CONDITIONAL EQUATIONS RELATED TO DRYGAS FUNCTIONAL EQUATIONS

Sadegh Izadi[©]*, Sedigheh Jahedi, Mehdi Dehghanian

Abstract. We determine the solutions of the conditional Drygas equation for functions f_1 and f_2 that satisfy $(y^2+y)f_1(x)=(x^2+x)f_2(y)$ for all $(x,y)\in\mathbb{R}^2$ under the additional conditions $y=x^2$, or $y=\log(x), x>0$ or $y=\exp(x)$.

1. Preliminaries

Recall that a function $A \colon \mathbb{R} \to \mathbb{R}$ is additive if the equation A(x+y) = A(x) + A(y) holds for all $x, y \in \mathbb{R}$.

Kuczma [13] proved that any additive function $A \colon \mathbb{R} \to \mathbb{R}$ is \mathbb{Q} -homogeneous, that is,

$$A(sx) = sA(x),$$

for all $x \in \mathbb{R}$ and $s \in \mathbb{Q}$. A function $h \colon \mathbb{R} \to \mathbb{R}$ is called quadratic if the equation

$$h(x + y) + h(x - y) = 2h(x) + 2h(y)$$

holds for all $x, y \in \mathbb{R}$.

For instance, consider the additive functions $A_1, A_2 : \mathbb{R} \to \mathbb{R}$. It is easy to see that $A_1(x)A_2(x)$ and $A_1(x^2)$, $x \in \mathbb{R}$, are quadratic.

A function $B: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is named symmetric biadditive if B is additive in each variable and satisfies B(x,y) = B(y,x) for all $x,y \in \mathbb{R}$.

Received: 05.08.2024. Accepted: 23.09.2025.

⁽²⁰²⁰⁾ Mathematics Subject Classification: 39B22, 39B55.

 $[\]it Key words \ and \ phrases:$ additive function, derivation, Drygas function, quadratic function.

^{*}Corresponding author.

^{©2025} The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY (http://creativecommons.org/licenses/by/4.0/).

In 1965, Aczél [1] showed that a quadratic function $h: \mathbb{R} \to \mathbb{R}$ can be associated with a symmetric biadditive function $B: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ given by the following formula

(1.1)
$$B(x,y) = \frac{1}{2} [h(x+y) - h(x) - h(y)], \quad x, y \in \mathbb{R}.$$

Aczél and Dhombres [2] proved that the function $h: \mathbb{R} \to \mathbb{R}$ is quadratic if and only if, there is a symmetric biadditive function $B: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that h(x) = B(x, x) for all $x \in \mathbb{R}$. This B is unique (see [2]). Moreover, the \mathbb{Q} -homogeneity of biadditive functions yields

$$B(rx, sy) = rsB(x, y), \quad h(rx) = B(rx, rx) = r^2h(x),$$

for all $x,y\in\mathbb{R}$ and $r,s\in\mathbb{Q}.$ By using (1.1) and induction on n, one can show that

$$h\left(\sum_{i=0}^{n} \omega_{i}\right) = \sum_{i=0}^{n} h\left(\omega_{i}\right) + 2 \sum_{0 \leq j < k \leq n} B\left(\omega_{j}, \omega_{k}\right),$$

for all $n \in \mathbb{N}$ and $\omega_0, \ldots, \omega_n \in \mathbb{R}$.

Some mathematicians have investigated additive functions A that satisfy the conditional equation yA(x) = xA(y) for the pairs $(x,y) \in \mathbb{R}^2$ under the condition P(x,y) = 0 for some fixed polynomial P of two variables. For some special polynomials P this assumption implies that A is continuous (see for example [4, 12, 14, 15]).

Recently, Z. Boros and E. Garda-Mátyás [5] and [6], E. Garda-Mátyás [11] studied quadratic functions $h: \mathbb{R} \to \mathbb{R}$ that satisfy the additional condition

$$y^2h(x) = x^2h(y),$$

where (x, y) are arbitrary points on a specified curve.

J. Brzdęk and A. Mureńko [7] established the Gołąb-Schinzel equation under certain additional conditions.

The functional equation

(1.2)
$$f(x+y) + f(x-y) = 2f(x) + f(y) + f(-y),$$

which was considered by Drygas [9] is known as the Drygas equation and its solutions as Drygas functions. It is a generalization of the quadratic functional equation. In [10], Ebanks et al. obtained the general solution of the Drygas functional equation as

(1.3)
$$f(x) = A(x) + B(x, x), \quad x \in \mathbb{R},$$

where $A: \mathbb{R} \to \mathbb{R}$ is an additive function and $B: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a symmetric biadditive function. The continuous solutions of functional equation (1.2) on \mathbb{R} are of the form $f(x) = \alpha x + \beta x^2$, where $\alpha, \beta \in \mathbb{R}$ are constants (see [16]).

Consider the sets

$$\Delta_0 = \{(x,y) \in \mathbb{R}^2 : x > 0 \text{ and } y = x^n\}, \quad n \in \mathbb{Z}, \ |n| \ge 2,$$

$$\Delta_1 = \{(x,y) \in \mathbb{R}^2 : y = x^2\},$$

$$\Delta_2 = \{(x,y) \in \mathbb{R}^2 : x > 0 \text{ and } y = \log(x)\},$$

$$\Delta_3 = \{(x,y) \in \mathbb{R}^2 : y = \exp(x)\}.$$

Motivated by the results of [5], this paper is devoted to finding Drygas functions $f_1, f_2 \colon \mathbb{R} \to \mathbb{R}$ satisfying the equation

(1.4)
$$(y^2 + y)f_1(x) = (x^2 + x)f_2(y),$$

for the pairs $(x, y) \in \Delta_j$, where j = 0, 1, 2, 3.

M. Dehghanian et al. [8] investigated Drygas functions $f: \mathbb{R} \to \mathbb{R}$ that satisfy the conditional equation (1.4) on the graph of a power function.

LEMMA 1.1. [5] Let $m \in \mathbb{N}$ and \mathbb{F} be a field. Suppose that Ω is a set, $\Gamma \subset \mathbb{F}$ contains at least m+1 elements, and the functions $\Lambda_j \colon \Omega \to \mathbb{F}$ $(j=0,1,\ldots,m)$ satisfy

$$\sum_{j=0}^{m} \Lambda_j(x) s^j = 0,$$

for all $x \in \Omega$ and $s \in \Gamma$. Then $\Lambda_j(x) = 0$ for all $x \in \Omega$ and $0 \le j \le m$.

This paper contains results for the Drygas functions that satisfy the equation (1.4) for $(x, y) \in \Delta_j$, where j = 0, 1, 2, 3.

2. Main results

In the following theorem, we apply Lemma 1.1 with $\Omega = \mathbb{R}_+$, $\mathbb{F} = \mathbb{R}$ and $\Gamma = \mathbb{Q}_+$, where \mathbb{R}_+ and \mathbb{Q}_+ are the sets of positive real and positive rational numbers, respectively.

Theorem 2.1. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a Drygas function. Then f fulfills the conditional equation

(2.1)
$$(x^2 + x) f(y) = (y^2 + y) f(x),$$

for $(x,y) \in \Delta_0$ if and only if

$$f(x) = \alpha (x + x^2), \quad x \in \mathbb{R},$$

where α is a real constant.

PROOF. First, assume that f fulfills (2.1), $x \in \mathbb{R}_+$ and $n \geq 2$. In this case, the equation (2.1) becomes

$$(2.2) (x+1)f(x^n) = (x^{2n-1} + x^{n-1})f(x), \quad x \in \mathbb{R}_+.$$

Substituting x + s, $s \in \mathbb{Q}_+$, for x in (2.2), we get

$$(x+s+1)f((x+s)^n) = ((x+s)^{2n-1} + (x+s)^{n-1})f(x+s), \quad x \in \mathbb{R}_+.$$

By expanding the binomial terms, we obtain

$$(2.3) \quad (x+s+1)f\Big(\sum_{m=0}^{n} \binom{n}{m} x^m s^{n-m}\Big)$$

$$= \Big[\sum_{l=0}^{2n-1} \binom{2n-1}{l} x^l s^{2n-l-1} + \sum_{k=0}^{n-1} \binom{n-1}{k} x^k s^{n-k-1}\Big] f(x+s).$$

By (1.3), there exist an additive function $A : \mathbb{R} \to \mathbb{R}$ and a symmetric biadditive function $B : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that f(x) = A(x) + B(x, x) for all $x \in \mathbb{R}$. Thus, the equation (2.3) takes the form

$$(2.4) \quad (x+s+1) \left[\sum_{m=0}^{n} \left(\binom{n}{m} s^{n-m} A(x^m) + \binom{n}{m}^2 s^{2n-2m} B(x^m, x^m) \right) + 2 \sum_{0 \le i < j \le n} \binom{n}{i} \binom{n}{j} s^{2n-i-j} B(x^i, x^j) \right] - \sum_{k=0}^{n-1} \binom{n-1}{k} x^k s^{n-k-1} \left(f(x) + sA(1) + s^2 B(1, 1) + 2sB(x, 1) \right) - \sum_{l=0}^{2n-1} \binom{2n-1}{l} x^l s^{2n-l-1} \left(f(x) + sA(1) + s^2 B(1, 1) + 2sB(x, 1) \right) = 0.$$

Hence, for any fixed $x \in \mathbb{R}_+$, we obtain the polynomial (2.4) of degree at most 2n+1 in \mathbb{R}_+ which is equal to zero for all $s \in \mathbb{Q}_+$. By Lemma 1.1, every coefficient of (2.4) has to be equal to zero. Since the coefficient of s^{2n+1} is B(1,1) - B(1,1) = 0, then the degree of the polynomial (2.4) is less than 2n+1. Furthermore, from the coefficient of s^{2n} , we deduce that

$$A(1) + 2B(x,1) + (2n-1)xB(1,1) - xB(1,1) - B(1,1) - 2nB(x,1) = 0,$$

for all $x \in \mathbb{R}_+$. Put x = 1 in the above equality, we have $A(1) = B(1, 1) = \frac{f(1)}{2}$. Therefore, as $|n| \ge 2$, we get

(2.5)
$$B(x,1) = xB(1,1), \quad x \in \mathbb{R}_+.$$

From the coefficient of s^{2n-1} , we arrive at

$$0 = f(x) + (2n - 1)x[A(1) + 2B(x, 1)] + {2n - 1 \choose 2}x^2B(1, 1)$$

$$- {n \choose 1}^2B(x, x) - 2n(x + 1)B(x, 1) - 2{n \choose 2}B(x^2, 1)$$

$$= f(x) + (2n - 1)(1 + 2x)xB(1, 1) + (2n - 1)(n - 1)x^2B(1, 1)$$

$$- n^2B(x, x) - 2nx^2(x + 1)B(1, 1) - n(n - 1)x^2B(1, 1).$$

Now with A(1) = B(1, 1), and (2.5), we obtain

$$(2.6) f(x) = (x^2 + x)B(1,1) + n^2B(x,x) - n^2x^2B(1,1),$$

for all $x \in \mathbb{R}_+$. Thus,

$$B(x,x) = \frac{f(x) + f(-x)}{2} = x^2 B(1,1) + n^2 \left[B(x,x) - x^2 B(1,1) \right], \quad x \in \mathbb{R}_+.$$

As $n \geq 2$,

(2.7)
$$B(x,x) = x^2 B(1,1) = \frac{f(1)}{2} x^2, \quad x \in \mathbb{R}_+.$$

By equations (2.6) and (2.7), we conclude that

$$f(x) = \frac{f(1)}{2}(x+x^2), \quad x \in \mathbb{R}_+.$$

Hence, $A(x) = f(x) - B(x, x) = \frac{f(1)}{2}x$ for all $x \in \mathbb{R}_+$. Also, for x = 0 above equation holds, because f(0) = 0.

Now, for x = -u < 0,

$$f(x) = A(-u) + B(-u, -u) = -A(u) + (-1)^{2}B(u, u)$$
$$= \frac{f(1)}{2} (-u + (-u)^{2}) = \frac{f(1)}{2} (x + x^{2}).$$

Therefore,

$$f(x) = \alpha(x + x^2), \qquad x \in \mathbb{R},$$

where $\alpha = \frac{f(1)}{2}$.

Finally, for the case $n \leq -2$, take $p = -n \geq 2$ in (2.2) to obtain

$$(2.8) (x+1)f\left(\frac{1}{x^p}\right) = \left(\frac{1}{x^{2p+1}} + \frac{1}{x^{p+1}}\right)f(x) = \left(\frac{1+x^p}{x^{2p+1}}\right)f(x),$$

for $x \in \mathbb{R}_+$. Substitute x^{-p} for x in (2.8) to gain

$$\left(\frac{1}{x^p}+1\right)f\left(x^{p^2}\right)=\left(x^{2p^2+p}+x^{p^2+p}\right)f\left(\frac{1}{x^p}\right).$$

By (2.8), we obtain

$$\frac{1+x^p}{x^p}f\left(x^{p^2}\right) = \frac{x^{2p^2+p} + x^{p^2+p}}{x+1} \left(\frac{1+x^p}{x^{2p+1}}\right) f(x),$$

or

(2.9)
$$(x+1)f\left(x^{p^2}\right) = \left(x^{2p^2-1} + x^{p^2-1}\right)f(x).$$

In (2.9), set $p^2 = k \in \mathbb{N}$, and use a similar proof as in the previous case. Obviously, the converse holds.

The additive function $\theta \colon \mathbb{R} \to \mathbb{R}$ is named a derivation if $\theta(xy) = x\theta(y) + y\theta(x)$ for all $x, y \in \mathbb{R}$. Thus, every derivation θ satisfies $\theta(x^2) = 2x\theta(x)$ for all $x \in \mathbb{R}$. Moreover, there exist nontrivial derivations on \mathbb{R} (see [13, Theorem 14.2.2]). Also, $\theta(x^2)$ and $(\theta(x))^2$ are quadratic functions (see [3]).

A functional $\mathcal{H} \colon \mathbb{R}^2 \to \mathbb{R}$ is named a bi-derivation if the mappings

$$s \mapsto \mathcal{H}(s, x)$$
 and $s \mapsto \mathcal{H}(x, s)$, $s \in \mathbb{R}$,

are derivations for every $x \in \mathbb{R}$.

The set of derivations of order 2, denoted by $\mathfrak{D}_2(\mathbb{R})$, is the set of the additive functions $\theta \colon \mathbb{R} \to \mathbb{R}$ that can be written as

$$\theta(xy) - x\theta(y) - \theta(x)y = \mathcal{H}(x,y),$$

for some bi-derivation \mathcal{H} on \mathbb{R}^2 .

In the case n = 1, condition (2.1) has the form

$$(x + x^2)f(x) = (x + x^2)f(x),$$

whence f can be discontinuous as well.

Equation (2.1) for pairs of $(x,y) \in \mathbb{R}^2$ that fulfill condition xy=1 is as follows

(2.10)
$$f(x) = x^3 f\left(\frac{1}{x}\right), \quad x \in \mathbb{R} \setminus \{0\}.$$

Now, by giving a counterexample, we show that there exists a discontinuous Drygas function that satisfies condition (2.10).

Assume that $\theta \colon \mathbb{R} \to \mathbb{R}$ is a nontrivial derivation. Then

$$\theta\left(\frac{1}{x}\right) = -\frac{1}{x^2}\theta(x), \quad x \in \mathbb{R}\setminus\{0\}.$$

Therefore, $f(x) = -\theta(x) + \frac{1}{2}\theta(x^2)$ is a discontinuous Drygas function that fulfills (2.10) for every $x \in \mathbb{R}$.

LEMMA 2.2 ([5]). Assume that $\delta \colon \mathbb{R} \to \mathbb{R}$ is an additive function. Then $\delta \in \mathfrak{D}_2(\mathbb{R})$ if and only if

$$\delta(x^4) = 6x^2\delta(x^2) - 8x^3\delta(x),$$

for every $x \in \mathbb{R}$.

THEOREM 2.3. Drygas functions $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ fulfill the condition (1.4) for $(x, y) \in \Delta_1$ if and only if there exists an additive function $\delta : \mathbb{R} \to \mathbb{R}$ such that

$$\begin{split} \delta\left(x^{4}\right) &= 6x^{2}\delta(x^{2}) - 8x^{3}\delta(x) + 3x^{4}\delta(1), \\ f_{1}(x) &= (x+1)\left[2\delta(x) - x\delta(1)\right], \\ \left\{f_{2}(x) &= \frac{1}{4}(x+1)\left[6\delta(x) - \frac{1}{x}\delta\left(x^{2}\right) - x\delta(1)\right], \quad x \in \mathbb{R}\backslash\{0\} \\ f_{2}(0) &= 0. \end{split}$$

In particular, $f_1(1) = 0$ if and only if $\delta \in \mathfrak{D}_2(\mathbb{R})$.

PROOF. Since $f_1, f_2 \colon \mathbb{R} \to \mathbb{R}$ are Drygas functions, by (1.3), there exist additive functions $A_1, A_2 \colon \mathbb{R} \to \mathbb{R}$ and symmetric biadditive functions $B_1, B_2 \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that

$$f_1(x) = A_1(x) + B_1(x, x)$$
 and $f_2(x) = A_2(x) + B_2(x, x)$,

for all $x \in \mathbb{R}$. Put $y = x^2$ in (1.4), to obtain

$$(x^2 + x^4) f_1(x) = (x + x^2) f_2(x^2), \quad x \in \mathbb{R}.$$

By dividing both sides by $x \neq 0$ (since $f_1(0) = f_2(0) = 0$), we have

$$(2.11) (x+1)f_2(x^2) = (x^3+x)f_1(x), x \in \mathbb{R}.$$

Set x = -1 in (2.11), then $f_1(-1) = -A_1(1) + B_1(1, 1) = 0$. Thus,

$$A_1(1) = B_1(1,1) = \frac{f_1(1)}{2}.$$

Let $s \in \mathbb{Q}$. Substituting x + s for x in (2.11), we get

$$(2.12) (x+s+1)f_2((x+s)^2) = ((x+s)^3 + x + s) f_1(x+s), x \in \mathbb{R}.$$

By expanding the powers of sums on both side of this equation and by the \mathbb{Q} -homogeneity of A_1, A_2, B_1 and B_2 , equation (2.12) becomes

$$xA_{2}\left(x^{2}\right) + sA_{2}\left(x^{2}\right) + A_{2}\left(x^{2}\right) + 2sxA_{2}(x) + 2s^{2}A_{2}(x) + 2sA_{2}(x) + s^{2}A_{2}(x) + s^{2}A_{2}($$

for all $x \in \mathbb{R}$. Hence,

$$0 = [B_{1}(1,1) - B_{2}(1,1)]s^{5}$$

$$+ [A_{1}(1) + 3xB_{1}(1,1) + 2B_{1}(x,1) - xB_{2}(1,1) + -4B_{2}(x,1) - B_{2}(1,1)]s^{4}$$

$$+ [f_{1}(x) + 3xA_{1}(1) + 6xB_{1}(x,1) + B_{1}(1,1) + 3x^{2}B_{1}(1,1)$$

$$- 4xB_{2}(x,1) - A_{2}(1) - 4B_{2}(x,x) - 2B_{2}(x^{2},1) - 4B_{2}(x,1)]s^{3}$$

$$+ [3xf_{1}(x) + 3x^{2}A_{1}(1) + A_{1}(1) + x^{3}B_{1}(1,1) + xB_{1}(1,1)$$

$$+ 6x^{2}B_{1}(x,1) + 2B_{1}(x,1) - A_{2}(1) - 2A_{2}(x) - xA_{2}(1)$$

$$- 4xB_{2}(x,x) - 4B_{2}(x,x) - 4B_{2}(x^{2},x) - 2xB_{2}(x^{2},1) - 2B_{2}(x^{2},1)]s^{2}$$

$$+ [3x^{2}f_{1}(x) + f_{1}(x) + x^{3}A_{1}(1) + xA_{1}(1) + 2x^{3}B_{1}(x,1) + 2xB_{1}(x,1)$$

$$- f_{2}(x^{2}) - 2xA_{2}(x) - 2A_{2}(x) - 4xB_{2}(x^{2},x) - 4B_{2}(x^{2},x)]s$$

$$+ [x^{3}f_{1}(x) + xf_{1}(x) - xf_{2}(x^{2}) - f_{2}(x^{2})].$$

By Lemma 1.1, the coefficients of s^n for n = 0, 1, 2, 3, 4, 5 are equal to zero. The coefficient of s^5 implies $B_1(1,1) = B_2(1,1)$. So, by taking x = 1 in (2.11), we obtain

$$A_1(1) = B_1(1,1) = A_2(1) = B_2(1,1) = \frac{f_1(1)}{2}.$$

According to the coefficient of s^4 we see that

$$(2.13) 2B_2(x,1) = xB_1(1,1) + B_1(x,1), \quad x \in \mathbb{R}.$$

From the coefficient of s^3 and (2.13), we conclude that

$$(2.14) f_1(x) = 2B_1(x,1) - xB_1(1,1) - 4xB_1(x,1) + B_1(x^2,1) + 4B_2(x,x),$$

for all $x \in \mathbb{R}$. Hence, by (2.14),

(2.15)
$$A_1(x) = \frac{f_1(x) - f_1(-x)}{2} = 2B_1(x, 1) - xB_1(1, 1),$$

and

$$(2.16) \quad B_1(x,x) = \frac{f_1(x) + f_1(-x)}{2} = 4B_2(x,x) + B_1(x^2,1) - 4xB_1(x,1),$$

for all $x \in \mathbb{R}$.

Replacing x with -x in (2.11) yields

$$(2.17) (-x+1)f_2(x^2) = -(x^3+x)f_1(-x), x \in \mathbb{R}.$$

Adding both sides of (2.11) and (2.17) gives us

$$f_2(x^2) = (x^3 + x) A_1(x), \quad x \in \mathbb{R},$$

and hence,

$$(2.18) f_1(x) = (x+1) A_1(x) = A_1(x) + B_1(x,x), B_1(x,x) = x A_1(x),$$

for all $x \in \mathbb{R}$. Thus,

(2.19)
$$f_2(x^2) = (x^2 + 1) B_1(x, x), \quad x \in \mathbb{R}.$$

From (2.15) and (2.18), we have

$$(2.20) B_1(x,x) = 2xB_1(x,1) - x^2B_1(1,1), x \in \mathbb{R}.$$

Combining (2.16) and (2.20) yields

(2.21)
$$B_2(x,x) = \frac{3}{2}xB_1(x,1) - \frac{1}{4}B_1(x^2,1) - \frac{1}{4}x^2B_1(1,1),$$

for all $x \in \mathbb{R}$. For $x \in \mathbb{R}$ and $s \in \mathbb{Q}$, if we write sx instead of x in equation (2.19), then

$$f_2(s^2x^2) = (s^2x^2 + 1) B_1(sx, sx), \quad x \in \mathbb{R}.$$

Thus,

$$[A_2(x^2) - B_1(x,x)] s^2 + [B_2(x^2,x^2) - x^2 B_1(x,x)] s^4 = 0.$$

From Lemma 1.1 we have

$$A_2(x^2) = B_1(x, x), \quad B_2(x^2, x^2) = x^2 B_1(x, x).$$

So, $B_2(x^2, x^2) = x^2 A_2(x^2)$ for all $x \in \mathbb{R}$. Setting $x^2 = t$, we have t > 0 and $B_2(t,t) = t A_2(t)$. It follows that $B_2(x,x) = x A_2(x)$ for all x > 0. Now, for x = -t < 0,

$$B_2(x,x) = B_2(-t,-t) = B_2(t,t) = tA_2(t) = -tA_2(-t) = xA_2(x).$$

Therefore, $A_2(x) = \frac{1}{x}B_2(x,x)$ for all $x \in \mathbb{R} \setminus \{0\}$.

From the above equality and (2.21), we obtain

$$A_2(x) = \frac{3}{2}B_1(x,1) - \frac{1}{4x}B_1(x^2,1) - \frac{1}{4}xB_1(1,1).$$

Define the additive function $\delta \colon \mathbb{R} \to \mathbb{R}$ by

$$\delta(x) = B_1(x, 1), \quad x \in \mathbb{R}.$$

Therefore,

$$f_1(x) = (x+1) [2\delta(x) - x\delta(1)],$$

and

$$f_2(x) = \frac{1}{4}(x+1) \left[6\delta(x) - \frac{1}{x}\delta\left(x^2\right) - x\delta(1) \right],$$

for all $x \in \mathbb{R} \setminus \{0\}$.

Next, $f_1(1) = 0$ if and only if $\delta(1) = 0$, or equivalently, if and only if

$$\delta(x^4) = 6x^2\delta(x^2) - 8x^3\delta(x),$$

for all $x \in \mathbb{R}$. By Lemma 2.2, this is equivalent to $\delta \in \mathfrak{D}_2(\mathbb{R})$. The only if part is trivial.

In Theorem 2.3, if we suppose that δ is a derivation, then $f_1(x) = 2f_2(x)$ for all $x \in \mathbb{R}$.

Example 2.4. Let $0 \neq a \in \mathbb{R}$. Define $f_1, f_2 \colon \mathbb{R} \to \mathbb{R}$ by

$$f_1(x) = 2a(x+1)\theta(x), \quad f_2(x) = a(x+1)\theta(x),$$

for all $x \in \mathbb{R}$, where $\theta \colon \mathbb{R} \to \mathbb{R}$ is a nontrivial derivation. Then f_1, f_2 are discontinuous Drygas functions and satisfy the conditions of Theorem 2.3 with $\delta(x) = a\theta(x)$ for all $x \in \mathbb{R}$.

THEOREM 2.5. Drygas functions $f_1, f_2 \colon \mathbb{R} \to \mathbb{R}$ satisfy the conditional equation (1.4) on \mathbb{R}_+ for $(x,y) \in \Delta_2$ and $f_1(x) = x^3 f_1\left(\frac{1}{x}\right)$ for all $x \in \mathbb{R}_+$ if and only if

(2.22)
$$f_1(x) = f_2(x) = \alpha (x + x^2), \quad x \in \mathbb{R},$$

where α is a real constant.

PROOF. The conditional equation (1.4) for $y = \log(x)$ is

(2.23)
$$\left[(\log(x))^2 + \log(x) \right] f_1(x) = (x^2 + x) f_2(\log(x)), \quad x \in \mathbb{R}_+.$$

Replacing x with $\frac{1}{x}$ in (2.23), we arrive, by using the fact that $f_1(x) = x^3 f_1\left(\frac{1}{x}\right)$, at

(2.24)
$$\left[(\log(x))^2 - \log(x) \right] f_1(x) = (x^2 + x) f_2(-\log(x)), \quad x \in \mathbb{R}_+.$$

Substituting x^2 for x in (2.23) and applying properties of logarithmic and Drygas functions, we see that

(2.25)
$$\left[4 \left(\log(x) \right)^2 + 2 \log(x) \right] f_1(x^2) = \left(x^4 + x^2 \right) f_2(2 \log(x))$$

$$= \left(x^4 + x^2 \right) \left[3 f_2(\log(x)) + f_2(-\log(x)) \right],$$

for all $x \in \mathbb{R}_+$.

From (2.23), (2.24) and (2.25) we deduce that

$$\left[4\left(\log(x)\right)^{2} + 2\log(x)\right]f_{1}(x^{2}) = \frac{x^{4} + x^{2}}{x^{2} + x}\left[4\left(\log(x)\right)^{2} + 2\log(x)\right]f_{1}(x),$$

which implies

$$(2.26) (x+1)f_1(x^2) = (x^3 + x)f_1(x),$$

for all $x \in \mathbb{R}_+ \setminus \{1, \exp\left(-\frac{1}{2}\right)\}.$

Obviously, (2.26) holds for x = 1.

Putting $x = \exp(1)$ in (2.24), we have $f_2(-1) = 0$. So, $A_2(1) = B_2(1, 1)$, where $A_2 : \mathbb{R} \to \mathbb{R}$ is an additive function and $B_2 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a symmetric biadditive function and $f_2(x) = A_2(x) + B_2(x, x)$.

Taking $x = \exp\left(-\frac{1}{2}\right)$ in (2.24), we get

$$\frac{3}{4}f_1\left(\exp\left(-\frac{1}{2}\right)\right) = \left(\exp(-1) + \exp\left(-\frac{1}{2}\right)\right)f_2\left(\frac{1}{2}\right)$$
$$= \left(\exp(-1) + \exp\left(-\frac{1}{2}\right)\right)\left[A_2\left(\frac{1}{2}\right) + B_2\left(\frac{1}{2}, \frac{1}{2}\right)\right]$$

$$= \frac{3}{4} \left(\exp(-1) + \exp\left(-\frac{1}{2}\right) \right) A_2(1)$$
$$= \frac{3}{4} \left(\exp(-1) + \exp\left(-\frac{1}{2}\right) \right) \frac{f_2(1)}{2}.$$

Hence,

(2.27)
$$f_2(1) = \frac{2}{\left(\exp(-1) + \exp\left(-\frac{1}{2}\right)\right)} f_1\left(\exp\left(-\frac{1}{2}\right)\right).$$

Setting $x = \exp(-1)$ in (2.24), we obtain

$$(2.28) 2f_1(\exp(-1)) = (\exp(-2) + \exp(-1))f_2(1).$$

It follows from (2.27) and (2.28) that

$$\left(\exp\left(-\frac{1}{2}\right) + 1\right) f_1(\exp(-1))$$

$$= \left(\exp\left(-\frac{3}{2}\right) + \exp\left(-\frac{1}{2}\right)\right) f_1\left(\exp\left(-\frac{1}{2}\right)\right).$$

Therefore,

$$(x+1)f_1(x^2) = (x^3 + x) f_1(x),$$

for all $x \in \mathbb{R}_+$. By Theorem 2.1,

$$f_1(x) = \alpha (x + x^2), \quad x \in \mathbb{R},$$

where $\alpha = \frac{f_1(1)}{2}$. By replacing $f_1(x)$ in (2.23), we have

$$f_2(\log(x)) = \alpha \left[(\log(x))^2 + \log(x) \right], \quad x \in \mathbb{R}_+$$

where $\alpha = \frac{f_1(1)}{2}$. Consequently

$$f_2(x) = \alpha (x + x^2) = f_1(x), \qquad x \in \mathbb{R},$$

where $\alpha = \frac{f_1(1)}{2}$.

One can easily verify the sufficiency of (2.22).

As a consequence, Theorem 2.5 can be generalized to the case of exponential functions, that is $(x,y) \in \Delta_3$, because the logarithmic and exponential functions of the same basis are inverses of each other.

COROLLARY 2.6. Drygas functions $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ satisfy the conditional equation (1.4) for $(x, y) \in \Delta_3$ and $f_2(x) = x^3 f_2\left(\frac{1}{x}\right)$ for all $x \in \mathbb{R}_+$ if and only if

$$f_1(x) = f_2(x) = \alpha (x + x^2), \quad x \in \mathbb{R},$$

where α is a real constant.

REMARK 1. Theorem 2.5 and Corollary 2.6 also hold if $y = \log_a(x)$ or $y = a^x$ for $a \in \mathbb{R}_+ \setminus \{1\}$.

References

- [1] J. Aczél, The general solution of two functional equations by reduction to functions additive in two variables and with the aid of Hamel bases, Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske Ser. II **20** (1965), 65–73.
- [2] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia Math. Appl., 31, Cambridge University Press, Cambridge-New York-New Rochelle-Melbourne-Sydney, 1989.
- [3] M. Amou, Quadratic functions satisfying an additional equation, Acta Math. Hungar. 162 (2020), no. 1, 40–51.
- [4] Z. Boros and P. Erdei, A conditional equation for additive functions, Aequationes Math. 70 (2005), no. 3, 309–313.
- [5] Z. Boros and E. Garda-Mátyás, Conditional equations for quadratic functions, Acta Math. Hungar. 154 (2018), no. 2, 389–401.
- [6] Z. Boros and E. Garda-Mátyás, Quadratic functions fulfilling an additional condition along the hyperbola xy = 1, Aequationes Math. 97 (2023), no. 5-6, 1141-1155.
- [7] J. Brzdęk and A. Mureńko, On a conditional Gołąb-Schinzel equation, Arch. Math. (Basel) 84 (2005), no. 6, 503–511.
- [8] M. Dehghanian, S. Izadi, and S. Jahedi, The solution of Drygas functional equations with additional conditions, Acta Math. Hungar. 174 (2024), no. 2, 510–521.
- [9] H. Drygas, Quasi-inner products and their applications, in: A.K. Gupta (Ed.), Advances in Multivariate Statistical Analysis, D. Reidel Publishing Co., Dordrecht, 1987, pp. 13–30.
- [10] B.R. Ebanks, Pl. Kannappan, and P.K. Sahoo, A common generalization of functional equations characterizing normed and quasi-inner-product spaces, Canad. Math. Bull. 35 (1992), no. 3, 321–327.
- [11] E. Garda-Mátyás, Quadratic functions fulfilling an additional condition along hyperbolas or the unit circle, Aequationes Math. 93 (2019), no. 2, 451–465.
- [12] W.B. Jurkat, On Cauchy's functional equation, Proc. Amer. Math. Soc. 16 (1965), no. 4, 683–686.
- [13] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, 2nd ed., Birkhäuser Verlag, Basel, 2009.
- [14] S. Kurepa, The Cauchy functional equation and scalar product in vector spaces, Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske Ser. II 19 (1964), 23–36.
- [15] A. Nishiyama and S. Horinouchi, On a system of functional equations, Aequationes Math. 1 (1968), 1–5.
- [16] H. Stetkær, The kernel of the second order Cauchy difference on semigroups, Aequationes Math. 91 (2017), no. 2, 279–288.

Sadegh Izadi Department of Mathematics Shiraz University of Technology P. O. Box 71557-13876 Shiraz Iran e-mail: s.izadi@sutech.ac.ir

Sedigheh Jahedi Department of Mathematics Shiraz University of Technology P. O. Box 71557-13876 Shiraz Iran e-mail: jahedi@sutech.ac.ir

MEHDI DEHGHANIAN
DEPARTMENT OF MATHEMATICS
SIRJAN UNIVERSITY OF TECHNOLOGY
SIRJAN
IRAN
e-mail: mdehghanian@sirjantech.ac.ir