) and exponential χ, and it follows that f, g, h ∈ span{χ,Φ} too.
Moreover Φ 6= 0 since {h, k} is linearly independent. So from cases (iii),(iv)
we again arrive at the solution forms for f, g, h, k seen in (a), respectively (b).

Next we show that the coefficients must fulfill the stated constraints in (a)
and (b). In family (a), constraint (4.4) is verified by substituting the forms of
f, g, h, k into (4.3) and using the linear independence of distinct exponentials
on a semigroup (see [7, Theorem 3.18]). The other constraints in (a) follow
from f 6= 0, g 6= 0, and {h, k} linearly independent.
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For family (b), constraint (4.5) is verified using the linear independence of
{χ,Φ} (Remark 3.5) and the fact that Φ satisfies (3.3): Φ(xy) = Φ(x)χ(y) +
χ(x)Φ(y). The other constraints in (b) follow as for (a).

The converse is a straightforward verification. �

Now we arrive at our prime objective, which is the Levi–Civita equa-
tion (1.1):

f(xy) = g1(x)h1(y) + g2(x)h2(y), x, y ∈ S,

for unknown functions f, g1, g2, h1, h2 : S → C. If either {g1, g2} or {h1, h2}
is linearly dependent, then (1.1) reduces to the Pexider equation f(xy) =
g(x)h(y) for some functions g, h. The solutions of this equation are known
in a very general setting. (Note that in this case at least one of the original
functions g1, g2, h1, h2 is arbitrary.) We omit that simple case.

The following result generalizes [1, Theorem 5.2].

Theorem 4.4. Let S be a topological monoid, and let f, g1, g2, h1, h2 ∈
C(S) be a solution of (1.1) with f central, and with both {g1, g2} and {h1, h2}
linearly independent. The solutions are given by the following families, where
χ, χ1, χ2 ∈ C(S) are exponentials with χ1 6= χ2, and Φ ∈ C(S) is nonzero.
(i) f, g1, g2, h1, h2 ∈ span{χ1, χ2}, specifically

f = a1χ1 + a2χ2, g1 = b1χ1 + b2χ2, g2 = d1χ1 + d2χ2,

h1 = c1χ1 + c2χ2, h2 = e1χ1 + e2χ2,

where the constants ai, bi, ci, di, ei ∈ C satisfy(
b1 d1
b2 d2

)(
c1 c2
e1 e2

)
=

(
a1 0
0 a2

)
in which all three matrices have (full) rank 2.

(ii) f, g1, g2, h1, h2 ∈ span{χ,Φ}, specifically

f = a1χ+ a2Φ, g1 = b1χ+ b2Φ, g2 = d1χ+ d2Φ,

h1 = c1χ+ c2Φ, h2 = e1χ+ e2Φ,

where the constants ai, bi, ci, di, ei ∈ C satisfy(
b1 d1
b2 d2

)(
c1 c2
e1 e2

)
=

(
a1 a2
a2 0

)
in which all three matrices have rank 2.
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Proof. First note that f 6= 0 by the linear independence of {g1, g2} and
{h1, h2}. Next, putting y = e into (1.1) we see that

(4.8) f = h1(e)g1 + h2(e)g2.

We cannot have h1(e) = h2(e) = 0 since f 6= 0, so without loss of generality
we assume that h2(e) 6= 0. It follows that g2 = f/h2(e)− h1(e)g1/h2(e), and
putting this into (1.1) we find that

f(xy) = f(x)
h2(y)

h2(e)
+ g1(x)

[
h1(y)− h1(e)h2(y)

h2(e)

]
.

Defining new functions h, k ∈ C(S) by

h := h2/h2(e) and k := h1 − h1(e)h2/h2(e),(4.9)

we arrive at the functional equation

f(xy) = f(x)h(y) + g1(x)k(y)

which was treated in Lemma 4.3. Moreover (4.9) shows that {h, k} is linearly
independent, so we read the solutions from Lemma 4.3.

Starting with case (a) of Lemma 4.3 we have f, h, g1, k ∈ span{χ1, χ2}
for exponentials χ1 6= χ2 ∈ C(S). By (4.8) and the definitions of h, k we
also have g2, h2, h1 ∈ span{χ1, χ2}. Thus our functions have the forms seen
in family (i). Substituting them into (1.1) and using the linear independence
of {g1, g2}, {h1, h2}, and {χ1, χ2}, we find that the constants must fulfill the
stated conditions.

Next, case (b) of Lemma 4.3 yields that f, h, g1, k ∈ span{χ,Φ} for an
exponential χ ∈ C(S) and a nonzero function Φ ∈ C(S). As before we also
get h2, h1, g2 ∈ span{χ,Φ}. Inserting the forms shown for f, gj , hj in family
(ii) into (1.1) and using the linear independence of {g1, g2}, {h1, h2}, {χ,Φ}
together with (3.3), we get the constraints stated for family (ii).

Finally, consider case (c) from Lemma 4.3: f = aχ, g1 = bχ, h = χ− bk/a,
where a, b ∈ C∗. From this and equation (4.9) we find that h2 = c(χ− bk/a)
and h1 = dχ + (1 − bd/a)k, where c = h2(e) 6= 0 and d = h1(e). But then
from (4.8) we get g2 = (a − db)χ/c, so the condition that {g1, g2} is linearly
independent is violated and we must discard this family.

�
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5. Solution of (1.1) using representation theory

Now we use a second way to solve (1.1), assuming that our monoid is
commutative. We start with two results that establish the theory behind this
method.

Consider Cn as a vector space of column vectors, and let Mn(C) be the
algebra of n × n matrices over C. The following is [5, Lemma 2.4]. Contrary
to common usage we denote the n×n identity matrix by En in order to avoid
confusion with null ideals labeled as Ir below.

Lemma 5.1. Let n ∈ N, let S be a topological commutative monoid, and
suppose f, gj , hj ∈ C(S) for 1 ≤ j ≤ n satisfy the Levi–Civita equation

f(xy) =

n∑
i=1

gi(x)hi(y), x, y ∈ S,(5.1)

with {g1, . . . , gn} and {h1, . . . , hn} linearly independent. Let V = span{g1,
. . . , gn} and g = [g1, . . . , gn]t.

There exists an associative and commutative algebra (Cn,+, ∗) with iden-
tity element g(e) and regular representation R : Cn →Mn(C) such that

R(g(xy)) = R(g(x))R(g(y)), x, y ∈ S,

with R(g(e)) = En and g(x) = R(g(x))g(e) for all x ∈ S.
There exists a similarity matrix D ∈Mn(C) simultaneously transforming

the family {R(g(x)) | x ∈ S} of commuting matrices into block diagonal form

D−1R(g(x))D = diag{M1(x), . . . ,Ms(x)},

Mr(x) ∈Mdr(C), d1 + · · ·+ ds = n,

where each Mr is lower triangular of the form

Mr(x) = χr(x)Edr +
(
ρi,jr (x)

)
, ρi,jr (x) = 0 for i ≤ j ∈ {1, . . . , dr},(5.2)

for all x ∈ S, where χr, ρi,jr ∈ V for all r ∈ {1, . . . , s} and i, j ∈ {1, . . . , dr}.
Furthermore, each χr is an exponential with χr(e) = 1, and we have for

each block Mr the system of equations

ρi,jr (xy) = ρi,jr (x)χr(y) + ρi,jr (y)χr(x) +

i−1∑
k=j+1

ρi,kr (x)ρk,jr (y)(5.3)

for r ∈ {1, . . . , s} and 1 ≤ i, j ≤ dr. Moreover χ1, . . . , χs are distinct.
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Note that if dr = 1 for some r then the corresponding system (5.3) is
trivial, since ρ1,1r = 0 by (5.2) hence the block Mr is just the exponential χr.

In the next result, which is [5, Theorem 2.5], a pure polynomial is a poly-
nomial P ∈ C[x1, . . . , xn] such that P (0, . . . , 0) = 0, so P has constant term 0.

Proposition 5.2. Let n ∈ N, let S be a topological commutative monoid,
and suppose f, gj , hj ∈ C(S) for 1 ≤ j ≤ n satisfy (5.1) with {g1, . . . , gn}
and {h1, . . . , hn} linearly independent. Let V = span{g1, . . . , gn}. Then there
exist positive integers s, d1, . . . , ds with d1 + · · ·+ds = n, distinct exponentials
χr ∈ V for each 1 ≤ r ≤ s with corresponding nullspaces Ir, additive functions
Ar,j ∈ C(S \ Ir) and pure polynomials Pr,j of degree at most dr − 1 for each
1 ≤ r ≤ s and 1 ≤ j ≤ dr − 1, and functions qr,j ∈ C(S) for each 1 ≤ r ≤ s
and 1 ≤ j ≤ dr − 1, such that

qr,j(x) = Pr,j(Ar,1(x), . . . , Ar,dr−1(x))χr(x), for all x ∈ S \ Ir,

and B = B1 ∪ · · · ∪Bs is a basis for V , where

Br = {χr, qr,1, . . . , qr,dr−1}.

Moreover f, h1, . . . , hn ∈ V .
Note that the form of qr,j on Ir is unspecified.

Now we have the following companion result to Theorem 4.4, but by a com-
pletely different proof.

Theorem 5.3. Let S be a topological commutative monoid, and let f, g1, g2,
h1, h2 ∈ C(S) be a solution of (1.1) with both {g1, g2} and {h1, h2} linearly
independent. The solutions are exactly the same as in Theorem 4.4, where
χ, χ1, χ2 ∈ C(S) are exponentials with χ1 6= χ2 and Φ ∈ C(S) is nonzero.

Proof. By Proposition 5.2 for n = 2 we have f, h1, h2 ∈ V = span{g1, g2}.
There are two cases to consider, either s = 2 with d1 = d2 = 1, or s = 1 with
d1 = 2.

Case (i): Suppose s = 2 with d1 = d2 = 1. Then there are distinct ex-
ponentials χ1, χ2 ∈ C(S) such that B = {χ1, χ2} is a basis for V . Putting
the formulas of f, g1, g2, h1, h2 shown in Theorem 4.4(i) into (1.1) we get the
constraints on the coefficients as before.

Case (ii): Suppose s = 1 with d1 = 2. Then there exists an exponential
χ ∈ C(S) and a function q ∈ C(S) such that B = {χ, q} is a basis for V . We
are given that

q(x) = P (A(x))χ(x), x ∈ S \ Iχ,



164 Bruce Ebanks

where A ∈ C(S) is additive and P ∈ C[x] is a polynomial of the form P (x) =
cx for some c ∈ C. Since cA is again a continuous additive function we thus
have

q(x) = A(x)χ(x), x ∈ S \ Iχ.

To get some information about the form of q on Iχ we look to Lemma 5.1.
Applying that lemma to the case at hand we have D−1R(g(x))D = M(x),
where (5.2) takes the form

M =

(
χ 0
ρ χ

)
with ρ ∈ C(S) satisfying (5.3). Here the latter functional equation is simply
the special sine addition law (3.3):

ρ(xy) = ρ(x)χ(y) + ρ(y)χ(x), x, y ∈ S,

so ρ = Φ. Since the matrix coefficients of R◦g are χ,Φ, 0, and since dim(V ) =
2, we must have Φ 6= 0. Now since {χ,Φ} is linearly independent by Re-
mark 3.5, we can replace q in the basis by Φ to get V = span{χ,Φ}, and
we arrive at the forms of solution functions shown in Theorem 4.4(ii). Sub-
stitution of these forms into (1.1) yields the constraints on the coefficients as
before. �

In conclusion, the trade-off for using the powerful tool of representation
theory (to get the short proof of Theorem 5.3) is that we had to assume S
is commutative. Using elementary methods we can substitute the assumption
that f is central to get the same solutions on non-commutative S.

6. Examples

We include two examples to illustrate the results. Since both examples
are on commutative monoids, either Theorem 4.4 or Theorem 5.3 can be
applied. For each monoid it suffices to identify the forms of χ,Φ ∈ C(S) to be
substituted into the solution formulas. The monoids below are neither regular
(so not groups) nor generated by their squares, thus the results of [1] cannot
be applied.

Let R(z) denote the real part of z ∈ C.
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Example 6.1. Let S = [−1, 1] under multiplication and the usual topol-
ogy. The continuous exponentials χ on S come in three forms,

χ0 := 1, χα(x) :=

{
|x|α for x 6= 0,

0 for x = 0,

or χ̂α(x) :=

{
|x|αsgn(x) for x 6= 0,

0 for x = 0,

where R(α) > 0.
Now we identify the possible forms of continuous Φ satisfying (3.3), sup-

posing that an exponential χ is given. Note that Pχ = ∅ for each form of χ,
so the form (3.1) for Φ reduces to

Φ(x) =

{
A(x)χ(x) for x ∈ S \ Iχ,
0 for x ∈ Iχ,

where A ∈ C(S \ Iχ) is additive.
For χ = χ0 we have Iχ = ∅, so the continuous Φ on S have the form

Φ = Aχ. But since S contains a zero, the only additive function on S is
A = 0, therefore Φ = 0.

For χ ∈ {χα, χ̂α} with R(α) > 0, we have Iχ = {0} and A ∈ C(S \ {0}).
Such additive A have the form A(x) = c log |x| for some c ∈ C.

The final example deals with the monoid S = (N, ·), which contains infin-
itely many prime ideals. Letting P denote the set of prime numbers, the set
pN is a prime ideal of S for each p ∈ P . The nullspace Iχ of a multiplicative
function χ : S → C is the union of all pN for primes p such that χ(p) = 0. For
each p ∈ P define the function Cp : S → C for each x ∈ S by

Cp(x) := the number of copies of p in the prime factorization of x.

We note that Cp is additive for each p ∈ P , and the (unique) prime factoriza-
tion of x ∈ S can be written as x =

∏
p∈P p

Cp(x).

Example 6.2. Let S = (N, ·) equipped with the discrete topology. The
multiplicative functions χ : S → C are generated by their values on P , specif-
ically χ(x) =

∏
p∈P χ(p)Cp(x) with the convention 00 := 1. The value of χ(p)

for each p ∈ P can be chosen arbitrarily. Such χ is an exponential if and only
if there exists some prime p0 such that χ(p0) 6= 0.
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As shown in [2, Corollary 6.3], the functions Φ satisfying the special sine
addition formula (3.3) with an exponential χ have the form

Φ(x) =


A(x)χ(x) for x ∈ S \ Iχ,
φ(p)χ(w) for x = pw with p ∈ P ∩ Iχ, w ∈ S \ Iχ,
0 for x ∈ I2χ,

where A : S \ Iχ → C is additive and φ : P ∩ Iχ → C is an arbitrary function.
Such additive A are generated by their values on P \ Iχ, namely A(x) =∑
p∈P\Iχ Cp(x)A(p), where the values of A on P \Iχ may be chosen arbitrarily.
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