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GAUSS CONGRUENCES IN ALGEBRAIC NUMBER FIELDS

Pawet, GrADKI™Y, MATEUSZ PULIKOWSKI

Abstract. In this miniature note we generalize the classical Gauss congru-
ences for integers to rings of integers in algebraic number fields.

Recall that the classical Gauss congruence for integers states that, for
a € Z and n € N| the following identity holds true:

Zu (%) a® =0 (modn),

d|n

where pi: N — {—1,0,1} is the Mobius function defined by

1, ifn=1,
u(n) =< (=1)™, if nis a product of m different primes,
0, otherwise.

The abovestated identity generalizes in a surprisingly easy and natural way
to rings of integers in algebraic function fields.

Let K be an algebraic number field and denote by Ok its ring of integers.
Denote by Z(Of) the family of all ideals of O and by Spec Ok its prime

Received: 22.09.2021. Accepted: 08.01.2022. Published online: 17.01.2022.
(2020) Mathematics Subject Classification: 12F05, 12J15.
Key words and phrases: Gauss congruences, algebraic number fields.

(©2022 The Author(s).
This is an Open Access article distributed under the terms of the Creative Commons Attribution License
CC BY (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0000-0001-5894-650X
http://creativecommons.org/licenses/by/4.0/

54 Pawel Gladki, Mateusz Pulikowski

spectrum. Further, denote by N: Z(Ok) — N the absolute norm function
defined by the size of the (necessarily finite) quotient ring:

N(n) = |Ok /n|.

Here and later on, for a,b € Ok and n € Z(Ok), by a = b(modn) we shall
understand a — b € n.

As Ok is a Dedeking domain, every nonzero ideal n of Ok can be uniquely
represented as a product of prime ideals of Ok, so that one can consider the
following generalization of the M&bius fuction, which is due to Shapiro (|I]):

1, ifn=0,
pn) =< (=1)™, if nis a product of m different prime ideals,
0, otherwise.

With this definition of the function p: Z(Og) — {—1,0,1}, we shall prove
the following version of the Gauss identity for number fields:

THEOREM 1. Let a € Ok, n € Z(Ok). Then

Z,u (g) a¥® =0 (modn).

dn

For the proof we will use a version of Euler’s Theorem for number fields. We
shall state it here together with a proof for the sake of the completeness of
our exposition, however there is no claim to its originality whatsoever.

PROPOSITION 2 (Euler’s Theorem). Let a € Ok, p € Spec Ok and k € N.
Then

aN e = gNE (mod p*).

PROOF. One needs to evaluate the number of units in the ring O /p*. The
canonical map Ok /p¥ — Ok /p given by x +p*¥ s = +p is a well-defined ring
homomorphism whose kernel is equal to p/p*. As Ok is a Dedekind domain,
the prime ideal p is also maximal and hence O /p is a field, so that the ideal
p/p* is maximal. Since \/;:Tk = /P = p is a maximal ideal, O /p¥ is local,
and thus p/p* is equal precisely to the set of non-units of O /p*. Considering
the chain of additive Abelian groups p* C p*~! C ...p? C p and using the
isomorphism theorem combined with the Lagrange theorem, we get

p/p" = (p:p?) (2 p®) - (" ).
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Each quotient group p¢/p**t, i € {1,...,k — 1}, has a structure of a O /p-
vector space, and its dimension is equal to 1. Indeed, let € p* \ p?*! and
a=(z)+p*tt Then p* D a 2 pitl, and, consequently, a = p?, for otherwise

i+1 . . .
ppi . Hence x + p*! is a basis of the

% would be a proper divisor of p =
Ok /p-vector space p*/pt+t.

Therefore the number of units of the ring O /p* is equal to:

(O /p"| = [p/p*] = N(p") — O /p|* 7" = N(p") = N(p)"~".
As the absolute norm is multiplicative, N(p*¥) = N(p)¥ and hence

(a+pk)N(p)k_N(p)k_l = aN(p)k_N(p)k_l _|_pk = 1 +pk,

or, equivalently, a¥V®" = ¢V ®" " (mod pk). O
We can now proceed to the proof of Theorem [T}

PROOF. Fix a € Og and n € Z(Ok). Let n = p¥ - ... pk= be the unique
factorization of n into a product of prime ideals. By the definition of the
function p, the set of divisors of n whose value of y is nonzero is equal to:

{pj1~...~pjl|1<j1<...<jl<m,l€{0,...,m}},

where by product of 0 ideals we understand the zero ideal 0. Thus

KLk
S h (g) RCIS S (_UlaN(p&h““:n >

dn =0 1<j1<...<ji<m

NP Npm)Fm

m
- Z Z (=1)la YT NEs)

_ Z a N(py )Ny

m—1 N k2. N(pm)km
. N(pl)kl (p2) (pm)
(1)

N(le)-»---N(vjl)

~(-D'a

_1N(p)F2 L N(pm)Fm
N(pp)F1-1 N2 (Pm) }
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By Proposition [2 a¥®D™ = gN®D)™ ™ (mod p¥1). Consequently,

N(po)k2 . N(pm)hm k1 —1 NP2 N(pm)Pm
N(pl)kl N ). N A N(pl) L N ). N .
(_1)la (ph) (sz) = (—l)la (pn) (pjl) (modp’fl),

for2<jy <...<ji<m,1€{0,...,m—1}, and hence

Zu ( ) a¥® =0 (mod pt).

n
0
on
Repeating the argument for the ideals po, ..., p,, we get

> u(3)a¥® =0 (modp),

n
0
oln
for i € {1,...,m}, so that

Z,u (g) a¥® =0 (modn). O

on

REMARK 3. We note that taking K = Q with Og = Z Theorem [I] yields
the classical version of the Gauss congruence.
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