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A NOTE ON THE ASYMPTOTIC BEHAVIOR OF THE
DISTRIBUTION FUNCTION OF A GENERAL SEQUENCE

Reza Farhadian , Rafael Jakimczuk

Abstract. The aim of this note is to study the distribution function of certain
sequences of positive integers, including, for example, Bell numbers, factori-
als and primorials. In fact, we establish some general asymptotic formulas in
this regard. We also prove some limits that connect these sequences with the
number e. Furthermore, we present a generalization of the primorial.

1. Introduction

In combinatorics, the Bell number Bn counts the number of different ways
to partition a set with n elements, where n ∈ N∪{0}. Bell numbers have been
studied by mathematicians since the 19th century, and their roots go back
to medieval Japan, but they are named after Eric Temple Bell (1883–1960),
Scottish mathematician, who wrote some comprehensive papers about them
in the 1930s (see [4] and [3]). The Bell numbers satisfy the following recurrence
relation [2, page 216]:

B0 = 1, Bn =
n−1∑︂
i=0

(︃
n− 1

i

)︃
Bi, ∀n ∈ N.
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The first few Bell numbers are B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15,
B5 = 52, B6 = 203, B7 = 877, B8 = 4140, B9 = 21147, B10 = 115975 (see
sequence A000110 in the OEIS).

As n grows, it is gradually becoming harder to calculate the Bell numbers.
Hence, knowing how Bell numbers are distributed among the integers when
n→∞ helps us to be aware of the growth rate of these numbers. Let ω(x) be
the number of Bn not exceeding x, that is ω(x) is the distribution or counting
function of Bell numbers. Clearly, studying the function ω(x) as x→∞ helps
us to understand how Bell numbers are distributed among integers. A first
approach is given by Jakimczuk in [9]. He proved that

(1.1) ω(x) ∼ lnx

ln lnx
(x→∞),

i.e.,

lim
x→∞

ω(x)
ln x

ln ln x

= 1.

In fact, Jakimczuk more generally showed that if a strictly increasing se-
quence of integers such as Fn satisfy the asymptotic formula

logFn ∼ cn log n (c > 0),

then the number of Fn that do not exceed n is asymptotically equivalent to
logn

c log logn as n→∞. Thus, since logBn ∼ n log n, then equation (1.1) holds.
In this paper, we establish some new generalizations and we also show that

the relation (1.1) is true for some other known sequences as the sequence of
factorials and the sequence of primorials (see sequences A000142 and A002110
in the OEIS). We also study the asymptotic behavior of the sum of the dis-
tribution functions of these sequences. Furthermore, a generalization of the
primorial will be established.

2. Main results

In this section we aim to present our main results. First, we shall prove
a general theorem on the distribution function of certain sequences of fast
increase.

https://oeis.org/A000110
https://oeis.org/A000142
https://oeis.org/A002110
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Theorem 2.1. Let An be a strictly increasing sequence of positive integers
such that

(2.1) logAn ∼ cnk log n, c > 0, k ∈ N.

If ϕ(x) is the distribution function of the sequence An (i.e., ϕ(x) is the
number of An not exceeding x), then the following asymptotic formula holds:

(2.2) ϕ(x) ∼
(︃
k

c

log x

log log x

)︃ 1
k

.

Proof. By (2.1), we have

(2.3) log logAn ∼ k log n.

Equations (2.1) and (2.3) give

(2.4)
(︃
k

c

logAn

log logAn

)︃ 1
k

∼ n = ϕ(An).

Note that by equations (2.1) and (2.3), we have

(2.5) logAn+1 ∼ logAn, log logAn+1 ∼ log logAn.

Now, suppose that x ∈ [An, An+1). Then equations (2.4) and (2.5) give

1← ϕ(An)(︂
k
c

logAn+1

log logAn+1

)︂ 1
k

≤ ϕ(x)(︂
k
c

log x
log log x

)︂ 1
k

≤ ϕ(An)(︂
k
c

logAn

log logAn

)︂ 1
k

→ 1.

Equation (2.2) is proved. Note that the function
(︂

k
c

log x
log log x

)︂ 1
k

(with c > 0,
k ∈ N) is strictly increasing from a certain value of x. On the other hand,
note that if x ∈ [An, An+1), then ϕ(x) = ϕ(An). The theorem is proved. �

There are many sequences of positive integers that satisfy Theorem 2.1.
The more simple are An = n(nk), where k ∈ N. In particular, if k = 1 we
obtain An = nn. Another example is the sequence of Bell numbers which
holds under Theorem 2.1 with c = 1 and k = 1 (see [9]). In the following
theorem we prove that two other well-known sequences of interest in number
theory satisfy Theorem 2.1.
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Theorem 2.2. Let us consider the sequences An = n! (sequence of factori-
als), and An = Pn = p1p2 · · · pn, where pn is the nth prime number (sequence
of primorials). Then, the distribution functions ϕ(x) of these sequences satisfy

(2.6) ϕ(x) ∼ log x

log log x
.

Proof. The Stirling’s formula n! ∼ (ne )
n
√
2πn (see [1]) has the weak

consequence

(2.7) log n! =

n∑︂
i=1

log i = n log n− n+ o(n).

Therefore, by Theorem 2.1 the distribution function of the sequence of
factorials An = n! satisfies equation (2.6).

Now, we shall consider the sequence Pn of primorials. It is well-known that
(see [7])

(2.8) logPn =

n∑︂
i=1

log pi = n log n+ n log log n− n+ o(n).

Therefore by Theorem 2.1 the distribution function of the sequence of
primorials An = Pn satisfies equation (2.6). The theorem is proved. �

Note that the function in equation (2.2) and consequently its particular
case in equation (2.6) are functions of slow increase (for more details about the
functions of slow increase, we refer the reader to [8]). Based on this property
we prove the following theorem.

Theorem 2.3. Suppose that the distribution function ϕ(x) of a sequence
satisfies equation (2.2) or in particular equation (2.6). Then the following
asymptotic formula holds:

(2.9)
n∑︂

i=1

ϕ(i) ∼ n

(︃
k

c

log n

log log n

)︃ 1
k

.

In particular, if c = k = 1, we have

(2.10)
n∑︂

i=1

ϕ(i) ∼ n log n

log log n
.
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Proof. First, let us recall the well-known proposition (see [10, page 332])
that states for two series of positive terms

∑︁∞
i=1 ai and

∑︁∞
i=1 bi, if

∑︁∞
i=1 bi

diverges and ai ∼ bi, then
∑︁n

i=1 ai ∼
∑︁n

i=1 bi. Now, using this fact and by use
of (2.2), we have

(2.11)
n∑︂

i=1

ϕ(i) ∼
n∑︂

i=h

(︃
k

c

log i

log log i

)︃ 1
k

.

Since
(︂

k
c

log x
log log x

)︂ 1
k

(with c > 0 and k ∈ N) is strictly increasing and
positive in the interval [h,∞) (with h > e ≈ 2.71828 . . .), we find that

n∑︂
i=h

(︃
k

c

log i

log log i

)︃ 1
k

=

∫︂ n

h

(︃
k

c

log x

log log x

)︃ 1
k

dx(2.12)

+O

(︃(︃
k

c

log n

log log n

)︃ 1
k
)︃
,

and since
(︂

k
c

log x
log log x

)︂ 1
k

is a function of slow increase, therefore by [8, Theo-
rem 7] we have

∫︂ x

h

(︃
k

c

log t

log log t

)︃ 1
k

dt ∼ x

(︃
k

c

log x

log log x

)︃ 1
k

and consequently

(2.13)
n∑︂

i=h

(︃
k

c

log i

log log i

)︃ 1
k

∼ n

(︃
k

c

log n

log log n

)︃ 1
k

.

Hence, (2.13) and (2.11) give (2.9). The theorem is proved. �

Remark 2.4. Equation (2.10) holds, for example, for the sequence of Bell
numbers, factorials and primorials (see Theorem 2.2).

According to the proof of Theorem 2.3 (case k = c = 1), since ϕ(x) ∼
log x

log log x , therefore
∑︁n

i=1 ϕ(i) ∼
∑︁n

i=h
log i

log log i . Hence, studying the asymptotic
behavior of

∑︁n
i=h

ln i
ln ln i will be useful for studying the asymptotic behavior of∑︁n

i=1 ϕ(i). In the next theorem we obtain an asymptotic expansion for the
sum

∑︁n
i=h

log i
log log i .
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Theorem 2.5. For each positive integer N , we have

(2.14)
n∑︂

i=h

log i

log log i
=

n log n

log log n
− n

log log n− 1

(log log n)2

− n

N∑︂
k=1

Tk(log log n)

(log n)k(log log n)k+2
+O

(︃
n

(log n)N+1(log log n)2

)︃
,

where Tk(x) (k ≥ 1) is a polynomial of degree k and leading coefficient (k−1)!.
These polynomials can be obtained by the recurrence formula

Tm+1(x) =

{︄
x− 2, if m = 0;

Tm(x)(mx+ (m+ 2))− xT ′
m(x), if m ≥ 1.

Thus, T1 = x− 2, T2(x) = x2 − 6, T3(x) = 2x3 + 2x2 − 12x− 24, T4(x) =
6x4 + 10x3 − 30x2 − 120x− 120, etc.

Proof. By (2.12) (with k = c = 1), we have

(2.15)
n∑︂

i=h

log i

log log i
=

∫︂ n

h

log x

log log x
dx+O

(︃
log n

log log n

)︃
.

By integration by parts twice, we obtain

(2.16)
∫︂

log x

log log x
dx =

x log x

log log x
− x

log log x− 1

(log log x)2
−
∫︂

T1(log log x)

log x(log log x)3
dx.

If m ≥ 1, then by integration by parts we obtain∫︂
Tm(log log x)

(log x)m(log log x)m+2
dx =

xTm(log log x)

(log x)m(log log x)m+2
(2.17)

+

∫︂
Tm+1(log log x)

(log x)m+1(log log x)m+3
dx.

By successive application of (2.17) into (2.16) and by use of (2.15) we
obtain (2.14), since∫︂ n

h

TN+1(log log x)

(log x)N+1(log log x)N+3
dx = O

(︃
n

(log n)N+1(log log n)2

)︃
.

Note that any function of the form f(x) = (log x)s(log log x)m, where s
and m are positive integers, is of slow increase, and by [8, Equation (15)], for
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any slow increasing function f(x) we have
∫︁ x

a
1

f(t) dt ∼ x
f(x) . The theorem is

proved. �

Next, we prove some limits that connect the sequences of factorials, pri-
morials, and Bell numbers to the number e(≈ 2.71828 . . .).

Theorem 2.6. Let pn denote the nth prime number and π(.) denote the
distribution function of prime numbers. If n!, Pn, and Bn are the nth factorial,
nth primorial, and nth Bell number, respectively, then the following limits
hold:

lim
n→∞

(
∏︁n

i=1 i!)
2
n2

n
=

1√
e3

,(2.18)

lim
n→∞

(
∏︁n

i=1 Pi)
2
n2

n log n
=

1√
e3

,(2.19)

lim
n→∞

(
∏︁n

i=1 Pi)
2
n2

pn
=

1√
e3

,(2.20)

lim
n→∞

(
∏︁n

i=1 Bi)
2
n2

n
logn

=
1√
e3

,(2.21)

lim
n→∞

(
∏︁n

i=1 Bi)
2
n2

π(n)
=

1√
e3

.(2.22)

Proof. Equation (2.22) is an immediate consequence of equation (2.21)
and the well-known prime number theorem π(n) ∼ n

logn . Equation (2.20) is an
immediate consequence of equation (2.19) and the well-known prime number
theorem pn ∼ n log n. We shall prove equation (2.21) by use of the following
well-known equation (see [5])

(2.23) logBn = n log n− n log log n− n+ o(n).

The proofs of equations (2.18) and (2.19) are the same by use of equations
(2.7) and (2.8). Using (2.23) we have

log

(︄
n∏︂

i=1

Bi

)︄
=

n∑︂
i=1

logBi(2.24)

=

n∑︂
i=1

i log i−
n∑︂

i=1

i log log i−
n∑︂

i=1

i+

n∑︂
i=1

o(i).
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Since the function x log x is strictly increasing and positive in the interval
[1,∞), we find that

(2.25)
n∑︂

i=1

i log i =

∫︂ n

1

x log x dx+O(n log n) =
n2

2
log n− n2

4
+ o(n2).

A similar argument shows that

n∑︂
i=1

i log log i =

∫︂ n

1

x log log x dx+O(n log log n)(2.26)

=
n2

2
log log n+ o(n2).

On the other hand, we have (see, for example, [6, Equation (2.7)])

(2.27)
n∑︂

i=1

i =
n2

2
+ o(n2)

and we have also

(2.28)
n∑︂

i=1

o(i) = o

(︄
n∑︂

i=1

i

)︄
= o(n2).

Hence, (2.24)–(2.28) give

log

(︄
(
∏︁n

i=1 Bi)
2
n2

n
logn

)︄

=
2

n2

(︃ n∑︂
i=1

i log i−
n∑︂

i=1

i log log i−
n∑︂

i=1

i+

n∑︂
i=1

o(i)

)︃
− log(

n

log n
)

=
2

n2

(︃
n2 log n

2
− n2

4
− n2 log log n

2
− n2

2
+ o(n2)

)︃
− log(

n

log n
)

= −3

2
+ o(1),

which implies (2.21). The theorem is proved. �
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We know that the nth primorial number is defined by Pn = p1p2 · · · pn,
where pn denotes the nth prime number. On the other hand, by the well-
known prime number theorem we have pn ∼ n log n, and we also know that
log n is of slow increase (see [8]). Here, we present a generalization of the
primorial and prove that this generalization satisfies equation (2.2).

Theorem 2.7 (Generalization of the primorial). Let qn is a strictly in-
creasing sequence of positive integers such that

(2.29) qn ∼ nsf(n) (s ≥ 1),

where f(x) is a function of slow increase.
Now, if Qn = q1q2 · · · qn, and ϕ(x) is the distribution function of the se-

quence Qn, then

(2.30) ϕ(x) ∼ 1

s

log x

log log x
.

Proof. Following [8, Theorem 24], we have

(2.31) logQn = log

(︄
n∏︂

i=1

qi

)︄
=

n∑︂
i=1

log qi = sn log n+n log f(n)− sn+ o(n).

Therefore, equation (2.30) is obtained by (2.31) and (2.2) (with k = 1 and
c = s). The theorem is proved. �

Thus, the known primorial is a special case of Theorem 2.7 when s = 1
and f(n) = log n.

Here, we provide generalizations of equations (2.19) and (2.20) for the
sequence defined in Theorem 2.7.

Theorem 2.8. Let Qn be the same sequence defined in Theorem 2.7. Then
the following limits hold:

lim
n→∞

(
∏︁n

i=1 Qi)
2
n2

nsf(n)
=

1√
e3s

,(2.32)

lim
n→∞

(
∏︁n

i=1 Qi)
2
n2

qn
=

1√
e3s

.(2.33)
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Proof. Equation (2.33) is an immediate consequence of equations (2.32)
and (2.29). Therefore, we shall prove equation (2.32). We have (see equation
(2.31))

log

(︄
n∏︂

i=1

Qi

)︄
=

n∑︂
i=1

logQi(2.34)

= s

n∑︂
i=1

i log i+

n∑︂
i=1

i log f(i)− s

n∑︂
i=1

i+

n∑︂
i=1

o(i).

We have also (see (2.25))

(2.35)
n∑︂

i=1

i log i =

∫︂ n

1

x log x dx+O(n log n) =
n2

2
log n− n2

4
+ o(n2).

Since f(x) is of slow increase (by Theorem 2.7), hence the function xf(x)
is increasing and therefore we have (integration by parts)

n∑︂
i=1

i log f(i) =

∫︂ n

1

x log f(x) dx+O(n log f(n))(2.36)

=
n2

2
log f(n) + o(n2).

On the other hand, we have
∑︁n

i=1 i =
n2

2 +o(n2) and
∑︁n

i=1 o(i) = o (
∑︁n

i=1 i)

= o(n2) (see (2.27) and (2.28)). Hence, (2.34)–(2.36), (2.27), and (2.28) give

log

(︄
(
∏︁n

i=1 Qi)
2
n2

nsf(n)

)︄

=
2

n2

(︃
s

n∑︂
i=1

i log i+
n∑︂

i=1

i log f(i)− s
n∑︂

i=1

i+
n∑︂

i=1

o(i)

)︃
− log(nsf(n))

=
2

n2

(︃
sn2 log n

2
− sn2

4
+

n2 log f(n)

2
− sn2

2
+ o(n2)

)︃
− log(nsf(n))

= −3

2
s+ o(1)

which implies (2.32). The theorem is proved. �
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