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ON WEAK SOLUTIONS TO PARABOLIC PROBLEM
INVOLVING THE FRACTIONAL p-LAPLACIAN
VIA YOUNG MEASURES
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Abstract. In this paper, we study the local existence of weak solutions for
parabolic problem involving the fractional p-Laplacian. Our technique is based
on the Galerkin method combined with the theory of Young measures. In
addition, an example is given to illustrate the main results.

1. Introduction

Recently, there has been a lot of interest in the systematic study of prob-
lems involving non-local operators due to their frequency in practical real-
world applications, such as finance, optimization, soft thin films, stratified
materials, and phase transitions. We refer the reader to see [32]. The elliptic
theory for linear and quasilinear nonlocal operators has seen extensive research
over the past few decades, particularly in the works of Caffarelli and collabora-
tors [4, B, [14]. Additionally, research on nonlocal nonlinear problems has been
extensively explored in [30], we also refer to [9) 10, 111, 15l 22} 24] 25| 26] 31]
on related existence results for the problems of elliptic and parabolic type
involving non-local fractional Laplacian (p-Laplacian) operators.
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In this paper, suppose that 2 is a bounded open domain of R™ and T is
a real positive number. We deal with the following initial boundary value
problem:

%—7; + (—A);u = f(z,t,u) in Qr=Qx(0,7),
(1.1) u=20 in (R™\Q) x (0,7),

u(z,0) = ug(x) in Q,
where 0 < s < 1 and 2 < p are real numbers, u: Q x (0,7) — R™,

m € {0,1,2,...} is a vector-valued function and the function f satisfies the
following hypothesis:

(H1) f: 2% (0,T) x R™ — R™ is a Carathéodory function satisfying
[f(,t,r)| < ao (L4 [r|7Y),
Ft(.'I},t,’l") Z aq (71 - |T’q) )
for all (z,t,r) € Q x (0,T) x R™, where g, are positive constants,
F(x,t,r) = [y f(z,t,1)dl and F, = 4Fp,
The fractional p-Laplacian operator (—A) u is defined as follows:

u(z, t) — uly, )P (u(=, t) — u(y,t))

n
z = yes dy, x¢€R"

(—A)u(z,t) = PV /

n

where P.V stands for “in the principal value sense” and is a frequently used
abbreviation. For more information on this operator, see [13].

Concerning the fractional Laplacian (p = 2), a famous model for anoma-
lous diffusion is the following equation: %—7; + (—=A)%u = 0, which comes
asymptotically from basic random walk models (see [33 34]). Also in [I7],
de Pablo et al. proposed the nonlinear anomalous diffusion equation
9u + (—A)*(u™) = 0, the fractional porous medium equation with 0 < s < 1
and m > 0. We also refer to [34] for more details on this type of equation.

On the other hand, in the case p # 2 and f = 0, Vazquez in [35] proved
the existence and uniqueness of strong nonnegative solutions for . Ifug €
L?(Q), the existence results of energy solution were studied in [29].

When it comes to the problem , the existence results are treated in
several works, for example, the different issues of the existence and the regu-
larity of energy-weak solutions to the problem same to were investigated
by Giacomoni et al. in [21]. In [I], the authors have studied the problem
with f depending only on x and ¢ and proved the existence results with suit-

able regularity if (f,ug) € L' (Qr) x L'(Q)) and has a nonnegative entropy
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solution if fy,up are nonnegative. The same author in [2] proved the asymp-
totic behavior result of entropy solutions when the right-hand side does not
depend on time.

The idea of this work, motivated by all of the results above, is to study the
existence of weak solutions to the problem by using the Galerkin method
combined with the theory of Young measures. To the best of our knowledge,
the parabolic problem has never been studied by the theory of Young
measure. We suggest to the readers to consult [6l 7, [19] which treat some
elliptic and parabolic systems by such a theory. In [§], the authors proved the
existence of weak solutions to the elliptic case of employing the Young
measures theory and the Galerkin method.

This article is organized into four sections. In Section [2] we give some back-
ground information on fractional Sobolev spaces and a review of the Young
measures theory. Later, under some assumptions, we obtain the existence of
weak solutions using the Galerkin approximation and the Young measures.
The final part is devoted to illustrating the feasibility of the hypotheses with
an example.

2. Preliminaries and notations

In this section, we first recall some necessary results which will be used in
the next section. Let 1 < p < 0o, s € (0,1), we define p% the fractional critical
exponent by:

. o0 if ps > n,
p =
° np/(n —ps) if ps <n.

Let Q C R™ be an open set, Qo = (R™ x R™)\(CQ x CQ), @, = Q x (0,7)
for all 7 € (0,77 and CQ2 = R™\Q. It is clear that Q x § is strictly contained
in Qq. W is a linear space of Lebesgue measurable functions from R™ to R™
such that the restriction to © of any function u in W belongs to LP(€;R™)

and
_ P
// [u(z) u+)| dydx < 0.
Qo |z —yl"tPe

The space W is equipped with the norm

()| 1/p
il =tz + ([ 22 i)
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Let us consider the closed linear subspace
Wo={ueW:u=0ae. inCQ}.

In Wy, we may also use the norm

b, = (f M=y dx)l/p.

It is known that (W, || - [lw,) is a uniformly convex reflexive Banach space
(see [36]). The following Poincare’s inequality from [12] will be used below:
there exists C;. > 0 such that

(2.1) ||¢||LT(Q7Rm) < Crlléllw, forall ¢e W, and rell,pil.

In the sequel, let p < % and Cj,7 = 1,2,... be positive constants that vary
from line to line, and are independent of the terms involved in any limit pro-
cess. We note the following functional space LP(0,T; Wy), which is a separable
and reflexive Banach space endowed with the norm

T 1/p
IUHLuo,T;wo):(/O HUH%dt> -

LEMMA 2.1 (J20]). The space C5° (€;R™) of infinitely differentiable func-
tions with compact support on €2 is dense in Wj.

LEMMA 2.2 ([I8]). The following embedding Wy < L" (€;R™) is compact
for all r € [1,p%), and continuous for all r € [1,pk].

In the following, Co (R™) stands for the space of continuous functions on
R™ with compact support with regards to the |- ||ooc-norm. The space of signed
Radon measures with finite mass is noted M (R™). The corresponding duality
is given by

(s p) = / p(N)dp(A).

DEFINITION 2.3 ([8]). Let {2;},, be a bounded sequence in L> (Q;R™).
Then there exist a subsequence {z} C {z;} and a Borel probability measure
1y on R™ for almost every = € €2, such that for a.e. p € C(R™) we have
p (zr) =* p weakly in L>(€2), where p(z) = (fiz, p) = [gm P(A)dpz(N) for a.e.
x € Q.
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LEMMA 2.4 ([23]). Let @ C R™ be Lebesgue measurable (not necessarily
bounded) and z; from Q to R™, for j € N, be a sequence of Lebesgue mea-
surable functions. Then there exist a subsequence zy, and a family {pz},cq of
non-negative Radon measures on R™, such that

(1) ezl pgrmy = Jom dba(X) < 1 for almost every x € Q.
(ii) p(zk) —* p weakly in L () for all Co (R™), where p = (jiy, p).
(iii) If for all M >0

(2.2) lim sup|{z € QN Bu(0) : |zx(x)] > N} | =0,
N—00 N

then ||pz] = 1 for a.e. x € Q, and for any measurable Q' C Q we have
p(21) = p = (g, p) weakly in L' (') for continuous function p provided
the sequence p (z1) is weakly precompact in L' (Q').

3. Local existence of weak solutions

In this section, we define a weak solution to the problem (|1.1)) and prove
the main result (Theorem below). We start with the following definition:

DEFINITION 3.1. A function u € LP(0,T;W,) is called a weak solution

of ., if a“ € L*(Q7;R™) and

/ S odudt
/ // wlw, ) = uly, Ol t) =W, )) () oy 1) dedydt
Qa |J} o y‘”JFPS

— [ sGetowyodade,

holds for all ¢ € C* (0, T; C5°(£2)).
THEOREM 3.2. Ifug € Wy, 2 < q< w < pk and ( is satisfied,
then there exists a constant Ty > 0 such that problem (1.1 has at least one

weak solution as T < Tj.

PROOF. The proof is divided into three assertions.
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Assertion 1: Galerkin approximation

Similar to that in [27], we take a sequence {w;},5, C Cg° ({;R™), such

—C1(Q
that C5° (5 R™) C Uysy Uk B ), where {w;},., is an orthonormal basis in
L? (Q;R™) and Uy, = span {w,...,wg}.

LEMMA 3.3. For the function ug € Wy, there exists a subsequence &, € Uy,
such that &, — ug in Wy as k — oo.

PROOF. Since ug € Wy, we can find a sequence {vy} in C§° (Q R™) such
that v, — ug in Wo. Since {vg} C C5° (5 R™) C Uprs Um T C (R , there
exists a sequence {vj} C Unr>1 Unm such that vi — vy, in C? (Q;Rm) as

1

i tends to oo. For %, there exists i > 1 such that ||v;€’c — UkHcl(Q) < 55

Therefore

[ o = wolly, < C1 ot — vkl| o g + low — wollyy, -
Hence v,i’“ — ug in Wy as k tends to oco. We denote up = v,i’“. Since uy €
U1 Unr, there exists Upy, such that uy, € Uy, without loss of generality,
we assume that Up;, C Uy, as My < My. We suppose that M; > 1 and define

& as follows:

Eulz) =0, fork=1,..., M —1,
fk(l’) = Uy, for I{I:Ml,...,MQ —1,
() = ug, for k= Msy,...,Ms—1,

Then {{x} is the desired sequence such that & — ug in Wy as k — oo. O
We define the function Ry: [0,7) x R¥ — R¥ where k is fixed:

"~

[0 (550 wi(@) = Sy (55 (0), w5(v)
e,

o =yl

(Z(%(t Jw;(x) — Z(%( ); wj(it/)) (wi(x) — wi(y)) dedy,

Jj=1

for ¢ € R¥ and i = 1,..., k. The function R(t,s) is continuous in ¢ and .
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Now, we shall construct the approximating solutions for ((1.1)) as follows:

Zb(t)wj

j=1

x>

where unknown functions (b(t)); are determined by the following system of
ODE:

51) {b’(t) + Ry (t,b(t)) = Sk(t,b(t)), 0<t<T,
where

(Sk(t,b)) /f x,t, Zb wj)widz,  (Yr(0 /ﬁk x)w;dz,
and

&k(x) > up in Wy as k — oo where & (x) € Ug.
Multiplying (3.1)) by b(t), we get
(3.2) b'b + Rk (t,b)b = Sk(t,b)b.

According to (HIJ), the following inequalities hold

k
Zb Wy + ij’w]‘
j=1

SOZO/ 7
Q j=1

Since 2 < ¢ < p%, using the interpolation inequality (see [3, Theorem 2.11])

and (2.1]), we get

(33)  Su(t.b)b < ag/ <

Jas

q
dr + OZOCQ /
Q

k (1-0)q
(34) / d:(,‘ < bj’LUj
L2(;R™) LPE (Q;R™)
0q k (1-0)q
bjwj ;
L2(Q;R™) Wo
where 6 € (0, 1) satisfies
1_0 10

qg 2 p;
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We observe that

(1-0)qg ps(cJ_ 22) <p

S
and

0 2p(pt —
N Pla PP — q)

— > 2.
—(1-0)g pip—q+2)—2p

For any € € (0,1), the Young inequality implies

k (1-0)q
(3 5 bjw]-
L2(Q R™) Wo
k P k A
<e ijwj + 0(6) ijwj .
j=1 Wo j=1 L2(Q;R™)
Then, (3.4) is transformed into the following inequality
q k P k A
(36) / dx § Cp:E ijwj + C(E) ijwj .
Q j=1 Wo j=1 L2(;R™)

Plugging inequalities ., and (3.6)) into , we deduce that

k

P

=1

p p

1 d|b(t
2

< Cp; Qp€

k
E bjw;
=1

A

Wo Wo

k
> bjw;

j=1

+ O[QC(€) + o

Zb w;

L2(Q;R™) L2(QR™)

By choosing € = 2%0 o we get

k

Z bjw;

Jj=1

p A

1dp@®))? 1
2 dt 2

k
> bjw,

j=1

wa

(3.7)

S OéoC(E)

) L2 (;R™)

+ g

L2 (Q Rm)
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It follows that

d|b(#)|?
dt

< 203(

L2(8; ]Rm)))

L2(Q; Rm))
Denote z(t) = |b(t)|?, then

dz(t)

(3.8) ~

< 20; (,z(t)% + z(t)) .

Integrating (3.8]) from 0 to ¢, and using the property

2(0) = [b(0)? /gk Vdz < Ci,

we can conclude that

w\y

25 ln(Ci

2(t) < exp(203t) (€% — exp(Co(A —2))) ", SIS G0-2) 2>>

-3
For0<T <Tp= C(((me)’ we obtain that |b(t)| < C(T) Vt € [0,T] , where

2

>~

1 Eay

C(T) = exp(2C5T) (C’4_ 2 —exp(Cs(\ — 2)T)) .

Put

|Sk — Ri(t,b)] and [ = min {T, 20(T) } 7

Tk

= max
(t,b)€[0,T]x B(b(0),2C(T))

where B(b(0),2C(T)) is the ball of center b(0) and radius 2C(T). By [16]
Peano theorem|, we know that problem has a C'! solution on [0, B]. Let
b (Bx) be an initial value, then we can repeat the above process and get a C!
solution on B, 20)]. Without loss of generality, we assume that

T T T
T = |:/Bk:|6k+<ﬁk>ﬁk’ O<<ﬁk><17

where [%} is the integer part of ﬂ% and (5—7;) is the decimal part of /3% We can
divide [0, 7] into [(i — 1)k, iBk] i = 1,...,N and [Nfy, T] where N = {Blk}
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then there exist O solution b} (¢) in [(i — 1)B,48x],i = 1,..., N and by T1(t)
in [N, T]. Therefore, we get a solution by (t) € C'([0,7]) defined by

bi(t), if t € [0, Bk],

b (t), if ¢ € (Br, 2B,
br(t) = ¢+

by (t),  ifte (N —1)8k, NBil,
b TL(t), ift € (NS, T].

As a result, we get the desired Galerkin approximation solution.

Assertion 2: A priori estimates

By (3.1), we have

Jur (@, ) — un(y, O (ug (@, 8) ey, ) v
//QQ |z — y|ntps (w;(z) i(y))dxdy

= / f (Q?,t,Uk)wide,
Q
where 1 <i <k andte[0,T] (T < Tp).
Multiplying (3.9) by (b(t)); (resp. by < (b(t));) and summing with respect

to ¢ from 1 to k, we arrive at (integrating with respect to ¢t from 0 to 7
(1 €(0,77))

/ aukukalwdt—}—/ lluk(x, )|}y dt:/ f(z,t,ug) updadt,
Q. Ot 0 ° Q-

(3.10) /Q

Jur (2, ) = up(y, )P~ (up(z,t) — ur(y, ) 3%(% ) Ouk(y.t)
+/ Qo |z — y|ntPs ( ot

ou
/fxtuk “kq

2
Ouy,

5 dx

)d dy
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According to (3.7)), we have

1d 9 1 9 A/2 )
th/ uk(x,t) dx + §”’U/k($,t)”€vo < C5(</ |uk{ dgj) +/ |Uk| dl’)
Q Q o

Similar to the estimation of b(t), we have

(3.11) / up (2, 0)| dz < C(T), Ve e [0,T] (T <Tp).
Q

Moreover

(3.12) ||uk”Lp(07T;WO) < Cs.

Hence, we get

(3.13) 1l oo 0,722 (2mmy) < O

According to (3.10) and (HI)), we get

(3.14) /Q

b ) el O e )~ ) (D)D),
Qo

2
8uk

d
at | ¢

|x — y|ntps ot ot
- — F(x,t,uk)darg—/Ft(x,t,uk)dmgozl/ lug|? dx + ;.
dt Jo 0 0

From the fact

s Dy,

)dxdy,

:/ ug (2, ) — up(y, )P~ (up(,t) — ur(y, t)) <3uk($,t)_3uk(y>t)
Qo |z — y|ntps ot ot

applied to (3.14]), we deduce

(3.15) /Q +% <|uk(:1c DIt /QF(:B,t,uk)dx)

<o (/ |ug|9dx + 1) )
Q

Dug |
ot
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By using the same technique in (3.5) and using (3.11) to the term in the
right-hand side of (3.15)), we get

(3.16) /Q

2

d (1
dx + 7 <pHuk(x,t)]€V0 —/QF(x,t,uk)dx>

8uk

ot

S OélECp;

22

ug (2, 1)y, + a1C(e) (/ |uk|2d:1:> + oy
Q

< Cs (flun (2, D)y, +1) -

Integrating (3.16) with respect to ¢ from 0 to 7 (7 € (0,7]) and using the
strong convergence in ug(x,0) — ug(x) in Wy, we get

(3.17) /

8uk

2
1 T
o wﬁ+H%@ﬁm%§%</WM%M%ﬁ+Q
p 0

-

+/F(m,r,uk)d:c.
Q

By assumption (H1|) and interpolation inequality used in (3.5)), we get

A2
(3.18) / F (x,7,ug) dv < a1 €Cpr |lug(, 7)[[7y, + 1C(€) (/ ’Uk\de) .
Q Q

Plugging (3.18) in (3.17)), we arrive at

Jo

auk

2
1 T
athH\mmmW%S%</WM%w%ﬁ+Q
p 0

+Oé1€C *

ug(2, 7|3y, +1C(e) (/Q |uk($,7')|2dx> /\/2.

By choosing € =

J.

The Gronwall inequality implies that [ [k () |}y, dt < Chy for each 7 €

[0, 7. Therefore
/ uy,
Q.| ot

1
SaipCop we get

8uk

2
1 T
G| dadt g (e, 7, < Cuo (/0 Huk(:c,t)uf;vodt+1).

2
1
dxdt + %HU}.C(LQT)”%/O S Clg.




On weak solutions to parabolic problem...

We finally get

8uk
9t + [urll Lo 0,7w) < Cs-

(3.19) ‘
L2(Qr)

The assumption (H1)) implies that

(320) Hf(x7t7uk)”Lq’(QT) < Cl4~

Assertion 3: Passage to the limit

By virtue of (3.12), (3.13), (3.19), and (3.20]), we get the existence of
a subsequence of (uy) still denoted by (uy) such that

up —* u in L™ (O,T; L? (Q;Rm)) N L>(0,7; W),
up — win LP (0,T; W),

O .
G = % in L? (Qp;R™),

f(z,t,ur) — x in Lq/(QT,]Rm).

(3.21)

[28, Theorem 5.1] and (3.21)) imply that ux — w in LP(0, T, L?(£;R™)) and
a.e. on Qr (for a subsequence), and [28, Lemma 1.3] implies that f(x,t,u) = x.
We can conclude from the continuity in (H1IJ),

f(z,tyug) up — f(z,t,u)u a.e. in Qp.

Using the Vitali Theorem, we get

lim [ (z,t,ug) updadt = f(z, t,u)udzdt.
k=00 JQr Qr
By / ug(x, T)?dx < Cy5, we get the existence of a subsequence of (uy) still
Q
denoted by (uy) and a function @ in L? (Q2;R™) such that ug(x,T) — @ in
L2 (Q;R™). Then, for any b(t) € C1([0,T]) and ¢ € C§°(Q),

8uk

. quﬁdmdt = /Quk(;v,T)b(T)¢dx

b
/Quk(x,O)b(O)(ﬁd;C/Qukatqﬁdxdt.
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Tending k to oo, we get
/ (@ —u(z,T))b(T)pdx — / (up(z) — u(x,0)) b(0)pdx = 0.
Q Q

Choosing b(T') = 1,b(0) = 0 or b(T') = 0, b(0) = 1, we have & = u(x,T) and
uo(x) = u(x,0).

As stated in the introduction, Young measure is the tool we use to prove
the existence of a weak solution. To identify the weak limit, we consider the
following lemma:

LEMMA 3.4. Suppose that (3.12)) holds. Then, the Young measure fi(g. y.¢)
generated by % € LP (Qq x (0,T);R™) has the following proper-
r—y|P
ties:
(a‘) ”:U'(x,y,t)HM(Rm) =1 fO’I" a.e. ($7y7t) € QQ X (O’T)? i.e. H(z,y,t) is a
probability measure.

(b) {fi(ayrysid) = /R Adi(z.y1)(A) s the weak L'-limit of %ﬁﬁy”

lz—y|

(©) (peay>id) = 25D for ae. (2,9,1) € Qo x (0,7).

PROOF. (a) For simplicity reasons, we consider

02 e = S € 1 gq x 0.7 R7).
Xr — y p

We know that for any M > 0, (2N Ba)® € Q x Q & Qq, where By is the
ball centered in 0 with radius M. Let N € R be such that

QNE{(x’y’t) GﬂmBM X QOBM X (OvT) : "Uk(xayat)’ ZN}

Using (3.12), we get

’ |uk (2, ) — ui(y, )P o
k\4y — Ur\Y,
= dxdydt
HkaLP(QQx(O,T);R ) (/o //QQ ’w_y|n+ps xrdy )

= ”ukHLP(O,T;Wg) <M.
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Consequently, there exists Cg > 0 such that

(3.23) Cig > / / o (2, g, O)? dady
Qax(0,T)

>// o (@, D) dady > NP Q]

where |@Q x| is the Lebesgue measure of @ n. According to , the sequence
(vi) satisfies (2.2). Hence, a Young measure noted by fi(, ¢ is generated by
vy, such that ’ “(mvyyt)HM(Rm) =1 for a.e. (z,y,t) € Qq x (0,7T).

(b) By (3.12), there exists a subsequence still denoted by (v;) that con-
verges in LP (Qq x (0,7);R™). Since LP (Qq x (0,T);R™) is reflexive, then
vy is weakly convergent in L' (Qq x (0,T);R™). By the third assertion in
Lemma [2.4] we replace the function p by the identity function, to obtain

v = (H(ay.t), id) = /

/\du(%y’t)()\) weakly in L? (Qa x (0,T);R™).
Rm

(¢) According to (3.12)), vy is bounded in LP (Qq x (0,7); R™), then there
exists a subsequence such that vy — v in LP (Qq % (0,7); R™). Owing to the
previous arguments, we get from the uniqueness of limits that

u(x7 t) — u(yv t)

g for a.e. (z,y,t) € Qa x (0,T).

O

<M(m,y,t)vid> = ’U(l‘, Y, t) =

Now, let {vx} be the sequence given in (3.22)), i.e.

up(z,t) — uk(y, t)
Uk (‘1‘7 y? t) = | | n+ps N
T—yl

The weak convergence given in Lemma [3.4] shows that

(3:24)  Jon(e, 5, O 2op(z,y, ) — / A2 Adjigo ey ()
]Rm

= Jv(z,y, t)[P2v(z, y, 1)

— ]u(m, t) - u(y7 t)]p*Q(u(x, t) - u(y7 t))

n+ps
[z —y[ 7
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weakly in L'(Qq x (0,T);R™). Since the space LP is reflexive and
log (2, y, ) [P~ 20p (2, y, ) is bounded in L (Qq x (0,T); R™), the sequence
log (2, y, ) [P~ 20p (2, y, ) converges in LP (Qq x (0,T);R™). Hence its weak
L¥ limit is also lv(z,y,t)[P~2v(x,y,t). Thus, for any ¢ € LP(0,T;Wy) we
have

(P(x’t) — @(yat) c P (QQ % (O,T);Rm) .

n+ps
[z =yl

According to the weak limit in (3.24)), we get

lim / / (@, 0) (g, D2 (r (@, ) =us@: ) oo o ) dadyas

k—o0 ‘m _ y’n+ps
u(z, ) — u(y, t)[P~2(u(z, t) — u(y,1))
/ / |{L' _ y|n+ps (90('777 t) - @<y7 t))d.’L‘dydt

for every ¢ € LP(0,T; Wy).
From (3.9)), for ¢ € C* (0, T;Upr), M < k, we have

ouy,
i oo
/ ] luwteth el OF_Lun 00 = 0000 1)y, ) sty

= f(x,t,uy) pdadt.
Qr

For k tending to oo, it follows from the above results, that

(3.25) a—QSd:ndt

Qr
/ // u(z, ) — uly, t)[P*(u(z, 1) — u(y’t))(¢(x,t) — By, t))dadydt

o =y

= f(z, t,u)pdxdt,
Qr

for all ¢ € C! (O,T; U U M). Letting M goes to infnity, consequently,
M1

(3-25) holds for all ¢ € C1(0,T; C5(12)). O
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4. An example

We consider the following problem
% + (=A)u = a(z,t)|ul??u  in Qpr =Qx(0,T),
u=20 in CQ x (0,7,
u(x,0) = ug(z) in Q,

comparing it with problem (1.1)) where f(x,t,u) = a(z,t)|u|9"2u, F(x,t,u) =

a(z
q

D |, and Fy(z,t,u) = C(—|r|7—1). If 2 < ¢ < p%, then by Theorem

there exists a constant Ty > 0 such tha the problem ([1.1]) has a weak solutions
as T < Tp.
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