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MHD EQUATIONS IN A BOUNDED DOMAIN

Maria B. Kania

Abstract. We consider the MHD system in a bounded domain Ω ⊂ RN ,
N = 2, 3, with Dirichlet boundary conditions. Using Dan Henry’s semigroup
approach and Giga–Miyakawa estimates we construct global in time, unique
solutions to fractional approximations of the MHD system in the base space
(L2(Ω))N × (L2(Ω))N . Solutions to MHD system are obtained next as a limits
of that fractional approximations.

1. Introduction

We consider the Dirichlet boundary value problem for the incompressible
magnetohydrodynamical (MHD) system

ut − ν∆u+ u · ∇u = −∇p+ b · ∇b, x ∈ Ω ⊂ RN , t > 0,

bt − η∆b+ u · ∇b = b · ∇u, x ∈ Ω ⊂ RN , t > 0,

div u = div b = 0,

u = 0, b = 0 on ∂Ω,

u(0, x) = u0(x), b(0, x) = b0(x), x ∈ Ω,

(1.1)
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in a bounded domain Ω ⊂ RN with C2 boundary, where N = 2, 3. Here u is
the velocity of the fluid flow and b is the magnetic field. These functions are the
vector-valued functions of x ∈ Ω and t ≥ 0 (u(t, x) = (u1(t, x), . . . , uN (t, x)),
b(t, x) = (b1(t, x), . . . , bN (t, x))). The total pressure p = p(t, x) is real-valued
function of x ∈ Ω and t ≥ 0. The constant ν > 0 is the viscosity of the fluid
and η > 0 is the magnetic diffusivity. Here u · ∇b denotes the matrix product
u(∇b)T , i.e.

u · ∇b = u(∇b)T =

(
u1
∂b1
x1

+ . . .+ uN
∂b1
xN

, . . . , u1
∂bN
x1

+ . . .+ uN
∂bN
xN

)
.

The MHD system is called ideal MHD system if ν = 0 and η > 0 and non-
resistive MHD system if ν > 0 and η = 0 (see [20]). In the paper [23], Miao
and Yuan called MHD system with ν = η = 0 also ideal. If the magnetic field
b(t, x) identically equals zero, MHD system reduces to the incompressible
Navier–Stokes equation. It is impossible to recall even the most important
results devoted to N-S problem, since corresponding literature is too large,
see anyway [3, 4, 10, 13, 17, 21, 27] together with the references cited there.

MHD equations in the whole of RN studies the dynamics of the velocity
and magnetic fields in electrically conducting fluids such as plasmas, liquid
metals, and salt water or electrolytes. Besides their physical applications, the
MHD equations remain also an outstanding mathematical problem. Funda-
mental mathematical issues such as well-posedness and regularity of their
solutions have generated extensive research and many interesting results have
been already obtained. The most of them concern MHD equations in un-
bounded domain RN , N = 2, 3. We would like to mention some of them.
Recently, the Cauchy’s problem of MHD system in R3 was considered in the
papers [24, 29, 14, 20]. For small data, the existence of a global mild solu-
tion in BMO−1 as well as a locall mild solution in bmo−1 was established
in [24]. Obtained solutions are unique in the spaces C([0,∞);BMO−1) and
C([0, T ); bmo−1), respectively. The global existence of the mild solutions was
obtained in the paper [29] when the norms of the initial data (in the spaces
χ−1) are bounded exactly by the minimal value of the viscosity coefficients.
He et al. ([14]) got the global smooth solution under the assumption that the
difference between the magnetic field and the velocity is small initially and
|ν−η|
ν+η < 1. In paper [20], authors established the global existence of smooth
solutions for a class of large initial data. In [30], Wu studied Generalized MHD
equations (GMHD), where the viscosity terms −∆u and −∆b, were replaced
by (−∆)αu and (−∆)βb with α, β > 0. He showed when ν, η > 0 the GMHD
equations with any α, β > 0 possess a global week solution corresponding to
any L2 initial data. Moreover, week solutions associated with α ≥ 1

2 + N
4 and

β ≥ 1
2 + N

4 are global classical solutions, when their initial date are sufficiently
smooth.
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In bounded domain Ω ⊂ RN , N = 2, 3 the MHD system with the addi-
tional term f(t, x) on the right hand side in first equation and the boundary
condition

u = 0, b · n = 0, curl b× n = 0 on ∂Ω× (0, T ),

where n is the unit outward normal vector to ∂Ω was studied by Duvaut
and Lions long time ago. They constructed in [8] a class of weak and strong
solutions to it. Next, Sermange and Temam recalled and completed their
results in [26]. According to [26, Theorem 3.1] under the assumptions f ∈
L2(0, T, V

′

1 ) and (u0, b0) ∈ H there exists week solution for MHD system
satisfying (u, b) ∈ L2(0, T, V ) ∩ L∞(0, T,H), where

V = {v ∈ H1
0 (Ω) : div v = 0} × {C ∈ H1(Ω) : divC = 0 and C · n|∂Ω = 0},

V
′

1 denotes dual space of V1 = {v ∈ H1
0 (Ω) : div v = 0},

H1 = {v ∈ L2(Ω) : div v = 0 and v · n|∂Ω = 0}, and H = H1 ×H1.

The characterisation of spaces V1, V
′

1 and H1 is discussed in [27, section 1.4,
chapter 3] . Moreover, when f and initial data are more regular, that is f ∈
L∞(0, T,H1) and (u0, b0) ∈ V , then the unique local solution (global when
the dimension is N = 2 ) is strong one (see [26, Theorem 3.2]). In [19] Kozono
showed the existence and uniqueness of a global weak solution and a local
classical solution for the ideal MHD system (ν = 0, η = 1) considered in a
bounded domain Ω ⊂ R2 with the boundary condition

u · n = 0, b · n = 0, rot b = 0 on ∂Ω× (0, T ).

Recently, MHD system was considered in [28] with the boundary condition

u · n = 0, b · n = 0, curlu× n = 0, curl b× n = 0,

where n is the unit outward normal vector to ∂Ω and Ω is bounded in R3.
It was shown there that under the specified relation between u0 and b0 the
MHD system admits a unique global smooth solution.

This paper is devoted to the global in time solvability and properties of
solutions to problem (1.1) in a bounded domain Ω ⊂ RN , N = 2, 3. In section
3 we will obtain solutions of 2-D MHD equations as limits of solutions to
sub-critical approximations (2.4) (where the operators −P∆u and −P∆b are
replace with their fractional powers (−P∆)αu and (−P∆)βb, respectively,
α, β > 1) when α, β → 1+. The main result in 2-D case is the following.
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Theorem 1.1. Let (uαnβn , b
αn
βn

) be the solution of the subcritical problem
(2.4) (constructed in Theorem 2.4 in the base space L2(Ω)) corresponding to
the initial condition u0, b0 ∈ D(A

1+ε
2 ) ⊂ H1+ε(Ω) and the fractional exponents

αn, βn ∈ (1, 5
4 ]. Then passing, over a subsequence (denoted the same), with

αn, βn to 1 in system (2.4) we get a weak solution (u, b) (not necessarily
unique) to the critical problem (α = β = 1) satisfying, for each test function
φ ∈ D(A) ⊂ H2(Ω), the equalities (3.8) and (3.9).

In 3-D, the higher order diffusion terms like ν3(−P∆)αu and η3(−P∆)βb,
where α, β > 5

4 and ν3, η3 > 0, are added to the system (1.1). Instead of equa-
tions (1.1) we study their regularization (2.5). Next we will obtain solutions of
3-D MHD equations as limits of solutions of (2.5) when ν3, η3 → 0+ (section
4). The main result in 3-D case is as follows.

Theorem 1.2. Let the fractional exponents α, β > 5
4 be fixed (but close

to 5
4), the parameters νn, ηn ∈ (0, 1] and (uνnηn , b

νn
ηn) be the solution of the

regularization problem (2.5) (constructed in Theorem 2.4 in the base space
L2(Ω)) corresponding to the initial condition u0, b0 ∈ D(A

3+2ε
4 ) ⊂ H 3

2+ε(Ω)
and the parameters νn, ηn. Then passing, over a subsequence (denoted the
same), with νn, ηn to 0 in problem (2.5) we get a weak solution (U,B) (not
necessarily unique) to the MHD problem (1.1) satisfying, for each test function
ψ ∈ D(A

max{α,β}
2 ), the equalities (4.9) and (4.10).

We consider approximation problems (2.4) and (2.5) in the framework of
semilinear parabolic equations with a sectorial positive operator (see [15, 2]).
This offers a simple but formalized proof of local solvability as well as the
regularity of solutions. There are different possible choices of the phase spaces
for these problems. We choose (L2(Ω))N × (L2(Ω))N as the base spaces (in
which the equations are fulfilled). Section 2 of the paper is devoted to the
global in time solvability of the problem (2.4) and (2.5). We obtained there also

the global in time solvability of (1.1) in phase space
(
D(A

N+2ε
4 )

)2

for small
data. In this study we use a technique proposed in our recent publications
[5, 6, 7, 16] and in recent papers devoted to the Navier–Stokes equation [3, 4].

Notation. Standard notation for Sobolev spaces is used. When necessary,
for clarity of the presentation, we indicate the dependence of solution (u, b) of
(2.6) on α, β in 2-D and ν3, η3 in 3-D, calling it (uαβ , b

α
β), (uν3η3 , b

ν3
η3), respectively.

Let r − ε, ε > 0, denotes a number strictly less than r but arbitrarily close
to it. Moreover, we set P := P2 and A := A2 (see (2.1) for definitions A2

and P2).
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2. Solvability of fractional approximations of MHD system

We start with recalling some results on the Stokes operator (see [11, 12,
13]). Let Ω be a bounded domain in RN (N ≥ 2) with smooth boundary. For
simplicity of the notation let us introduce the following list of vector spaces:

Lr(Ω) := (Lr(Ω))N , Lr(Ω) := Lr(Ω)× Lr(Ω),

W2,r(Ω) := (W 2,r(Ω))N , Xr := clLr(Ω){φ ∈ (C∞0 (Ω))N : div φ = 0},

for 1 < r <∞. We define the Stokes operator Ar in Xr

Ar = −Pr


∆ 0 · · · 0

0
. . . 0

...
... 0

. . . 0
0 · · · 0 ∆


N×N

(2.1)

with domain D(Ar) = Xr ∩ D(−∆) = Xr ∩
{
φ ∈ W2,r(Ω) : φ = 0 on ∂Ω

}
,

where Pr denotes the continuous projection from Lr(Ω) to Xr given by the de-
composition of Lr(Ω) onto the space of divergence-free vector fields and scalar
function gradient. The operator −Ar generates on Xr a bounded holomorphic
semigroup {e−tAr} of class C0 (see [11, Theorem 2]). To simplify notation we
will set P := P2 and A := A2. In our work we use the Balakrishnan’s definition
of the fractional powers operators (see [18, 22]).

Definition 2.1. Let B be a closed linear densely defined operator in a
Banach space X, such that interval (−∞, 0) is included in the resolvent set
ρ(B) and

M = sup
λ>0

{
‖λ(λ+B)−1‖

}
<∞.

Then, for η ∈ (0, 1),

Bηφ =
sin(πη)

π

∫ ∞
0

sη−1B(s+B)−1φds.

This definition can be used to study problem (2.6) both in the case of a
bounded and unbounded domain. For complete of presentation we recall from
paper [7] a lemma justifying convergence of negative powers:
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Lemma 2.2. Let B be a positive operator in a Banach space X. For arbi-
trary φ ∈ X, and ε > 0 there exists L > 0 such that for β ∈ (0, 1

2):

‖(I −B−β)φ‖X ≤
sin(πβ)

π

(
2L(1 +M) +ML−1)‖φ‖X + ε.

Consequently, the left side tends to zero as 0 < β → 0+.

and important results ([13, p. 270]), which are crucial in the proof of local
and global solvability of (2.6).

Lemma 2.3. Let 0 ≤ δ < 1
2 + N

2 (1− 1
r ). Then

‖A−δr Pr(u · ∇v)‖Lr(Ω) ≤M‖Aθru‖Lr(Ω)‖Aρrv‖Lr(Ω)(2.2)

with a constant M = M(δ, θ, ρ, r), provided that

δ + θ + ρ ≥ 1

2
(
N

r
+ 1), θ, ρ > 0, ρ+ δ >

1

2
.

Moreover, if δ ≥ 1
2 then

‖A−δr Pr(u · ∇v)‖Lr(Ω) ≤ C‖|u| · |v|‖Ls(Ω)(2.3)

with 1
s = 1

r + 2ε
N and ε = δ − 1

2 .

It is also a familiar fact, that if Bi, i = 1, . . . ,m, with domains D(Bi)
respectively, are sectorial positive operators on the Banach space Zi, then the
product operator B = (B1, . . . , Bm), considered with the domain D(B1) ×
· · · ×D(Bm), will be sectorial positive (product) operator on the space Z1 ×
· · ·×Zm (see e.g. [2, Example 1.3.2, p. 37]). Consequently, the operator Aα,β

N :

D(Aα,β
N ) ⊂ L2(Ω)→ L2(Ω) defined by the formula

Aα,β
N (φ, ψ) =

[
νNA

α 0
0 ηNA

β

]
(φ, ψ) =

(
νNA

αφ, ηNA
βψ
)
, N = 2,

and

Aα,β
N (φ, ψ) =

[
νA+ νNA

α 0
0 ηA+ ηNA

β

]
(φ, ψ)

=
(
(νA+ νNA

α)φ, (ηA+ ηNA
β)ψ

)
, N = 3,

where ν, η ≥ 0 and ηN , νN > 0 for N = 2, 3, is sectorial positive on the space
L2(Ω).
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2.1. Formulation of the problem and its local solvability

In 2-D MHD, we improve the viscosity terms Au = −P∆u and Ab =
−P∆b so that the resulting problems are sub-critical. The way for obtaining
such effect is to replace the classical viscosity terms through a bit higher
fractional diffusion terms Aαu = (−P∆)αu and Aβb = (−P∆)βb with α, β >
1. So improved viscosity together withH1(Ω) a priori estimate allow to control
to the nonlinear term. Using Dan Henry’s semigroup approach we construct
regular solutions to such approximations. Next we will study the process of
letting with α, β → 1+. Solution in critical case α = β = 1 is obtained as a
limit of such regular solutions of the approximations.

Precisely speaking, in 2-D case instead (1.1) we consider the family of
sub-critical problems with α, β > 1:

ut + ν2(−P∆)αu+ P (u · ∇u) = P (b · ∇b), x ∈ Ω ⊂ R2, t > 0,

bt + η2(−P∆)βb+ P (u · ∇b) = P (b · ∇u), x ∈ Ω ⊂ R2, t > 0,

u = 0, b = 0 on ∂Ω,

u(0, x) = u0(x), b(0, x) = b0(x), x ∈ Ω.

(2.4)

In 3-D case, we consider the approximation/regularization of (1.1) having the
form:

ut + [ν(−P∆) + ν3(−P∆)α]u+ P (u · ∇u) = P (b · ∇b), x ∈ Ω ⊂ R3, t > 0,

bt +
[
η(−P∆) + η3(−P∆)β

]
b+ P (u · ∇b) = P (b · ∇u), x ∈ Ω ⊂ R3, t > 0,

u = 0, b = 0 on ∂Ω,

u(0, x) = u0(x), b(0, x) = b0(x), x ∈ Ω,

(2.5)

with the parameters α, β > 5
4 (to be chosen) and ν, ν3, η, η3 > 0.

Our first task is the local in time solvability of the problems (2.4) and
(2.5), when the equations are treated in the base space L2(Ω). We will use
the standard approach proposed by Dan Henry ([15]) for semilinear ’para-
bolic’ equations. Working with the sectorial positive operator Aα,β

N we rewrite
problems (2.4) and (2.5) in an abstract form:

(ut, bt) + Aα,β
N (u, b) = F(u, b), t > 0,

(u(0, x), b(0, x)) = (u0(x), b0(x)),
(2.6)
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where

F(u, b) = (F1(u, b),F2(u, b))(2.7)

= (P (b · ∇b)− P (u · ∇u), P (b · ∇u)− P (u · ∇b))

is the Nemytskii operator corresponding to a nonlinear term.
The following local existence result holds:

Theorem 2.4. Let α, β > N
4 , N = 2, 3, the parameters ηN , νN > 0,

η, ν ≥ 0 and N+2ε
4 be a number strictly greater than N

4 but arbitrarily close
to it. For each u0, b0 ∈ D(A

N+2ε
4 ) ⊂ HN

2 +ε(Ω), there exists a unique local
in time mild solution (u(t), b(t)) to the sub-critical problem (2.6) in the base
space L2(Ω) (see [15]). Moreover,

(u, b) ∈ C
(
(0, τu0);D(Aα)×D(Aβ)

)
∩ C

(
[0, τu0);

(
D
(
A
N+2ε

4

))2
)
,

(ut, bt) ∈ C
(
(0, τu0);D(Aγ)×D(Aδ)

)
,

with arbitrary γ < α and δ < β . Here τu0,b0 is the ’life time’ of this local in
time solution. Furthermore, the Cauchy formula is satisfied:

(u(t), b(t)) = e−A
α,β
N t(u0, b0) +

∫ t

0

e−A
α,β
N (t−s)F(u(s), b(s))ds, t ∈ [0, τu0),

where e−A
α,β
N t denotes the linear semigroup corresponding to the operator Aα,β

N

in L2(Ω).

Proof. To guarantee the local solvability (see e.g. [2, p. 55]) we need to
check if the nonlinearity (2.7) is Lipschitz continuous on bounded sets as a
map from (D(A

N+2ε
4 ))2 into L2(Ω), that is for (v, w), (φ, ψ) ∈ B (B bounded

in (D(A
N+2ε

4 ))2),

‖F(v, w)− F(φ, ψ)‖L2(Ω) ≤ L(B)‖(v − φ,w − ψ)‖
(D(A

N+2ε
4 ))2

.

Since the form P (ξ·∇ζ) is bilinear in ξ, ζ for (v, w), (φ, ψ) varying in a bounded
set B ⊂ (D(A

N+2ε
4 ))2 we obtain

‖F(v, w)− F(φ, ψ)‖L2(Ω)

= ‖Pφ · ∇(φ− v) + P (φ− v) · ∇v + Pψ · ∇(ψ − w) + P (ψ − w) · ∇w‖L2(Ω)

+ ‖Pφ · ∇(ψ − w) + P (φ− v) · ∇w + Pw · ∇(v − φ) + P (ψ − w) · ∇φ‖L2(Ω).



MHD equations in a bounded domain 219

We present the calculations only for the component P (w · ∇(v − φ)). The
way of handling another components is similar. Using the estimate (2.2) with
r = 2, δ = 0, θ = 1

2 and ρ = N+2ε
4 , ε > 0, we get

‖P (w · ∇(v − φ))‖L2(Ω) ≤M‖A
1
2w‖L2(Ω)‖A

N+2ε
4 (v − φ)‖L2(Ω)

≤ L(B)‖A
N+2ε

4 (v − φ)‖L2(Ω). �

2.2. Global solvability

Having obtained the local in time solution of (2.6), to guarantee its global
extensibility we need suitable a priori estimates and the subordination con-
dition (see [2, Theorem 3.1.1]). First we will discuss useful properties of
divergence-free functions:

Remark 2.5. Note that for divergence-free functions f = (f1, . . . , fN ), g =
(g1, . . . , gN ), h = (h1, . . . , hN ) : Ω̄ → RN such that f, g, h ∈ C1(Ω̄) and f =
g = h = 0 on ∂Ω we have:
(a)

∫
Ω

(f · ∇g) · g dx = −1
2

∫
Ω

div f
∑N
i=1 g

2
i dx = 0,

(b)
∫

Ω
[(f · ∇g) · h+ (f · ∇h) · g] dx = −

∫
Ω

div f
∑N
i=1 gihi dx = 0.

Lemma 2.6. For a sufficiently regular solution of (2.6), the following es-
timate holds:

‖u‖2L2(Ω) + ‖b‖2L2(Ω) ≤ ‖u0‖2L2(Ω) + ‖b0‖2L2(Ω).(2.8)

Proof. Multiplying the first equation in (2.6) by u, the second by b and
adding the results, we get in 2-D

1

2

d

dt
(‖u‖2L2(Ω) + ‖b‖2L2(Ω)) + ν2‖A

α
2 u‖2L2(Ω) + η2‖A

β
2 b‖L2(Ω)

=

∫
Ω

[P (b · ∇b)− P (u · ∇u)] · u dx+

∫
Ω

[P (b · ∇u)− P (u · ∇b)] · b dx

and in 3-D

(2.9)
1

2

d

dt
(‖u‖2L2(Ω) + ‖b‖2L2(Ω)) + ν‖A 1

2u‖2L2(Ω) + η‖A 1
2 b‖L2(Ω)

+ ν3‖A
α
2 u‖2L2(Ω) + η3‖A

β
2 b‖L2(Ω)

=

∫
Ω

[P (b · ∇b)− P (u · ∇u)] · u dx+

∫
Ω

[P (b · ∇u)− P (u · ∇b)] · b dx.
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Since for divergence-free functions the nonlinear term vanishes (see Remark
2.5) we have

�(2.10)
d

dt
(‖u‖2L2(Ω) +‖b‖2L2(Ω))+2νN‖A

α
2 u‖2L2(Ω) +2ηN‖A

β
2 b‖L2(Ω) ≤ 0.

Remark 2.7. In 2-D case, integrating (2.10) over (0, T ), due to (2.8), we
get a uniform in α, β ∈ (1, 5

4 ] estimate of u, b in L2(0, T ;D(A
1
2 )), where T > 0

is fixed but arbitrarily large.

Remark 2.8. In 3-D case, from (2.9), since for regular solution the non-
linear term vanishes (see Remark 2.5), we obtain a differential inequality of
the form

1

2

d

dt
(‖u‖2L2(Ω) + ‖b‖2L2(Ω)) + ν‖A 1

2u‖2L2(Ω) + η‖A 1
2 b‖2L2(Ω)

+ ν3‖A
α
2 u‖2L2(Ω) + η3‖A

β
2 b‖L2(Ω) ≤ 0.

Integrating the above inequality over (0, T ) we get

(2.11)
∫ T

0

(ν‖A 1
2u‖2L2(Ω) + η‖A 1

2 b‖2L2(Ω))) ds ≤ c(‖(u0, b0)‖L2(Ω)),

and

(2.12)
∫ T

0

(ν3‖A
α
2 u‖2L2(Ω) + η3‖A

β
2 b‖2L2(Ω))) ds ≤ c(‖(u0, b0)‖L2(Ω)),

with a positive constant c independent of ν3 and η3. The inequality (2.11)
implies a uniform in ν3, η3 > 0 estimate of u, b in L2(0, T ;D(A

1
2 )), where

T > 0 is fixed but arbitrarily large. From estimate (2.12) follows that

√
ν3‖A

α
2 u‖L2(0,T ;L2(Ω)) +

√
η3‖A

β
2 b‖L2(0,T ;L2(Ω)) ≤ const(2.13)

with the const independent of ν3 and η3.

The L2(Ω) a priori estimate obtained in Lemma 2.6 is unfortunately
too weak to guarantee the global in time solvability of (2.6) in phase space(
D(A

N+2ε
4 )

)2

. For this purpose, we need to estimate higher Sobolev norm of
the solutions to (2.6).
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Lemma 2.9. Let α, β > 1
2 + N

4 , N = 2, 3, the parameters νN , ηN > 0 and
ν, η ≥ 0. For a sufficiently regular solution of (2.6), the following estimate
holds:

‖A 1
2u‖2L2(Ω) + ‖A 1

2 b‖2L2(Ω) ≤ c(α, β, νN , ηN , ‖(u0, b0)‖L2(Ω)).

Proof. Multiplying the first equation in (2.6) by Au and the second by
Ab, we get

(2.14)
1

2

d

dt
‖A 1

2u‖2L2(Ω) + νN‖A
1+α
2 u‖2L2(Ω)

≤
∫

Ω

P (b · ∇b) ·Audx−
∫

Ω

P (u · ∇u) ·Au dx

and

(2.15)
1

2

d

dt
‖A 1

2 b‖2L2(Ω) + ηN‖A
1+β
2 b‖2L2(Ω)

≤
∫

Ω

P (b · ∇u) ·Ab dx−
∫

Ω

P (u · ∇b) ·Ab dx.

Using the Schwarz inequality and the estimate (2.2) (with r = 2, δ = 0, θ = N
8

and ρ = 1
2 + N

8 ), we get∫
Ω

P (u · ∇b) ·Ab dx ≤ ‖P (u · ∇b)‖L2(Ω)‖Ab‖L2(Ω)(2.16)

≤ ‖AN
8 u‖L2(Ω)‖A

1
2+N

8 b‖L2(Ω)‖Ab‖L2(Ω).

Next, from the theory of interpolation (see [25, Lemma 3.27]), we have

‖Ab‖L2(Ω) ≤ c(β)‖b‖
β−1
β+1

L2(Ω)‖A
1+β
2 b‖

2
β+1

L2(Ω),(2.17)

‖A 1
2+N

8 b‖L2(Ω) ≤ c(β)‖b‖
4β−N
4(β+1)

L2(Ω) ‖A
1+β
2 b‖

4+N
4(β+1)

L2(Ω) ,(2.18)

and

‖AN
8 u‖L2(Ω) ≤ c(α)‖u‖

4α+4−N
4(α+1)

L2(Ω) ‖A
1+α
2 u‖

N
4(α+1)

L2(Ω) .(2.19)
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Consequently, collecting the above estimates, thanks to the Young inequality
and (2.8), we obtain

|
∫

Ω

P (u · ∇b) ·Ab dx| ≤ νN
4
‖A

1+α
2 u‖2L2(Ω) +

ηN
3
‖A

1+β
2 b‖2L2(Ω)

+ cα,βνN ,ηN (‖(u0, b0)‖L2(Ω)).

Finally, estimating another components in (2.14) and (2.15) in a similar way,
we get

d

dt

(
‖A 1

2u‖2L2(Ω) + ‖A 1
2 b‖2L2(Ω)

)
+ νN‖A

1+α
2 b‖2L2(Ω) + ηN‖A

1+β
2 u‖2L2(Ω)

≤ c(α, β, νN , ηN , ‖(u0, b0)‖L2(Ω)). �

Remark 2.10. For (2.6) with the fractional exponents α = β = 2+N
4 ,

N = 2, 3, thanks to the estimates (2.17) - (2.19) (with α = β = 2+N
4 ), we

obtain

d

dt

(
‖A 1

2u‖2L2(Ω) + ‖A 1
2 b‖2L2(Ω)

)
+ 2νN‖A

6+N
8 u‖2L2(Ω) + 2ηN‖A

6+N
8 b‖2L2(Ω)

≤ c1(‖(u0, b0)‖L2(Ω))‖A
6+N

8 u‖2L2(Ω) + c2(‖(u0, b0)‖L2(Ω))‖A
6+N

8 b‖2L2(Ω).

Consequently, when the data are small:

(2.20)
1

2
c1(‖(u0, b0)‖L2(Ω)) < νN and

1

2
c2(‖(u0, b0)‖L2(Ω)) < ηN

we get the estimates

‖u‖
L∞

(
0,T ;D

(
A

1
2

)) + ‖u‖
L2

(
0,T ;D

(
A

6+N
8

)) ≤ const,
‖b‖

L∞
(

0,T ;D
(
A

1
2

)) + ‖b‖
L2

(
0,T ;D

(
A

6+N
8

)) ≤ const,
where T > 0 is fixed but arbitrarily large.
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Recall, see [2, pp. 72–73], that to be able to extend globally in time the
local in time solution constructed above, with bounded orbits of bounded sets,
we need to have a subordination condition of the form:

‖F(u(t), b(t))‖L2(Ω)

≤ const(‖(u(t), b(t))‖Y )

(
1 + ‖(u(t), b(t))‖γ

(D(A
N+2ε

4 ))2

)
, t ∈ (0, τu0),

with a certain auxiliary Banach space D(Aα,β
N ) ⊂ Y and a certain γ ∈ [0, 1).

Let Y := (D(A
1
2 ))2. We have

‖F(u, b)‖L2(Ω) ≤ ‖P (b · ∇b)‖L2(Ω) + ‖P (u · ∇u)‖L2(Ω)

+ ‖P (b · ∇u)‖L2(Ω) + ‖P (u · ∇b)‖L2(Ω).

Using the estimate (2.2) with r = 2, δ = 0, θ = 1
2 , ρ = N+ε

4 and the theory of
interpolation (see [25, Lemma 3.27]), we get

‖P (b · ∇u)‖L2(Ω) ≤ c‖A
1
2 b‖L2(Ω)‖A

N+ε
4 u‖L2(Ω)

≤ c‖A 1
2 b‖L2(Ω)‖A

1
2u‖1−γL2(Ω)‖A

N+2ε
4 u‖γL2(Ω)

with γ = N+ε−2
N+2ε−2 < 1, which is a form of a subordination condition. Esti-

mating another components in a similar way, we conclude the last claim as a
theorem:

Theorem 2.11. Let N = 2, 3. When α, β > 1
2 + N

4 and ηN , νN > 0, then
the local solution of (2.6) constructed in Theorem 2.4 exists globally in time.

Theorem 2.12. Let α, β = 1
2 + N

4 and ηN , νN > 0, N = 2, 3. When the
data are small that is the condition (2.20) holds, then the local solution of
(2.6) constructed in Theorem 2.4 exists globally in time.

2.3. Global in time solutions of 3-D MHD for small data

As well know (see [2]) global in time extendibility of the local solution
constructed in the Theorem 2.4 is possible if we have sufficiently well a priori
estimate. We will show such type estimation for the solution of 3-D MHD
equation when the data (u0, b0) are small.

Remark 2.13. Let ν, η > 0. Note that taking ν3 = η3 = 0 or α = β = 1
in system (2.5) we obtain equivalent problems.
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Lemma 2.14. Let ν3 = η3 = 0 and ν, η > 0. If the initial date (u0, b0)
fulfills the smallness restriction (2.22), then for a sufficiently regular solution
of (2.5), the D(A

1
2 )×D(A

1
2 ) norm of the solution (u,b) is bounded uniformly

in time t ≥ 0. That is the following estimate holds:

‖A 1
2u‖2L2(Ω) + ‖A 1

2 b‖2L2(Ω) ≤ ‖A
1
2u0‖2L2(Ω) + ‖A 1

2 b0‖2L2(Ω).

Proof. Multiplying the first equation in (2.5) by Au and the second by
Ab and adding the results, we get

(2.21)
1

2

d

dt
(‖A 1

2u‖2L2(Ω) + ‖A 1
2 b‖2L2(Ω)) + ν‖Au‖2L2(Ω) + η‖Ab‖2L2(Ω)

=

∫
Ω

(P (b · ∇b)− P (u · ∇u)) ·Audx+

∫
Ω

(P (b · ∇u)− P (u · ∇b)) ·Ab dx.

From (2.16), for N = 3, using the interpolation inequality (see [25, Lemma
3.27])

‖A 7
8 b‖L2(Ω) ≤ c‖A

1
2 b‖

1
4

L2(Ω)‖Ab‖
3
4

L2(Ω)

and the Young inequality, we get∫
Ω

P (u · ∇b) ·Ab dx ≤ η

6
‖Ab‖2L2(Ω) + C(η)(‖A 1

2 b‖2L2(Ω) + ‖A 1
2u‖2L2(Ω))

5.

Estimating another components in (2.21) in similar way, we obtain

d

dt

(
‖A 1

2u‖2L2(Ω) + ‖A 1
2 b‖2L2(Ω)

)
+

min{ν, η}
c1

(‖A 1
2 b‖2L2(Ω) + ‖A 1

2u‖2L2(Ω))

≤ c2(ν, η)(‖A 1
2 b‖2L2(Ω) + ‖A 1

2u‖2L2(Ω))
5,

where c1 is the square of the embedding constant (D(A) ⊂ D(A
1
2 )). Denoting

y(t) = ‖A 1
2u(t)‖2L2(Ω) + ‖A 1

2 b(t)‖2L2(Ω) and c3 = min{ν,η}
c1

we rewrite the above
inequality in the following form

d

dt
y(t) + c3y(t) ≤ c2y5(t).

We consider the above differential inequality together with the initial date

y(0) = ‖A 1
2u(0)‖2L2(Ω) + ‖A 1

2 b(0)‖2L2(Ω).
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Finally, when the data are small

(2.22) y(0) ≤
(

min{ν, η}
c1c2

) 1
4

=

(
c3
c2

) 1
4

we obtain the bound

y(t) ≤ y(0)

(
c3

c2y4(0) + (c3 − c2y4(0))e4c3t

) 1
4

≤ y(0). �

Theorem 2.15. Let ν3 = η3 = 0. When the data are small that is the
condition (2.22) holds, the local solution of (2.6) constructed in Theorem 2.4
exists globally in time.

3. 2-D MHD system

Using the Lions-Aubin compactness lemma we will show now that the
solutions of sub-critical problems (2.4) converge as α, β → 1+ to the weak
solution of the critical problem. In this section we denote the solution of
(2.4) as (uαβ , b

α
β). We indicate the dependence of solutions on α, β for clarity

of presentation. Such solutions, for any α, β ∈ (1, 5
4 ], vary continuously in

D(A)×D(A) ⊂ H2(Ω)×H2(Ω). Furthermore, they fulfill the uniform in α, β
estimates in L2(Ω) of Lemma 2.6. To be more precise, there exists a const > 0
(depending on ‖(u0, b0)‖L2(Ω)) for each α, β ∈ (1, 5

4 ], such that

(3.1) ‖uαβ‖L∞(0,T ;L2(Ω)) + ‖bαβ‖L∞(0,T ;L2(Ω)) ≤ const,

where T > 0 is fixed but arbitrarily large. Moreover (see Remark 2.7)

(3.2) ‖uαβ‖L2
(

0,T ;D
(
A

1
2

)) + ‖bαβ‖L2
(

0,T ;D
(
A

1
2

)) ≤ c,
with a positive constant c independent on α, β. This is the main information
allowing us to let α, β → 1+ in equation (2.4).

Applying the operator A−
3
4 to (2.4) we obtain

‖A− 3
4 (uαβ)t‖2L2(Ω)) ≤ c‖A

α− 3
4uαβ‖2L2(Ω) + c‖A− 3

4P (uαβ · ∇uαβ)‖2L2(Ω)(3.3)

+ c‖A− 3
4P (bαβ · ∇bαβ)‖2L2(Ω)
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and

‖A− 3
4 (bαβ)t‖2L2(Ω) ≤ c‖A

β− 3
4 bαβ‖2L2(Ω) + c‖A− 3

4P (uαβ · ∇bαβ)‖2L2(Ω)(3.4)

+ c‖A− 3
4P (bαβ · ∇uαβ)‖2L2(Ω).

Thanks to the Poincaré inequality and estimate (3.2), for α ∈ (1, 5
4 ], we obtain∫ T

0

‖Aα− 3
4uαβ‖2L2(Ω) dt ≤ λ

2α− 5
2

1

∫ T

0

‖A 1
2uαβ‖2L2(Ω) dt ≤ const,(3.5)

where λ1 is the Poincaré constant. Using the estimate (2.3) with δ = 3
4 and

Hölder inequality, due to estimates (3.1) and (3.2), we get

(3.6)
∫ T

0

‖A− 3
4P (uαβ · ∇bαβ)‖2L2(Ω) dt ≤ c

∫ T

0

‖|uαβ | · |bαβ |‖2L 4
3 (Ω)

dt

≤ c
∫ T

0

‖uαβ‖2L2(Ω)‖b
α
β‖2L4(Ω) dt ≤ c‖u

α
β‖L∞(0,T ;L2(Ω))‖bαβ‖L2(0,T ;D(A

1
2 ))
≤const.

Integrating (3.3) and (3.4) over (0, T ) and estimating obtained components
like in (3.5) and (3.6), we have∫ T

0

‖A− 3
4 (uαβ)t‖2L2(Ω) dt+

∫ T

0

‖A− 3
4 (bαβ)t‖2L2(Ω) dt ≤ c(3.7)

with a positive constant c independent on α, β. This implies the uniform in
α, β ∈ (1, 5

4 ] estimate of ((uαβ)t, (b
α
β)t) in L2(0, T ;D(A−

3
4 ) ×D(A−

3
4 )), where

T > 0 is fixed but arbitrarily large. Thanks to (3.2) and (3.7) we know that
the family {

(uαβ , b
α
β); α, β ∈

(
1,

5

4

]}
is bounded in the space

W2 =
{
ψ :ψ ∈ L2(0, T ; D(A

1
2 )×D(A

1
2 )),

ψt ∈ L2
(

0, T ; D(A−
3
4 )×D(A−

3
4 )
)}

.

Consequently, using the Lions-Aubin compactness lemma we claim that this
family is precompact in the space L2(0, T ;D(A

1−ε
2 ) × D(A

1−ε
2 )), where 1−ε

2
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is a number strictly less than 1
2 but arbitrarily close to it. Therefore, any

sequence {(uαnβn , b
αn
βn

)}, αn, βn → 1+ has a subsequence (denoted the same)
convergent in L2(0, T ;D(A

1−ε
2 )×D(A

1−ε
2 )) to some (u, b).

We look at (2.4) as the system in L2(Ω). Multiplying the first equation by
a ’test function’ A−αnφ and the second by A−βnφ, where φ ∈ D(A) ⊂ H2(Ω),
we obtain∫

Ω

(
(uαnβn )t + P (uαnβn · ∇u

αn
βn

)− P (bαnβn · ∇b
αn
βn

)
)
·A−αnφdx

= −ν
∫

Ω

Aαnuαnβn ·A
−αnφdx

and∫
Ω

(
(bαnβn )t + P (uαnβn · ∇b

αn
βn

)− P (bαnβn · ∇u
αn
βn

)
)
·A−βnφdx

= −η
∫

Ω

Aβnbαnβn ·A
−βnφdx.

We will discuss now the convergence of components in the above equalities
one by one. We have

∣∣∣ ∫ T

0

∫
Ω

A−
ε+1
2 P (uαnβn · ∇b

αn
βn

) ·A−βn+ ε+1
2 φ−A−

ε+1
2 P (u · ∇b) ·A

ε−1
2 φdx dt

∣∣∣
≤
∫ T

0

∫
Ω

∣∣∣A− ε+1
2 P (uαnβn · ∇b

αn
βn

) · (A−βn+ ε+1
2 φ−A

ε−1
2 φ)

∣∣∣ dx dt
+

∫ T

0

∫
Ω

∣∣∣A− ε+1
2 P (uαnβn · ∇b

αn
βn

) ·A
ε−1
2 φ−A−

ε+1
2 P (u · ∇b) ·A

ε−1
2 φ
∣∣∣ dx dt.

We estimate the first component on the right hand side. The second compo-
nent is estimated in a similar way. Using the estimate (2.2) with δ = ε+1

2 ,
θ = ρ = 1−ε

2 and the Hölder inequality, we get∫ T

0

∫
Ω

∣∣∣A− ε+1
2 P (uαnβn · ∇b

αn
βn

) · (A−βn+ ε+1
2 φ−A

ε−1
2 φ)

∣∣∣ dx dt
≤
∫ T

0

‖A−
ε+1
2 P (uαnβn · ∇b

αn
βn

)‖L2(Ω)‖A−βn+ ε+1
2 φ−A

ε−1
2 φ‖L2(Ω) dt
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≤ c
∫ T

0

‖A
1−ε
2 uαnβn ‖L2(Ω)‖A

1−ε
2 bαnβn ‖L2(Ω)‖A−βn+ ε+1

2 φ−A
ε−1
2 φ‖L2(Ω) dt

≤ c‖A
1−ε
2 uαnβn ‖L2(0,T ;L2(Ω))‖A

1−ε
2 bαnβn ‖L2(0,T ;L2(Ω))‖A−βn+ ε+1

2 φ−A
ε−1
2 φ‖L2(Ω).

Consequently,∣∣∣ ∫ T

0

∫
Ω

A−
ε+1
2 P (uαnβn · ∇b

αn
βn

) ·A−βn+ ε+1
2 φ−A−

ε+1
2 P (u · ∇b) ·A

ε−1
2 φdx dt

∣∣∣
≤ c‖A−βn+ ε+1

2 φ−A
ε−1
2 φ‖L2(Ω)‖A

1−ε
2 uαnβn ‖L2(0,T ;L2(Ω))‖A

1−ε
2 bαnβn ‖L2(0,T ;L2(Ω))

+ c‖A
ε−1
2 φ‖L2(Ω)

[
‖A

1−ε
2 uαnβn ‖L2(0,T ;L2(Ω))‖A

1−ε
2 (bαnβn − b)‖L2(0,T ;L2(Ω))

+ ‖A
1−ε
2 (uαnβn − u)‖L2(0,T ;L2(Ω))‖A

1−ε
2 b‖L2(0,T ;L2(Ω))

]
.

By Lemma 2.2, for arbitrary A
ε−1
2 φ ∈ L2(Ω), we know that ‖A−βn+1+ ε−1

2 φ−
A
ε−1
2 φ‖L2(Ω) tends to 0 as βn → 1+. Moreover, thanks to precompactness of

the family
{

(uαβ , b
α
β); α, β ∈

(
1, 5

4

]}
in the space L2(0, T ; (D(A

1−ε
2 ))2), we get

the convergences

(∫ T

0

‖A
1−ε
2 (bαnβn−b)‖

2
L2(Ω)dt

) 1
2→ 0 and

(∫ T

0

‖A
1−ε
2 (uαnβn−u)‖2L2(Ω)dt

) 1
2→ 0

as αn, βn → 1+ over a subsequence (denoted the same). Finally, the estimate
(3.2) and the above convergences implies∫ T

0

∫
Ω

P (uαnβn · ∇b
αn
βn

) ·A−βnφdx dt→
∫ T

0

∫
Ω

A−
ε+1
2 P (u · ∇b) ·A

ε−1
2 φdx dt

as αn, βn → 1+ over a subsequence. Moreover

∫ T

0

∫
Ω

∣∣∣A 1−ε
2 (uαnβn − u) ·A

ε−1
2 φ
∣∣∣ dx dt

≤
√
T‖uαnβn − u‖L2(0,T ;D(A

1−ε
2 ))
‖A

ε−1
2 φ‖L2(Ω) → 0.

In the term containing the time derivative (uαnβn )t we can pass to the limit in
the sense of ’scalar distributions’. Indeed, by [27, Lemma 1.1, Chapt.III], for
all φ ∈ H2(Ω)

< (uαnβn )t, φ >=
d

dt
< uαnβn , φ >→

d

dt
< u, φ >,
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the derivative d
dt and the convergence are in D′(0, T ) (space of the ’scalar

distributions’). Consequently,∫
Ω

(uαnβn )t ·A−αnφdx =
d

dt
< uαnβn , A

−αnφ >L2(Ω)→
d

dt
< u,A−1φ >L2(Ω)

in D′(0, T ) as αn, βn ↘ 1+.
By collecting all the limits together, we find the form of the limiting critical

system:

d

dt
< u,A−1φ > =

∫
Ω

(A−
ε+1
2 P (b · ∇b)−A−

ε+1
2 P (u · ∇u)) ·A

ε−1
2 φdx(3.8)

− ν

∫
Ω

A
1−ε
2 u ·A

ε−1
2 φdx,

d

dt
< b,A−1φ > =

∫
Ω

(A−
ε+1
2 P (b · ∇u)−A−

ε+1
2 P (u · ∇b)) ·A

ε−1
2 φdx(3.9)

− η

∫
Ω

A
1−ε
2 b ·A

ε−1
2 φdx.

Remark 3.1. Note that the uniform in α, β estimate (3.1) implies that
any sequence {(uαnβn , b

αn
βn

)} is bounded in L2(Ω). Consequently, [1, Theorem
3.18] implies that there exists a subsequence (denoted the same) and some
(ū, b̄) ∈ L2(Ω) such that (uαnβn , b

αn
βn

)→ (ū, b̄) weakly in L2(Ω) as αn, βn → 1+.
In particular∫

Ω

uαnβn · φdx→
∫

Ω

ū · φdx and
∫

Ω

bαnβn · φdx→
∫

Ω

b̄ · φdx.

Moreover, we have (see [1, Proposition 3.5])

‖(ū, b̄)‖L2(Ω) ≤ lim inf ‖(uαnβn , b
αn
βn

)‖L2(Ω).

4. 3-D MHD system

We will describe now shortly the process of passing to the limit, as ν3, η3 →
0+ in equations (2.5) where the parameters α, β > 5

4 are fixed (but close to 5
4).

The idea of passing to the limit follows the considerations in [21]. For clarity
of presentation we denote solution of (2.5) by (uν3η3 , b

ν3
η3). Note that without
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loss of generality we can assume that ν3, η3 ∈ (0, 1]. Applying the operator
A−α+ 1

2 to the first equation in (2.5) and A−β+ 1
2 to the second, we obtain

(4.1) ‖A−α+ 1
2 (uν3η3)t‖2L2(Ω)) ≤ c

(
‖A−α+ 3

2uν3η3‖
2
L2(Ω) + ν2

3‖A
1
2uν3η3‖

2
L2(Ω)

)
+ c

(
‖A−α+ 1

2P (uν3η3 · ∇u
ν3
η3)‖2L2(Ω) + ‖A−α+ 1

2P (bν3η3 · ∇b
ν3
η3)‖2L2(Ω)

)
and

(4.2) ‖A−β+ 1
2 (bν3η3)t‖2L2(Ω) ≤ c

(
‖A−β+ 3

2 bν3η3‖
2
L2(Ω) + η2

3‖A
1
2 bν3η3‖

2
L2(Ω)

)
+ c

(
‖A−β+ 1

2P (uν3η3 · ∇b
ν3
η3)‖2L2(Ω) + ‖A−β+ 1

2P (bν3η3 · ∇u
ν3
η3)‖2L2(Ω)

)
.

Since −β + 3
2 ≤

1
2 and η3 ∈ (0, 1], due to estimate (2.11), we have

(4.3)
∫ T

0

(‖A−β+ 3
2 bν3η3‖

2
L2(Ω) + η2

3‖A
1
2 bν3η3‖

2
L2(Ω)) dt

≤ c
∫ T

0

‖A 1
2 bν3η3‖

2
L2(Ω) dt ≤ c1.

Using the estimate (2.3) with δ = β − 1
2 , Hölder inequality and the Sobolev

embeddings D(A
1
2 ) ⊂ H1(Ω) ⊂ L

3
2(β−1) (Ω) for β > 5

4 , due to estimates (2.8)
and (2.11), we get

(4.4)
∫ T

0

‖A−β+ 1
2P (uν3η3 · ∇b

ν3
η3)‖2L2(Ω) dt ≤ c

∫ T

0

‖|uν3η3 | · |b
ν3
η3 |‖

2

L
6

4β−1 (Ω)
dt

≤ c‖uν3η3‖
2
L∞(0,T ;L2(Ω))‖b

ν3
η3‖

2

L2(0,T ;D(A
1
2 ))
≤ c2.

Integrating (4.1) and (4.2) over (0,T) and estimating obtained components
like in (4.3) and (4.4), we have∫ T

0

‖A−α+ 1
2 (uν3η3)t‖2L2(Ω) dt+

∫ T

0

‖A−β+ 1
2 (bν3η3)t‖2L2(Ω) dt ≤ c

with a positive constant c independent on η3, ν3 ∈ (0, 1] (since the con-
stants c1 and c2 are independent on η3, ν3 ∈ (0, 1]). This implies the uni-
form in η3, ν3 ∈ (0, 1] estimate of (uν3η3)t in L2(0, T ;D(A−α+ 1

2 )) and (bν3η3)t in
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L2(0, T ;D(A−β+ 1
2 )), where T > 0 is fixed but arbitrarily large. Consequently,

due to (2.11), the family
{

(uν3η3 , b
ν3
η3); ν3, η3 ∈ (0, 1]

}
is bounded in the space

W3 =
{
ψ :ψ ∈ L2(0, T ; D(A

1
2 )×D(A

1
2 ))

ψt ∈ L2
(

0, T ; D(A−α+ 1
2 ))×D(A−β+ 1

2 )
)}

.

Thus, thanks to the Lions-Aubin compactness lemma we conclude that any
sequence {(uνnηn , b

νn
ηn)}, where νn, ηn → 0+, has a subsequence (denoted the

same) convergent in L2(0, T ;D(A
1−ε
2 )×D(A

1−ε
2 )) to some (U,B), where 1−ε

2

is a number strictly less than 1
2 but arbitrarily close to it. This information

allows us to pass to the limit in the nonlinear term. Multiplying (2.5) by a
’test function’ ψ ∈ D(A

max{α,β}
2 ), we obtain∫

Ω

(uνnηn)t · ψ dx = −ν
∫

Ω

A
1−ε
2 uνnηn ·A

1+ε
2 ψ dx− νn

∫
Ω

A
α
2 uνnηn ·A

α
2 ψ dx(4.5)

+

∫
Ω

(
P (bνnηn · ∇b

νn
ηn)− P (uνnηn · ∇u

νn
ηn)
)
· ψ dx

and ∫
Ω

(bνnηn)t · ψ dx =

∫
Ω

(
P (bνnηn · ∇u

νn
ηn)− P (uνnηn · ∇b

νn
ηn)
)
· ψ dx(4.6)

− η
∫

Ω

A
1−ε
2 bνnηn ·A

1+ε
2 ψ dx− ηn

∫
Ω

A
β
2 bνnηn ·A

β
2 ψ dx.

We will discuss now the convergence of components in the above equalities
one by one.

Using Hölder inequality, due to (2.13), we obtain that the right hand side
of below inequality

(4.7) νn

∫ T

0

∫
Ω

∣∣Aα
2 uνnηn ·A

α
2 ψ
∣∣ dx dt

≤ νn

(∫ T

0

‖Aα
2 uνnηn‖

2
L2(Ω) dt

) 1
2
(∫ T

0

‖Aα
2 ψ‖2L2(Ω) dt

) 1
2

≤
√
Tνn‖A

α
2 uνnηn‖L2(0,T ;L2(Ω))‖A

α
2 ψ‖L2(Ω) ≤ c

√
Tνn
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vanishes when νn → 0+. Since any sequence {uνnηn} has a subsequence (denoted
the same) convergent in L2(0, T ;D(A

1−ε
2 )) we have

∫ T

0

∫
Ω

∣∣∣A 1−ε
2 (uνnηn − U) ·A

1+ε
2 ψ

∣∣∣ dx dt
≤
√
T‖uνnηn − U‖L2(0,T ;D(A

1−ε
2 ))
‖A

1+ε
2 ψ‖L2(Ω) → 0.

For the nonlinear component, using the estimate (2.2) with δ = 1+ε
2 , θ = ρ =

1−ε
2 and the Hölder inequality, we get∫ T

0

∫
Ω

|A−
1+ε
2 P [(uνnηn · ∇b

νn
ηn)− (U · ∇B)] ·A

1+ε
2 ψ| dx dt

≤ ‖A
1+ε
2 ψ‖L2(Ω)‖uνnηn‖L2(0,T ;D(A

1−ε
2 ))
‖bνnηn −B‖L2(0,T ;D(A

1−ε
2 ))

+ ‖A
1+ε
2 ψ‖L2(Ω)‖uνnηn − U‖L2(0,T ;D(A

1−ε
2 ))
‖B‖

L2(0,T ;D(A
1−ε
2 ))
→ 0.

Thanks to [27, Lemma 1.1, Chapt.III] and the convergence uνnηn → U in
L2(0, T ;D(A

1−ε
2 )), we have

(4.8) < (uνnηn)t, ψ >=
d

dt
< uνnηn , ψ >→

d

dt
< U,ψ >,

in the sense of ’scalar distributions’ (the derivative d
dt is in the sense of distri-

butions). Consequently, passing to the limit in another components in (4.5)
and (4.6) like in (4.7)–(4.8), we obtain

d

dt
< U,ψ >L2(Ω) = −ν < A

1−ε
2 U,A

1+ε
2 ψ >L2(Ω)(4.9)

+ < A−
1+ε
2 F1(U,B), A

1+ε
2 ψ >L2(Ω)

and

d

dt
< B,ψ >L2(Ω) = −η < A

1−ε
2 B,A

1+ε
2 ψ >L2(Ω)(4.10)

+ < A−
1+ε
2 F2(U,B), A

1+ε
2 ψ >L2(Ω) .
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5. Properties of the weak solutions to the MHD system

We will start from collecting the properties inherited by the solution (u, b)
of the (2.4) ((U,B) of the (2.5)) in the process of passing to the limit. We
have:

u, b, U,B ∈ L2(0, T ;D(A
1
2−ε)) ∩ L∞(0, T ;L2(Ω)),

ut, bt, Ut, Bt ∈ L2(0, T ;D(A−
1
2 )).

We will show now that the local solutions of the MHD system varying in space
D(A

1
2 )×D(A

1
2 ), are unique.

Lemma 5.1. The solution of the MHD equations (1.1) satisfying:

u, b ∈ L∞([0, τ);D(A
1
2 )) with ut, bt ∈ L2(0, τ ;D(A−

1
2 ))

or

u, b ∈ L2(0, τ ;D(A
1
2 ))∩L

4
4−N (0, τ ;D(A

1
2 )) with ut, bt ∈ L2(0, τ ;D(A−

1
2 ))

is unique.

Proof. Let (Ū , B̄) = (u− v, b− w), where (u, b) and (v, w) are the local
in time solutions of the problem (1.1) (in the above class) corresponding to
the same initial condition (u0, b0). Then (Ū , B̄) satisfies

Ūt − ν∆Ū + u ·∇Ū + Ū ·∇v = −∇PŪ + b ·∇B̄ + B̄ ·∇w, x ∈ Ω ⊂ RN, t > 0,

Bt − η∆B̄ + u ·∇B̄ + Ū ·∇w = b ·∇Ū +B ·∇v, x ∈ Ω ⊂ RN , t > 0,

(Ū , B̄) = (0, 0) on ∂Ω,

(Ū , B̄)(0, x) = (0, 0).

Multiplying the first equation in L2(Ω) by Ū , the second by B̄, adding the
results, thanks to integration by parts and Remark 2.5, we obtain

1

2

d

dt
(‖Ū‖2L2(Ω) + ‖B‖2L2(Ω)) + ν‖∇Ū‖2L2(Ω) + η‖∇B‖2L2(Ω)

=

∫
Ω

(B̄ · ∇w − Ū · ∇v) · Ū dx+

∫
Ω

(B̄ · ∇v − Ū · ∇w) · B̄ dx.
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From the Hölder and the Cauchy inequality, thanks to the Nirenberg–Gagliardo
inequality

‖Ū‖L4(Ω) ≤ c‖Ū‖
4−N

4

L2(Ω)‖∇Ū‖
N
4

L2(Ω),

the first component in the nonlinear term can be transformed as follows∫
Ω

(B̄ · ∇w − Ū · ∇v) · Ū dx

≤
(
‖B̄‖L4(Ω)‖∇w‖L2(Ω) + ‖Ū‖L4(Ω)‖∇v‖L2(Ω)

)
‖Ū‖L4(Ω)

≤ ν

4
‖∇Ū‖2L2(Ω) +

η

4
‖∇B̄‖2L2(Ω)

+ c(‖∇v‖
4

4−N
L2(Ω) + ‖∇w‖

4
4−N
L2(Ω))(‖Ū‖

2
L2(Ω) + ‖B̄‖2L2(Ω)).

Estimating the last component in a similar way, we get a differential inequality
for the L2(Ω) norm

d

dt
(‖Ū(t)‖2L2(Ω) + ‖B̄(t)‖2L2(Ω))

≤ c(‖∇v(t)‖
4

4−N
L2(Ω) + ‖∇w(t)‖

4
4−N
L2(Ω))(‖Ū(t)‖2L2(Ω) + ‖B̄(t)‖2L2(Ω)),

(Ū , B̄)(0, x) = (0, 0).

Since the mapping t 7→ ‖u‖2L2(Ω) + ‖b‖2L2(Ω) is absolutely continuous (see [9,
Theorem 3, p. 287]), thanks to the Gronwall inequality (see [9, p. 624]), we
obtain ‖Ū(t)‖2L2(Ω) + ‖B̄(t)‖2L2(Ω) = 0 for all t ∈ [0, τ ]. �
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