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NEW AND ORIGINAL INTEGRAL INEQUALITIES UNDER
MONOTONICITY AND CONVEXITY ASSUMPTIONS

CHRISTOPHE CHESNEAU

Abstract. This article examines integral inequalities dealing with functions
of the form “a function raised to the power of another function” under vary-
ing monotonicity and convexity assumptions. First, we assess the validity of
a referenced theorem on the subject. Specifically, we present a counterexample
and identify a gap in its proof. We then propose an alternative version of the
theorem with more flexible convexity assumptions. In addition, we establish
new lower and upper bounds for the same integral using refined Hermite—
Hadamard integral inequalities. A complementary variant is also discussed.
Thus, our results fill gaps in the literature and extend existing results on inte-
gral inequalities under classical assumptions.

1. Introduction
Convex and concave functions are crucial in mathematics. The formal
definition of these functions is given below.

DEFINITION 1.1 (Convex and concave functions). Let a,b € R with a < b
and f: [a,b] — R be a function.
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e Convex function: We say that f is convex if and only if, for any e € [0, 1]
and z,y € [a, b], we have

flex+ (1 —e)y) <ef(z) + (1 =€) f(y).

If f is twice differentiable, this inequality is equivalent to f”(z) > 0 for any
x € [a,b)].

e Concave function: We say that f is concave if and only if, for any € € [0, 1]
and z,y € [a, b], we have

ef(@) + (1 —e)f(y) < flex+ (1 —e)y).

If f is twice differentiable, this inequality is equivalent to f”(z) < 0 for any
x € [a,b].

Further details on convex and concave functions can be found in [2] [3], 7,
8, @, 10, 11, 13, 14, 15, 19]. One of their interests is the derivation of sharp
integral inequalities, which is the focus of this article. Two examples are the
Jensen integral inequalities and the Hermite-Hadamard integral inequalities,
as formally presented in the two theorems below.

THEOREM 1.2 (Jensen integral inequalities). Let a,b € R with a < b, and
fila,b] > R and g: R — R be two functions.

e Convex part: If g is convex, then the following holds:

o[t [ ] < [

o Concave part: If g is concave, then the following holds:

e /abg[f(x)]da: <[ /abf(x)dx]

THEOREM 1.3 (Hermite-Hadamard integral inequalities). Let a,b € R
with a < b, and f: [a,b] = R be a function.
e Convex part: If f is convex, then the following holds:

(5 <

< Slf(a) + £

o Concave part: If f is concave, then the following holds:

e+ s < [ s < s (“50).
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These integral inequalities serve as fundamental tools in approximation
theory, numerical analysis and optimization. The Hermite-Hadamard integral
inequalities, in particular, have been studied extensively, leading to numerous
generalizations, variants and refinements. Some of them can be found in [IJ, 4]
D, 16, 12, 16, [17) 18], 20}, 21), 22 23, 24]. We emphasize an original variant given
by [22, Theorem 2.6], as recalled below.

THEOREM 1.4 (|22, Theorem 2.6]). Let a,b € R witha < b, and f: [a,b] —
[0,400) and g: [a,b] — [1,400) be two functions. We suppose that f and
log(g) are monotonic with an opposite monotonicity, f is convex and log(g)
is convex. Then the following holds:

1
b—a

/b[g(l“)]f(”’)dx < [g(a)g(b)|F@+7®N/4,

The contributions of this article are inspired by the framework of this the-
orem, which remains relatively unexplored in the existing literature. In the
first part, we critically examine the validity of |22 Theorem 2.6] by present-
ing a counterexample and identifying a gap in the proof. This gap is closely
related to a misapplication of the concave part of the Jensen integral inequal-
ities. We then propose an alternative statement of this theorem under varying
monotonicity and convexity assumptions. In the second part, we derive new
and sharper lower and upper bounds for the main integral, i.e.,

b
o

while still relying on monotonicity and convexity assumptions. Our approach
is based on a convex property of “a positive function raised to the power of
another positive function”, i.e., gf, and the use of refined Hermite-Hadamard
integral inequalities as given in [2I]. A variant considering “a positive func-
tion raised to the power of another minus positive function”, i.e., g, is also
proposed. By revisiting an existing theorem and providing sharper bounds,
we fill a gap in the literature on convex-type integral inequalities and extend
the scope of previous results.

The remainder of this article is structured as follows: In Section [2}, we re-
visit [22, Theorem 2.6|, analyzing its proof and limitations. Sectionpresents
refined results and alternative inequalities. Finally, Section [ concludes the
article with a summary and discussion of potential future research directions.
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2. Revisit of Theorem [1.4]

2.1. A counterexample

A counterexample to [22, Theorem 2.6|, as recalled in Theorem is now
elaborated. For simplicity, we take a = 0 and b = 1. We consider

f(z) =exp(x), z€]0,1],
which is obviously non-decreasing and convex. We also define
g(x) =7+ exp(—zx), z€][0,1],

satisfying g(z) > 1 for any z € [0, 1], with log[g(z)] = log[7 + exp(—=)], which
is non-increasing because, for any z € [0, 1],

1
1 e <0
(loglo @)Y = 7oy <O
and convex because, for any x € [0, 1],
7exp(x)

> 0.

{log[g(ac)]}” = m =

Note that f and log(g) are of opposite monotonicity. Let us now calculate
the two main terms in the inequality of [22] Theorem 2.6|. By numerical
integration, we find that

1
b—a

b 1
/ lg()[T @ dz = / 7 + exp(—z)]"P@) dg ~ 51.786726.
a 0

On the other hand, we have

[g(a)g(b)][f(a)“rf(b)}/‘l — {[7 + eXp(—O)][7 + eXp(_l)]}[Cxp(0)+cxp(1)]/4
~ 44.232526.

We thus obtain

1 b
[9(a)g(b)]F (@FFON/1 44932526 < 51.786726 ~ i / [9(x)]7®) du,
—a ).

which contradicts the result in [22, Theorem 2.6]. In fact, the constant “7” in
the definition of g was tuned for this.
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On analysis, the first inequality step in the proof of this theorem states that

log [bia /ab[g(m)]f(“j’dx} < b_la/:log{[g(x)]f(’”)}dx-

However, this is an incorrect application of the concave part of the Jensen
integral inequalities to the concave function log(z), x > 0; a correct applica-
tion of it would give the reverse inequality. While the subsequent inequality
steps are derived correctly, they are based on this initial assumption, which
is incorrect. This motivates the development of a corrected statement in the
section below.

2.2. Corrected statement

A possible corrected and improved version of [22, Theorem 2.6|, with more
flexibility on the convexity assumptions, is given below. The proof mainly uses
the concave part of the Jensen integral inequalities, the Chebyshev integral
inequality for functions of the same monotonicity, and the concave and convex
parts of the Hermite-Hadamard integral inequalities.

THEOREM 2.1. Let a,b € R with a < b, and f: [a,b] — [0,+00) and
g: [a,b] = [1,+00) be two functions. We suppose that f and log(g) are mono-
tonic with the same monotonicity. Furthermore,

(1) if f andlog(g) are concave, then the following holds:

1
b—a

/b[g(x)]f(x)da: > [g(a)g(b)) @+ O,

(2) if f is concave and log(g) is convez, then the following holds:

1 /b[g(a:)]f(m)d:r N {g(a -; b)] [f(a)+f(b)]/2’

b—a /,

(3) if f is convex and log(g) is concave, then the following holds:

i [l e 2 e

(4) if f andlog(g) are convez, then the following holds:

e [l a2 oS0
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Proor oF THEOREM 2.1 The four points share the same mathematical
foundation. To simplify the developments, we work with the logarithm of the
main integral. Applying the concave part of the Jensen integral inequalities
to the concave function log(x), x > 0, as recalled in Theorem we have

o log{b T /ab[g(x)]fmdx} > /ab log {lg(a))/ ") }da
b i P /abf(fﬂ) log[g(x)]da

Since f and log(g) are of the same monotonicity, the Chebyshev integral in-
equality applied to f and log(g) reads as

22 =/ 'f ) oglg(@)de > [ = oo [ / Toglg(o)lda]-

It follows from inequalities (2.1)) and ( . ) that

23) og{;— [ (e @ da} > / f(x)da] / loglg(x)]dz].

a

Let us now distinguish the assumptions in the four distinct points.

1. Since f and log(g) are non-negative and concave, the left-hand side of the
concave part of the Hermite-Hadamard integral inequalities applied to f
and log(g), as recalled in Theorem gives

s [ [ [ o]

> [l 70 {log[gw + loglg(b)] }

2 2
eay = [T O iogiga)g6)] = tog {lat@pa(e) @01,

Combining inequalities (2.3)) and (2.4]), we obtain

o {52 | @)@z} > 1og {lg@pa)@OH O]

—a

s0, by the non-decreasing property of the exponential function,

1
b—a

/b[g(fl?)]f(x)dm > [g(a)g(b)]|F @+ ®V/4

The point is established.



New and original integral inequalities

2. Since f and log(g) are non-negative, f is concave and log(g) is convex, the
left-hand sides of the concave and convex parts of the Hermite-Hadamard
integral inequalities applied to f and log(g), respectively, as recalled in
Theorem [I.3] give

(2.5) [ﬁ / ’ f(x)dx} [ﬁ / blog{g(x)]dx}

[ b))

It follows from inequalities (2.3) and ({ . ) that

log {ﬁ /ab[g(:c)]f(“")dx} > log { [g(a —21— b)} [f(a)+f(b)}/2}’

so that

b - a /ab[g(m)]f(@dx > [g(“ ‘2F b)] F@+ 02

The point is proved.

3. Since f and log(g) are non-negative, f is convex and log(g) is concave, the
left-hand sides of the convex and concave parts of the Hermite-Hadamard
integral inequalities applied to f and log(g), respectively, as recalled in

Theorem [I.3] give

s [ [ [ estoteas]

> f(a + b) { log[g(a)] ; log[g(D)] }

(2.6) f(a+b) log[g(a)g( log{ g(a)g(b) (a+b)/2}/2}

Combining inequalities (2.3 and (2.6), we get

log {; - p /:[g(w)}f(z’dx} > log { [g(a)g(b))/1-+0)/2/2 ]
so that

1 / (@) @dz > [g(a)g (b)) D722,

The point is proved.
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4. Since f and log(g) are non-negative and convex, the left-hand side of the
convex part of the Hermite-Hadamard integral inequalities applied to f
and log(g), as recalled in Theorem gives

[ [ s [ [ ostowin] = 5(“ ) e o (5]
o) —ton {[o(“3)] ",

It follows from inequalities (2.3) and ({ . ) that

log {ﬁ /ab[g(x)]f(x)d:c} > log { [g(a ;L b)} f[(aer)/Q]},

so that

I . a -+ by\1/1(a+b)/2]

[t e > [o(450)]
The point is proved.

This ends the proof of Theorem [2.1] O

Note that the point (1)) gives the same bound as in [22, Theorem 2.6],
as recalled in Theorem [I.4] but is defined as a lower bound, and is subject
to different monotonicity and convexity assumptions on f and log(g). To the
best of our knowledge, the other points offer new integral inequalities in the
literature. In a sense, these results rectify and complete [22, Theorem 2.6],
while maintaining the same mathematical approach.

3. Additional contributions

3.1. New results

The theorem below refinds the lower bound of the point of Theorem
under a different convexity assumption, with a new statement of a sharp upper
bound. The proof is innovated by an intermediate convexity result and the
use of the Hermite-Hadamard integral inequalities.
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THEOREM 3.1. Let a,b € R with a < b, and f: [a,b] — [1,4+00) and
g: [a,b] = [1,400) be two two-times differentiable functions. We suppose that
f and g are monotonic with the same monotonicity and convex. Then the
following holds:

. atb)/2 b Q)@ £)
|:g< ;‘b>:|f[( +0)/2] < ia/a [g(x)]f(:n)dxg [g( )] —;[g(b)] )

PRrOOF OF THEOREM [3.1l Using standard differentiation rules, for any
x € [a,b], we have

(o)} = ga) @~ {g(a) /() oglg()] + F(x)g' ()}

Similarly, with an appropriate factorization, for any x € [a, b], we obtain

(o @} = {la@y@} ]
= o) @ {g() (@) oglg()] + F(@)g' ()]
= o)/ o) [2f' ()9’ () { (2) loglg(w)] + 1} + (2)g" (@)
+ lg(a)]? oglg(@)] { () + [/ ()] ogly(a)]} + [£(x) — (@) ()]}

Thanks to the assumptions made on f and g, all the terms in the sum are non-
negative. Just note that, for any = € [a,b], f(x) > 1 implies that f(z)—1 >0,
g(x) > 1 implies that log[g(z)] > 0, the fact that f and g are of the same
monotonicity implies that f'(x)g’(x) > 0, and the fact that f and g are convex
implies that f”(z) > 0 and ¢”(z) > 0. So we have {[g(m)]f(x)}” > 0, which
means that g/ is convex. It follows from the convex part of the Hermite—
Hadamard integral inequalities applied to g/ that

a adb) /2 b a)]f (@ f(®)
|:g( ;‘b)]f[( +0)/2] < 1(l/a [g(a:)]f(x)dxg [g( )] ;[g(b)] )

This concludes the proof of Theorem [3.1 ([

Note that if log(g) is convex, then g = exp[log(g)] is convex as a com-
posite function of a convex function with a non-decreasing convex function.
Therefore, the framework of this theorem is more flexible than that in the
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point of Theorem Furthermore, we emphasize the novelty of the up-
per bound, i.e.,

’ a)/ @ £(0)
bia / 9@/ @ de < 9] -;[g@] |

The convexity approach used in the proof is also original, and will be reused
in some refinements presented in the subsection below.

3.2. Refinements

The result below is a well-known improvement of the right-hand side of the
Hermite-Hadamard integral inequalities. We refer to the work in [2I], which
gives a complete study of this.

THEOREM 3.2 (|21, Theorem 1]). Let a,b € R witha < b and f: [a,b] — R
be a function.

o Convex part: If f is convex, then the following holds:

o [ s < i@+ o+ (450,

e Concave part: If f is concave, then the following holds:

1

@+ o+ 31 (U5 < L [ s

The theorem below uses this result to refine the points , and of
Theorem 2,11

THEOREM 3.3. Let a,b € R with a < b, and f: [a,b] — [0,+00) and
g: [a,b] = [1,400) be two functions. We suppose that f and log(g) are mono-
tonic with the same monotonicity. Furthermore,

(1) if f and log(g) are concave, then the following holds:

1t . 1/2 a4 b\ [/ (@)+F(0))/8+F[(atb)/2]/4
e [lo@l @ > {[s@o)] o(“50) ) ,

(2) if f is concave and log(g) is convez, then the following holds:

1 b a —+ b\ 7 F(@)+f(B)]/4+f[(at+b)/2]/2
F(@) gy >
= [ @) e > [o(452)]

)



New and original integral inequalities

(3) if f is convex and log(g) is concave, then the following holds:

b i - /ab[g(iﬂ)]f(w)dx > { [g(a)g(b)} 1/2g(a —2|— b) }f[(a+b)/2]/2.

PROOF OF THEOREM [3.3l The first steps of the proof follow those of the
proof of Theorem In particular, inequality (2.3)) ensures that

(31) Tog {1 / lo(a))! 9 da) / F()da / loglg(x)]dz].

Let us now distinguish the assumptions in the three distinct points.

1. Since f and log(g) are non-negative and concave, the concave part of The-
orem applied to f and log(g) gives

i [ o] / loglg(e)lds]
2 [FOT 0 (g (e e
4
+%1g[9(a;b)]}
a 12 ,q
[( + f(b) 7f< +b)}1og{{ b)} ( ;Lb>}

a + b\ [F(@)+f(b)]/8+f[(atb)/2]/4
)} |

32 =g [g(a)g(b)} ! Qg(

It follows from inequalities (3.1)) and ( . ) that

log { - i . /ab[g(x)]f(z)da:}

12 ra 4 by F(@+f 0)]/8+F[(a+b)/2)/4
> log H[g(a)g(b)} g( 5 )}

)

so that

1t . 1/2 a4 b\ [/ (@)+F(0))/8+F[(atb)/2]/4
e [lol @ > {[s@om)] o(“50) ) .

The point is established.
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2. Since f and log(g) are non-negative, f is concave and log(g) is convex,
the concave part of Theorem [3.2] applied to f and the left-hand sides of
the convex part of the Hermite-Hadamard integral inequalities applied to
log(g), as recalled in Theorem give

=1 fayda] [ / loglg(w)lda]

> L207@) + 7o)+ 5150 Yroa [o(“30)]

= log { [g(a ; b)} [£(a) +f(”ﬂ/4+f[(a+b)/2]/2}.

(3.3)

It follows from inequalities (3.1]) and ( . ) that

log {ﬁ /ab[g(x)]f(z)dx} > log { [g(a ‘QF b)] [f(“>+f<b)l/4+f[(a+b)/2]/2}7

so that

1 b a + b\ [f(@)+f(B)]/4+f[(a+b)/2]/2
f@) g >
i [l e > [o( )] -

The point is proved.

3. Since f and log(g) are non-negative, f is convex and log(g) is concave,
the left-hand sides of the convex part of the Hermite-Hadamard integral
inequalities applied to f, as recalled in Theorem [I.3] and the concave part
of Theorem applied to log(g) give

s [ ][ [ estoteac]

> f<a + b){log[g(a)] + log[g(b)] N llog [g(cH— b)}}

4 2 9
(g ] (1)
(3.4) — log H[ (a )g(b)]1/2 (@—21—6)} [(a+b)/2]/2]

It follows from inequalities (3.1)) and ( . ) that

g {57 / ) Dz} 2105 [{ [at@a®)] a2},
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so that

b i . /ab[g(ﬂ?)]f@)dx > { [g(a)g(b)} 1/29(@ —2|— b) }f[(a+b)/2]/2.

The point is proved.
This ends the proof of Theorem O

The theorem below uses Theorem 3.2]to refine the upper bound determined
in Theorem [B.11

THEOREM 3.4. Let a,b € R with a < b, and f: [a,b] — [1,4+00) and
g: la,b] — [1,400) be two two-times differentiable functions. We suppose that
f and g are monotonic with the same monotonicity and convex. Then the
following holds:

’ a)}f(@ F(b) a a+b)/2
bia/ lg(2)) @ dx < l9(a)] I[Q(b)] +%[g< —2|—b>]f[( +0)/2

a

PROOF OF THEOREM [3.4] The first steps of the proof follow those of the
proof of Theorem u In particular, the assumptions made imply that ¢/ is
convex. It follows from the convex part of Theorem applied to ¢/ that

1 /b[g(x)]f(‘”)da: < [g(a)]F@ + [g(0)]/® 1 [g<a—|—b>]f[(a+b)/2}‘

b—a ), 4 3 2

This concludes the proof of Theorem O

In the case where f and g are monotonic with the same monotonicity and
convex, the upper bound obtained in this theorem is preferable to that in
Theorem [3.I] because it is sharper, i.e., we have

b )@ ) a atb)/2
. /a[g(x)]fmdxg[g( WO O | Lyt by e

< el + o).
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3.3. A variant

The result below presents an integral inequality result dealing with the
function g~7. It can be seen as a lower bound variant of Theorem

THEOREM 3.5. Let a,b € R with a < b, and f: [a,b] — [1,+00) and
g: [a,b] = [1,+00) be two two-times differentiable functions. We suppose that
f and g are monotonic with the same monotonicity and convex. Then the
following holds:

: i : /b[g(m)]_f(x)dx . { [g(a)]/ @ 1_ [g(b)]/®) N % [g(a —2|- b)} f[(a+b)/2]}—1‘

a

PROOF OF THEOREM [3.5l A suitable decomposition and an application
of the Cauchy-Schwarz integral inequality give

1 b 1 b
1= _ ~f(x)/2 f(z)/2
b_a/a dzx b_a/ [9(z)] [9(z)] dzx

a

<7={/ o} / T @)

a

b
= (5 [werrew) " (L Ly ow)”

a

so that

(3.5) bia /ab[g(gj)]f(ﬂi)dx > {b—la/ab[g(x)]f(m)d‘”}_l'

Note that this result can also be obtained by applying the convex part of the
Jensen integral inequalities to the convex function 1/z.
On the other hand, Theorem [3.4] ensures that

b )@ 1) a atb)/2
[t < SOV OO L oy

This implies that

86 {3y [lo@pa)”

S
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It follows from inequalities (3.5) and (3.6|) that

; i - /ab[g(ac)]_f(“?)dx > { lg(a))@) 1‘ [9(b)]7®) n % {g(a —21— b)} f[(a+b)/2]}—1‘

This ends the proof of Theorem [3.5] O

The lower bound obtained has an original form that does not correspond to
that of any existing general integral inequality. To the best of our knowledge,
it is new to the literature.

Other possible variants can be obtained by using different techniques. For
example, we can think of using the Bernoulli inequality. More specifically,

o if f: [a,b] — [1,400) and ¢: [a,b] — [1,+00), the Bernoulli inequality gives,
for any x € [a, b],

9(@)]" @ = 1+ g(2) = 1@ 21+ f(a)lg(e) = 1] =1~ f(x) + f(2)g(x),

o if f:[a,b] — [0,1] and g: [a,b] — [1,+00), the Bernoulli inequality gives,
for any z € [a, b],

lg(@))/) = [+ g(z) = 1]/ <1+ f(a)lg(z) = 1] =1 = f(2) + f(2)g(2).

However, these bounds are independent of the power nature of the function gf.
While this approach enables us to relax certain assumptions regarding f and g,
leading to new integral inequalities, it results in a loss of an important degree
of sharpness. For this reason, we have decided not to pursue this direction any
further.

4. Conclusion

In this article, we have critically examined the validity of |22, Theorem 2.6],
focusing on an upper bound for an integral of the form

b
[ @)

a

In particular, we presented a counterexample and identified the gap in its
proof, which results from a misapplication of the concave part of the Jensen
integral inequalities. We then proposed a corrected version of the theorem un-
der more appropriate convexity assumptions. We also established new lower
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and upper bounds for the main integral using an original convex property
and refined Hermite-Hadamard integral inequalities. A variant based on the
function g~/ is also demonstrated. With these results, we contribute to the de-
velopment of integral inequalities with potential applications in various fields,
such as approximation theory, numerical analysis and optimization. We also
provide some techniques that may be useful for future research on the topic,
beyond the scope of the article.
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