Annales Mathematicae Silesianae 10. Katowice 1996, 111-125

Prace Naukowe Uniwersytetu Slgskiego nr 1564

LERAY-SCHAUDER DEGREE METHOD
IN ONE-PARAMETER FUNCTIONAL
- BOUNDARY VALUE PROBLEMS

SVATOSLAV STANEK

Abstract. Sufficient conditions for the existence of solutions of one-para-
meter functional boundary value problems of the type

Z” = f(tvzy Tt, zlyziy A))

(w0,24) € {(,x + ) € RY, a(aly) = 4, Ba(T) ) = B

are given. Hére f: IxRxCrxRxCr xR — R is continuous, ¢, x € Cr, a,8
are comtinuous increasing functionals, A, B € R and z}; is the restriction of
z to J = [0, T]. Results are proved by the Leray-Schauder degree method.

1. Introduction

Let C, (r > 0) be the Banach space of C%—functions on [—r,0] with the
~norm ||z|l—r,0) = max{|z(t)]; —r < ¢ < 0}. Let T be a positive constant.
For every continuous function z : [-r,T7] — R and each ¢t € [0,T] =: J
denote by z; the element of C, defined by

zi(s) =z(t+s), s€ [—r,‘O].

Let X be the Banach space of C%—functions on J endowed with the norm
llz|l; = max{|z(t)|; t € J}. Denote by D the set of all functionalsy : X — R
which are

a) continuous, v(0) =0,
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b) increasing, i.e. T,y € X, z(t) < y(t) for t € (0,T) = v(z) < (y),
and
c) nl_izgo v{exy) = €oo for each £ € {—1,1} and any sequence {z,} C X,
nli}ngo z,(t) = oo locally uniformly on (0,T).

This paper is concerned with the functional boundary value problem
(BVP for short) '

(1) ' " = f(t, 2,2, 7', 74, A),

(2)  (z0,70) € {{p,x +c)ic € R}, afzls) = A, B(=(T) —z|s) = B

depending on the parameter A\. Here f : JXRXC, xRx C, xR = R
is a continuous operator, ¢,x € Cy, a,8 € D, A,B € R and z|; is the
restriction of = to J.

By a solution of BVP (1), (2) we mean a pair (z,A¢), where A\¢ € R and
z € CO([-r, T])NC?(J) is a solution of (1) for A = A satisfying the last two
conditions in (2) and z:(s) = ¢(t + s), z{(s) = x(t + s) — x(0) + z'(0) for
0>t+s(>—r) and z4(s) = z(t + 5), zi(s) =2'(t+s) for 0 <t + (< T).

This definition of BVP (1), (2) is motivated by the Hastdk definitions for
multipoint boundary value problems for linear differential equations with
delays ([5]-[7]).

Our objective is to look for sufficient conditions imposed upon the nonlin-
earity f in order to obtain solutions of BVP (1), (2). The proofs are based
on the Leray-Schauder degree theory (see e.g. [2]).

~ We observe that sufficient conditions for the existence (and uniqueness)
of solutions of BVP

y” - q(t)y = g(t’ Yi, >‘)7
w=¢ yt)=yT)=0 0<t<7T)

were obtained in [8] with ¢ € C,, ¢(0) = 0. The proof of the existence
theorem is based on a combination of the Schauder linearization technique
and the Schauder fixed point theorem. In [10] was studied BVP

n ! !
z" = F(t,z,z¢,2', x4, M),

zo =, #'(0)=2(T)=0

with ¢ € CY([-1,0]), ©(0) = 0 = ¢'(0). The existence of solutions was
proved by a combination of the Schauder quasilinearization technique and
the Schauder fixed point theorem.
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BVPs for second order differential and functional differential equations
depending on the parameter were considered as a rule under linear bound-
" ary conditions using the schooting method ([1, 3]), by the Schauder lin-
earization method and the Schauder fixed point theorem ([9], [11]), by a
surjectivity result in R® ([13]), by a combination of the Schauder quasilin-
earization technique and the Schauder fixed point theorem ([14]) and by the
Leray—Schauder degree theory ([12]).

2. Lemmas

REMARK 1. By c) in the definition of D, Imy = R for all ¥ € D, where
Im~y denotes the range of ~. ‘ '

REMARK 2. The following example shows that assumptions a) and b) in
the definition of D don’t imply its assumption c).

EXAMPLE 1. Consider the functional v : X — R defined by
v(z) = z(0) + z(T) + arctgz(T/2).

Obviously, ¥(0) = 0, Imy = R, v is continuous increasing. Set z,(t) = J
nsin(tx/T) for t € J and n € N. Then hm Zn(t) = oo locally uniformly on

(0,T) and

Jim v(ezn) = nli}ngo (€25 (0) + ez, (T) + arctg(ez, (n/2)))
= nl_i+n;o arctg (ensin(n/2))

=nll)n°1° arctg(en) = em/2
for € € {—1,1}.
EXAMPLE 2. Special cases of boundary conditions (2) é,re" conditions

B m=p, oO)=A oT)=B (ABeR ¢e(0T),

Zo = ¢, /xz';+1 (s)ds=A, =z(T)=B+z(£)
0 . o .
(A,BeR, neN, 7€(0,T), £€(0,7)),

(4)

8 —~ Annales...
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5 D% @ s =4 sD)=Bi+ (/) JECE
‘ ’ 0

. (ABIER 0SH<HET -6 <T, 1e(T),

© . |

zo = p, max{z(t); t € [a1,02]} = A, max{z(T) —z(t); ¢ € [a3,04]} = B
(A,B,.é]R,0<a1<a2<T,0<a3<a4<T).

‘Boundary coi}ditions (3) (resp. (4); (5); (6)) we obtain setting (in (2))
a(z) =z(), Blz)=z(), B=B—-A

T

| (resp. a(e) = [+ (5)ds, Bla) = (e}

0
r

alz) = $(&1) + 2(&a), Bla) = [ 2(s)ds, B = 7By;

0

a(z) = max{z(t); t € [a1,a2]}, Blz) = max{z(t); t € [a3,a4]}).

LEMMA 1. Letu,v€ X, o, €D, c€[0,1]. Let
a(z +u) + (c — Va(—z + u) = calu),

B(T) -y +v) + (¢ — 1)B(—y(T) +y + v) = cB(v)
be satisfied for some z,y € X. Then there exist {,0 € (0,T) such that

z(€) =0, y(o)=y(T).

PROOF. Define a1,B; € D by au(2) = a(z +u) + (¢ — Va(—2z + u) —
ca(u), Bi(z) = Blz +v) + (¢ = 1)B(-z +v) — cf(v). Assume z(t) #
0, y(T)—y(t) # 0 for t € (0,T). Then e (z) # 0, Bu(y(T)—y(¢)) # 0 which
contradicts the assumptions a; (z) = a(z +u) + (¢ — e~z +u) — ca(u) =
0, f(y(T) —y) = BW(T) —y +v) + (c— B(-y(T) +y+v) —cB(v) = 0. O

LEMMA 2. Let o, €D, ui,v; € X (i=1,2), A, BERandv € [0, 00).
Then there exist unique a,p € R such that the equalities

a (asin(nt/T) + p(cos(nt/T) — 1) + u1)
—va (—asin(xt/T) — p(cos(nt/T) — 1) + uz) = 4,
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B (—asin(nt/T) — p(cos(nt/T) + 1) + v1)
| —vf (asin(nt/T) + p(cos(nt/T) + 1) + v2) =
hold.

PROOF. Define the continuous functions p,q : RZ - R by

p(z,y) =a (zsin(xt/T) + y(cos(nt/T) — 1) +u)
— va (—z sin(nt/T) — y(cos(nt/T) - 1) + uz),

a(z,y) =B (~zsin(xt/T) - ylcos(xt/T) +1) +v1)

— vf (zsin(mt/T) + y(cos(xt/T) + 1) + v3) .
Since o, 8 € D, 0 < sin(nt/T) < 1, -2 < cos(nt/T) — 1 < 0 and 0 <
cos(wt/T) + 1 < 2 for t € (0, T), we see that (cf. the definition of D) p(-,y)

is increasing on R and p(z,-), q(:,3), ¢(%,-) are decreasing on R (for fixed
z,y € R). Moreover,

lim p(z,y) =ec0, lim p(z,y) = —eoo,
y—eco

Z~$€£00
Jim g(z,y) = —eco, ygrgwq(z,y)=—soo

for ¢ € {~1,1} (and fixed z,y € R). Consequently, to each z € R there
exists a unique y = r(z) € R such that p(z,r(z)) = A. Evidently,r : R -+ R
is continuous mcreasmg, hm r(z) = eoo for € € {—1,1} and setting s(z) =

q(z,r(z)) forz € R, s is contmuous decreasing, Em 8(z) = —eoo for € €
E—ECC

{-1,1}. Hence s(a) = B for a unique a € R and if we set £ = a, pu =r(a),
our lemma is proved. : a

LEMMA 3. Let a,8 € D, a,A,B € R. Then the system of nonlinear
equations

(1) afa+zsin(nt/T) +ty) = A, B (—zsin(nt/T) + (T — t)y) = B

has a unique solution (z,y) € R2.

PROOF. We shall consider the continuous functions p, g € R? — R defined
by

p(z,y) = a(a + zsin(rt/T) +ty), q(z,y) = B(—zsin(nt/T) + (T - t)y).

Since 0 < sin(wt/T) <1, 0<t<T, 0<T—t<Tforte(0,T), p(-,y),
p(z,-), q(z,-) are increasing on R and ¢(-,y) is decreasing on R (for each
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fixed 7,y € R). Moreover, lim p(z,y) =eoco, lim p(x,y) = oo,
T—rEQ . Y—rECQ

lim ¢(z,y) = eco and lim g(z,y) = —eoo for € € {—1,1}. In the same
y—reco T—E00
manner as in the proof of Lemma 2 we can verify that system (7) has a
unique solution. _ a

3. Existence theorems
Let u,v € X and x € Cy. Consider BVP

(8) | 2" = h(t, T, 24,2, T4, V),

(:L‘o, .’L‘G) » ' ‘ g

O ¢ {0 x+0) ceR), afutaly) =alw);, Aa(T)—als+v)=B)

depending on the parameter A\. Here h: J X R x Cr x R x C, xR Risa
continuous operator and o, 8 € D.

Set Sk = {z: = € Cy, ||zll{-r,0) £ K } for each positive constant K and
lzllr = max{|z(t)|; t € I} for each compact ] CR and z € C°(I).

THEOREM 1. Let x € Cr, m = |x||. Assume there exist constants
K >0, A >0, M >0 and a function w; : [0,00) % [0,00) = (0,00)
nondecreasing in both its arguments such that " : :

(10°) h(t;z,9,0,0,A) 20  for (t,z,9,0) € J x [0, K] x Sk X Sps4zm

h(t, z, "/)1 O, o, -A) S 0

(107) for (t,,1,0) € J X [~K,0] X Sxc X Sn+am;
1 h(t,—K,%,0,0,)) <0 < h(t, K,%,0,0,})
(1) for (t1h,0,)) € J X Sk X Saraam X [-A, A,
(12) Ih(t7 Z, 1/)7 Y, 0, )‘)| < wl(iyl) "Q“[—'I‘,O])
for (t,(L‘, "/)a A) €Jx [_Ka K] X Sk X [—Aa A]7 (ya Q) €eRxC,
and

M

' sds
(13) 0/ o M 1 2m) + GE/ /TR 2
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Then BVP (8), (9) has at least one solution (x, Ao) satisfying

19 lells < K, lla'lls <M, ] <A

PROOF. Define the continuous operator h* : J XRxC, xRxC, xR = R
by v

(15) h*(t,2,9,9, 0,\) = h(t,z,%,9,8,A)
where (slé_ [-7,0)) |

» M +2m for o(s) > M +2m
B(s)=1 e(s)  for lo(s)| S M +2m
—(M+2m) for po(s) < —(M +2m).

Consider the equation
(16.) " = c.h*(t, 2,34, 2, 24, A) + (1 — )2z + kN), c€[0,1],

where .
"e T K
T 2T2A° :
Let (zc, A ) be a solution of BVP (16.), (16’ ) with a ¢ € [0 1) such that
Izells < K, |A¢] < A, wheres

(ch’w::O) € {(07X + d); de R},
(16%) a(u + z.|s) + (c — Da(u — z:|s) = cofu),
B(z(T) — zcls 4+ v) + (¢ = 1)B(=2(T) + zcls +v) = cB(v).

We shall prove

lzclls < K, laclls < M,

0 ey 2
zlls < wi (M, M +2m) + 3K/2)(x/T)*, |A| <A.

Assume A\, = A. By Lemma 1 (with ¢ = 1) z.(v) = 0, z.(T) = z.()

for some v, € (0,T) and therefore 0 < max{z.(t); ¢t € J} = z.(r) for

a7 € (0,T). Then z,(r) = 0, z'(r). < 0 which contradicts (cf. (10’)
and (15)) z//(7) = c.h* ('r,:z:c(T),xc.,,O zl  A) + (1 = c)(e2x.(7)+ kA) > 0.
Let A, = —A. Then 0 > min{z.(t); t € J} = z.(p) for a p € (0,T)
and z4(u) = 0, z!(p) > 0 which contradicts (cf. (10”) and (15)) z;(p) =
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c.h* (pu, o) Teps 0, 2L, —A) + (1 — c)(e2zc(p) — kA) < 0. Hence |A;| < A.
Let Jjz.|ls = K, for example let z.(x) = K with a k € (0,T) (see Lemma
1 with ¢ = 1). Then z’(k) = 0, z/(x) < 0 which contradicts (cf. (11) and
(15)) 2" (Kk) = c.h* (5%, K, Texy 0, Tewy Ac) + (1 =€) (€2K + k) > (1—c) (2K —
kA) = (1 — ¢)(n2K/2T?) > 0. Hence ||z[l; < K. Since z.(v) = 0 and
z.(0) = 0, z!(n) = 0 for an 5 € (0,v) and, moreover,

|22 (8)] <c|h* (£, Te(t), Tt T(t), Ty, Ae)| + (1 — ) (K + kA)

(18) , , 9

<wy(lze(t), M + 2m) + (3K /2)(x/T)

for t € J by (12) and (15). So, using (13), (18) and a standard procedure

(see e.g. [4]) we can prove ||z;ll; < M. Finally, [lzZ]l; < wa(lzclls, M +

2m) + (3K/2)(n/T)? < wi(M, M +2m) + (3K/2)(w/T)? and (17) is proved.
Let Y; ( = 1,2) be the Banach space of C*~functions on J with the norm

' .
llzlli = 3 1295, Yoi = {z; z €Y;, z(0) = 0}. Define the operators
3=0

UH,V:Ye xR X xR

> (U(z, WN2) = (2"(t) + 2z(t) + kX, a(z +u) — a(-z +u),
B(z(T) — z +v) — B(—=z(T) + z +v)),
(H(z, N))(t) = (h* (¢, 2(2), T4, 7' (2), 5, ), o(u) — a(—z +u),
B(v) — B(—z(T) + z +v)),
(V(z, ) () = (¢’z(t) + k>,0,0),
where

() {0 for t4+s5<0

§) =

ot z(t+s) for t4+s>0,
w,(s)z{x(t+s)—x(0)+z'(0) for t+s<0
¢ z'(t + s) for t+s>0.

Consider the operator equation
(19.) Ulz,\) = c(H(z,A) + V(z, ) +2(1 — o)V (z, A), c € [0,1].

We see that BVP (8), (9) with A = A* has a solution (z, Ao) if (z]s, Ao) is a
solution of (19;) and conversely, if (z, Xo) is a solution of (191), then (z, Ao)
is a solution of BVP (8), (9) with h = h* where (20,25) = (0,x — x(0) +
£'(0)), z|s = z. So, to prove the existence of solutions of BVP (8), (9) with
h = h* it is sufficient to show that (19;) has a solution.
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We shall prove that U : Yoz x R = X xIR? is one to one and onto. Let
(2,a,b) € X xR? and consider the operator equation

Uz, ) = (2,a,b),
that is the equations

(20" " + %z + kX = 2(t),

(20") a(z+u)—a(-z+u) =a, B(T)-z+v)- B(—z(T)+z+v) =b,

where z € Yoz, A € R. The function z(t) = ¢; sin(et) + ¢z cos(et) - (kA/€3)+
t

w(t) is the general solution of (20’) where w(t) = (1/¢) J 2(s) sin(e(t — s))ds

0
and ci, ¢p are integration constants. The function z satisfies (20”) and z(0) =
0 if and only if c; = kX/e? and (c1, A) is a solution of the system

a (c; sin(et) + (kX/€2)(cos(et) — 1) +w + u)
—a (—c; sin(et) — (k) /€?)(cos(et) — 1) —w +u) =a,

B (—c1 sin(et) — (kA/e?)(1 + cos(et)) + w(T) —w + v)
—B (c1 sin(et) + (kA/e®)(1 + cos(et)) — w(T) + w + v) = b,

since eT = 7. By Lemma 2 (witha = ¢;, p = kA€, vy =w+u, ug =
—w+u, vy =wl)—w+v, vp=-wT)+w+v, A=a, B= b), there
exists a unique solution (G, A) of the above system. Hence U-l:X xR?
Y, xR exists. Let (z, ) € Yoz xR and set U(z, ) = (2,a,b), U(-z,—A) =
(zl,al,bl). Then

2'(t) + 2z(t) + kA = 2(t), —z"(t)—€’z(t) —kA=z() for teJ
and
oz +u)—a(-z+u)=a, BET)-z+v)~PB(-z(T)+z+v)=b,
a(—z+u)—a(@+u) =a1, B(-z(T)+z+v)—B(T) —z+v)=b.
Therefore 2; = —2, a; = —a, b; = —b and consequently
Uz, ) = —U(—z,-X)

for all (z,)) € Yo2 x R. So U is an odd operator and then U~! is odd as
well.
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In order to prove that U~! is a continuous operator let {(zn,an,bs)} C
X xR? be a convergent sequence, (zn,an,bn) = (2,a,b) as n — oco. Set
(Zny An) = U™ (2n, a0, bn), (z,2) =U~1(2,a,b). Then
T (£) + 22n (8) + kAn = 2,(2), 2" (1) +E%2(t) +hkA=2(t) for t€J, neN
and there exist sequences {c,},{dn} C R and c,d € R such that

o (¢ sin(et) + dn (cos(et) — 1) + wp + 1)

1) —a (—c_n sin(et) — dy (cos(et) — 1) — wy, + u) = ayn,
. B (—cp sin(et) — dp (1 + cos(et)) + wp(T) —w +v)
(21%) _ 8 (e sin(et) + dn (1 + cos(et)) — wa(T) + w + ) = by,
, o (csin(et) + d(cos(et) — 1) + w + u)
(22) — o (—csin(et) — d(cos(et) — 1) — w + u) = a,
" B (—csin(et) — d(1 + cos(et)) + w(T) — w +v)
(22%) —f (csin(et) + d(1 + cos(et)) — w(T) + w + v) = b,
and

Tn(t) = Cn sin(et) + dp(cos(et) — 1) + wy (1),
z(t) = csin(et) + d(cos(et) — 1) + w(t)
for t € J and n € N where

t

wy(t) = (1/¢) /zn(s) sin(e(t — s))ds,

0

w(t) = (1/¢) /z(s) sin(e(t — s))ds, teJ, n€N
-0

and
A =€2dp/k, A=¢€%d/k, neN
Evidently, ILm w, = w in Yy and {¢,}, {d.} are bounded sequences since
n—oo .

Ima = R = Imf and {a,}, {b.} and {w,} are bounded in R and X, respec-
tively. Assume, on the contrary, that for example {c,} is not convergent
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(the convergence of {dy} can be proved similarly). Then there exist con-
vergent subsequences {cx,}, {c.}, lim 0 c, = c*, lim a, =& ¢ #¢&.

Without loss of generality we can a.ssume . that {dk.}> {d;n} are convergent,
lim dg, = d*, hm di, = d where d* equals d or not Taking the limits in

n—o0
(217, (21”) as k —) oo and [, — oo we obtain

a (c* sin(et) + d*(cos(et) — 1) + w + u)
—a (—c" sin(et) — d*(cos(et) — 1) —w + u) = q,
B(—c sm(et) d* (1 + cos(et)) + w(T) — w + v)
-B(c sm(st) +d*(1 + cos(et)) — w(T) + w+v) = b,
and :
a (E sin(et) + J(cos(et) -1)+w+ u)
—a ( csm(et) (cos(et) -1)-w+ u) = q,
g ( ésin(et) — d(1 + cos(et)) + w(T) — w + v)
-8 (Esip(st) + d(1 + cos(et)) — w(T) +w + v) = b,

respectively. Hence ¢* = ¢, 'd* =d by Lemma 2 (with ul =w+u, uz =
—w+u, 17 = w(T) —w+v, v =—w(T)+ w+ v), a contradiction. Let
hm ¢n = Co, hm d, = dy. Taklng the limits in (21°), (21”) as n — oo we

see that (227), (22”) hold with ¢ = ¢y, d = dpy and consequently c=c¢p, d=
do by Lemma 2. Then
lim ¥ (¢) = lim (c, sin(et) + dn(cos(et) — 1) + wy ()
n-—-00 n—oo .
= (csin(et) + d(cos(et) — 1) + w(t))®

uniformly on J (i = 0,1,2) and lim )\, = X; hence lim U~(z,,an,b,) =
n—o0o n—oo
U~'(z,a,b) and consequently U~ is a continuous operator.
Applying U~! we can rewrite (19.) as
(z,2) = U~ (c(Hj(z, ) + Vi(z, X)) +2(1 - )Vij(z, ),
c€[0,1],
where j : Y1 X R = Y2 x R is the natural embedding, which is completely

continuous by the Arzela—Ascoli theorem and the Bolzano—Weierstrass the-
orem. Set

Q={(z,)); (z,)) € Yo2 xR, |izlls < K, |lz'|ls < M,
"]l < wi(M, M +2m) + (3M/2)(n/T)?, |A| < A}.

(23.)
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Then €2 i§ a bounded open convex and symmetric with respect to 0 € €2 sub-
set of Ypo X R, U~L(Hj + V§) is a compact operator on  and U~1(2Vj)
is a completly continuous operator on Yoz x R. To prove that BVP (8),
(9) with h = h* has a solution (z, Ao) satisfying (14) it is sufficient to show
that U~1(Hj + Vj) has a fixed point in $, that is (23;) has a solution in Q.
If U-Y(Hj + V) has a fixed point on 9%, our theorem is proved. Assume
(U-Y(Hj +V3§)) (z,)) # (z, A) for all (z,)) € 8. Define W : [0,1] x @ —
Yoz x R by W(c,z,)) = Ut (c(Hj(z,A) + Vi(z, /\)) +2(1 - ¢)Vj(z, A)).
W is a compact operator a.nd (cf. (17)) W(c, =, A) (z,A) for (z,A) €
30 and ¢ € [0,1]; hence (cf. eg [2]) D(I — UY(Hj + Vj),Q,0) =
D(I-U"1(2v;),Q O), where “D” denotes the Leray-Schauder degree.. Since
U-! is odd and Vj is linear, U~1(2V ) is odd and consequently D(I —
U-1(2V3),9,0) # 0 by the Borsuk theorem (see e.g. [2, Theorem 8.3, p.
58]). Thus there exists a solution (z, Ao) € Q of (23,) and since ||z} |[—r,0 <
lz'll7 + lix — x(O)ll{-r,0f £ M + 2m for t € J we see that

h*(t, z(t), ¢, 7' (t), T}, Mo) = h(t, z(t), z¢, 2’ (T), 24, Ao)
on J. This completes the proof. O

REMARK 3. Let ¢ € C, and (zo,y0) € R? be the unique solution of
system (7) with a = ¢(0), A, B € R (see Lemma 3). Then the function

o) — {(p(t) : for te€[-r,0],
z(t) = ©(0) + zo sin(7r.t/T) +yot for t€(0,T]

satisfies boundary conditions zo = ¢, a(z|s) = A, B(z(T) —z|;) =

THEOREM 2. Assume that f satisfies the following assumptions:

(H;) (Sign conditions): For each constant E > 0 there exist constants
K > 0 and A > 0 such that

f(tx E¢$ya9)A)>—E
for (t,z,%,y,0) € J % [0, K + 2E] X Sk4+E X [—E E]| x C,,

f(t,$+E,¢,y,Q,—A) S E
for (t,z,,y,0) € J x [-K —2E,0] X Sk+g % [-E, E] x C,

(t T, "p’yaga)\) 2> -E
for (t,z,%,y,0,)\) € J x [K — E,K + E] x Sk4+E X [—E E]l x C,
x [—A,A],

f2,9,0,00) 2 E
for (t,z,%,y,0,)) € J X [-K — E,—K + E] X Sg+E X [ E, E]
x Cyp x [-A, A];
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(H;) (Bernstein—Nagumo growth condition): A nondecreasing function
w(-,A) : [0,00) — (0,00) exists to any bounded subset A of R X

C, x R such that

» 7 sds '
(24) O/w(s,.A) = 00
and

(25) If(t’m1¢ay, o, >‘)| < w(|y|,.A) ‘ for (t,2,¢, A) € JXA, (y, Q) (S RXC,..

Then BVP (1), (2) has at least one solution for each ¢, x € C, and A,B € R.

PROOF. Let ¢,x € Cr, A,B € R and p € C°([~r,T]) N C%(J) satisfy
boundary conditions py = ¢, a(p|ls) = A, B(®(T) — p|s) = B (see Remark
- 3). Set By = max {|lpllj—r.17, lI7'lls, fIp"lls} and .

ht, ,%,9,0,7) = f(t,z+p(t), ¥ + P,y +9'(t), 0+ 2, X) = p"(2)
for (¢t,z,%,y,0,A) € J x Rx C, x R x C, x R where

p'(0) for t+s<0
z(s) =19, "
p(t+s) for t+s>0.
We see that (z + p, Ao) 1s a solution of BVP (1), (2) if and only if (z, A) is .
a solution of BVP (8), (9) with u = p|;, and v = p(T') = p|;. Thus to prove
* our theorem it is sufficient to show that BVP (8), (9) has a solution which

occurs if h satisfies the assumptions of Theorem 1.
Let K > 0, A > 0 be constants corresponding to £ = F,; in a.ssumptlon

(H;). Then

h(t,z,%,0,0,A) =f(t,z + p(t), 1/)+Ptap(t) e+zt,A) -p'(t)
>E, -p"(t) >0

for (t,x,¢, o) € J x [0,K] x S x C,

h(t, z, ¢, 0, o, _A) =f(t’ T+ p(t)1 1/) +pt7pl(t)a o+ z, —A) - p"(t)
<-E-p"(t)<0

for (t,z,v,0) € J x [-K,0] x Sk x Cr,
and

h(t, K,%,0,0,)) = f(t, K+p(t), ¥+p:, ' (t), 042, \)—p"(t) 2 E1—p"(t) 2 0
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h’(ta —K7 "/}7 07 o, A) =f(t, -K +p(t)7 "/) + pt’pl(t)a o+ 2, A) - p"(t)
' <-E -p'(t)<0
for (t,7,0,A) € J x Sk x Cr x [-A, A].
Set A = [-K — By, K + Ey] X S5, X [-A,A]. By (Hz), a nondecreasing
function w(-,.A) : [0,00) — (0, 00) exists such that (24) and (25) hold. Then

h(t,z,%,y,0,)) =f(t,z +p(£), ¥ +pe,y + ' (), 0+ 2, ) — p" (2)]
<w(ly +p'(t)], A) + BE1 <w(ly| + E1, A) + Ey
for (t,z,%,0,A) € J X [-K,K] x Sk x Cr x [-A,A] and y € R. Since the

function w; (s) = w(s + Ey, A) + E; is positive nondecreasing on {0, c0) and
(cf. (24))

M M
2K

/ sds _ / sds >
/ wi(s) + 3K/2)(w/T)? ) w(s + E1, A) + E1 + (3K/2)(n/T)?

for a positive constant M, the assumptions of Theorem 1 are satisfied. This
completes the proof. 0

ExAMPLE 3. Consider the functional differential equation
(25)  z"(t) = a(t) + b(t)z® (t) +c(t)z(t —r) + d(t)z’'(t) + (1 + | sint])A

depending on the parameter A together with boundary conditions (2). Here
a,b,c,d € C°(J), b(t) > 0 on J. Equation (25) is the special case of (1) with
f(t, 3,0, y,0,N) = a(t)+b(t)z3 +c(t)yp(—r)+d(t)y+(1+|sin¢|)A and satisfies
the assumptions of Theorem 2. Indeed, let b = min{b(t); t € J}(> 0) and
fix £ > 0. Then

1 l%‘
K= _1_+ _1_+§+ .S_2+£— 3.}. _:l_+§_ .S_2+_$_§
=maxyzT\gr T2 T\71 27 w3\ ") )

24C
iy}
b’z}

s

and A = Q + KC are constants corresponding to E in (H;) where C =
lells, 8 = (8/8) (3llalls + 3E(C + ||dlls + 1) + 2E|blls), Q = llalls+E(C+
ldlls + 1) + E®||blls; and w(s, A) = Hs + P satisfies assumption (Hz) for
suitable positive constants P = P(A), H = H(A). Hence, there exists at
least one solution of BVP (25), (2) for each ¢,x € C, and A,B € R.
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