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ON THE RADON-NIKODYM PROPERTY FOR VECTOR
MEASURES AND EXTENSIONS OF TRANSFUNCTIONS

Piotr Mikusiński , John Paul Ward

Abstract. If (µn)∞n=1 are positive measures on a measurable space (X,Σ) and
(vn)∞n=1 are elements of a Banach space E such that

∑∞
n=1 ‖vn‖µn(X) < ∞,

then ω(S) =
∑∞

n=1 vnµn(S) defines a vector measure of bounded variation
on (X,Σ). We show E has the Radon-Nikodym property if and only if ev-
ery E-valued measure of bounded variation on (X,Σ) is of this form. This
characterization of the Radon-Nikodym property leads to a new proof of the
Lewis-Stegall theorem.

We also use this result to show that under natural conditions an operator
defined on positive measures has a unique extension to an operator defined
on E-valued measures for any Banach space E that has the Radon-Nikodym
property.

1. Introduction

A Banach space E has the Radon-Nikodym property with respect to a mea-
sure space (X,Σ, µ) if for every E-valued measure ω on (X,Σ) of bounded vari-
ation that is absolutely continuous with respect to µ there exists a Bochner
integrable function f on (X,Σ, µ) such that ω(S) =

∫
S
fdµ for every S ∈ Σ.

We say that E has the Radon-Nikodym property if E has the Radon-Nikodym
property with respect to every finite measure space. The Radon-Nikodym
property plays an important role in the theory of Banach spaces [3, 4], and
note that not every Banach space has this property (see [4]).
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If (µn)
∞
n=1 are positive measures on a measurable space (X,Σ) and

(vn)
∞
n=1 ∈ E are such that

∑∞
n=1 ‖vn‖µn(X) <∞, then ω(S) =

∑∞
n=1 vnµn(S)

defines a vector measure of bounded variation on (X,Σ). We will show that
every E-valued measure of bounded variation is of this form if and only if E
has the Radon-Nikodym property.

The proposed characterization of the Radon-Nikodym property is closely
related to the one in the Lewis-Stegall theorem [4, 5, 9], which shows that the
Radon-Nikodym property for E with respect to (X,Σ, µ) is equivalent to every
bounded linear operator from L1(µ) to E having a particular factorization.

The decomposition of measures in our characterization of the Radon-
Nikodym property leads us to an extension theorem for transfunctions. By
a transfunction (see [7] and [1]) we mean a map between sets of measures
on measurable spaces. More precisely, if (X,ΣX) and (Y,ΣY ) are measurable
spaces and M(X,ΣX ,R+) and M(Y,ΣY ,R+) are the sets of finite positive
measures on ΣX and on ΣY , respectively, by a transfunction from (X,ΣX) to
(Y,ΣY ) we mean a map Φ: M(X,ΣX ,R+)→M(Y,ΣY ,R+). If f : (X,ΣX)→
(Y,ΣY ) is a measurable function, then Φf (µ)(B) = µ(f−1(B)), for µ ∈
M(X,ΣX ,R+) and B ∈ ΣY , defines a transfunction from M(X,ΣX ,R+)
to M(Y,ΣY ,R+). Properties of transfunctions related to functions are dis-
cussed in [1].

We are interested in transfunctions as a generalization of a function from
X to Y . Instead of mapping a point x ∈ X to a point y ∈ Y a transfunc-
tion can be thought of as mapping a probability distribution of the input to a
probability distribution of the output. Connections of transfunctions to plans,
Markov operators and optimal transport are discussed in [2]. Another inter-
pretation of a transfunction could be a change in a population distributed
in X. The total population can increase or decrease and its distribution in X
can change. A transfunction captures all these changes.

The definition of transfunctions makes sense if finite positive measures are
replaced by vector valued measures of bounded variation. In the last section
of this note we define extensions of transfunctions to vector measures and
discuss the question of uniqueness of such extensions.

We have two reasons to consider extensions of transfunctions to signed
measures and vector measures. First, for some applications it is more natu-
ral or even necessary to use signed measures or vector measures. Second, by
extending the domain of a transfunction to a vector space we are able to use
tools from functional analysis.
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2. Measures with values in a Banach space
with the Radon-Nikodym property

In this note we use the same symbol to denote a subset of X and the
characteristic function of that set, that is, if A ⊂ X we will write

A(x) =

{
1 if x ∈ A,
0 otherwise.

By µA we denote the restriction of µ to A, that is, µA(S) = µ(S ∩A).
Let X be a nonempty set, Σ a σ-algebra of subsets of X, and let (E, ‖ · ‖)

be a Banach space. By the variation of a set function µ : Σ→ E we mean the
set function |µ| : Σ→ [0,∞] defined by

|µ|(A) = sup

{∑
B∈π
||µ(B)|| : π ⊂ Σ is a finite partition of A

}
.

Note that |µ|(A) ≥ ‖µ(A)‖ for any set A ∈ Σ. If ‖µ‖ = |µ|(X) < ∞, then
we say that µ is of bounded variation. A σ-additive set function of bounded
variation will be called an E-valued measure or simply a vector measure.

Let (X,Σ, µ) be a measure space and let E be a Banach space. We use the
following definition of Bochner integrable functions (see [6] or [8]):

Definition 2.1. A function f : X → E is called Bochner integrable if there are
sets (An)

∞
n=1 ∈ Σ and vectors (vn)

∞
n=1 ∈ E such that

∑∞
n=1 ‖vn‖µ(An) < ∞

and f(x) =
∑∞
n=1 vnAn(x) for every x ∈ X for which

∑∞
n=1 ‖vn‖An(x) <∞.

If for some f : X → E, (An)
∞
n=1 ∈ Σ, and (vn)

∞
n=1 ∈ E, both conditions

are satisfied, we write f '
∑∞
n=1 vnAn. If f '

∑∞
n=1 vnAn, then we define∫

fdµ =
∑∞
n=1 vnµ(An).

Note that we are using a nonstandard definition of Bochner integrability.
However, assuming our definition, the partial sums

∑N
n=1 vnAn(x) are simple

functions, and∫
X

‖f‖ dµ ≤
∫
X

∞∑
n=1

‖vn‖An(·)dµ ≤
∞∑
n=1

‖vn‖µ(An) <∞,

so f is Bochner integrable in the standard sense [4].
Conversely, every Bochner integrable function can be approximated by

simple functions giving the sequences (An)
∞
n=1, (vn)

∞
n=1 in our definition.
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If f : X → E is a Bochner integrable function on a measure space (X,Σ, µ),
then ω(S) =

∫
S
fdµ defines a vector measure of bounded variation on (X,Σ).

Not every vector measure is of this form (see [4]).

Theorem 2.2. A Banach space E has the Radon-Nikodym property with
respect to a measure space (X,Σ, µ) if and only if every E-valued measure ω
on (X,Σ) of bounded variation that is absolutely continuous with respect to µ
is of the form

ω(S) =

∞∑
n=1

vnµn(S)

where (µn)
∞
n=1 are positive measures on (X,Σ) that are absolutely continuous

with respect to µ and (vn)
∞
n=1 ∈ E are such that

∑∞
n=1 ‖vn‖µn(X) <∞.

Proof. Let ω be a E-valued measure of bounded variation on (X,Σ)
that is absolutely continuous with respect to µ. If E has the Radon-Nikodym
property, there exists a Bochner integrable function f on (X,Σ, µ) such that
ω(S) =

∫
S
fdµ for every S ∈ Σ. Let (An)

∞
n=1 ∈ Σ and (vn)

∞
n=1 ∈ E be such

that f '
∑∞
n=1 vnAn in (X,Σ, µ). Then∫

S

fdµ =

∞∑
n=1

vnµ(S ∩An).

If we define µn(S) = µ(S ∩An), then

ω(S) =

∫
S

fdµ =

∞∑
n=1

vnµn(S).

Now let ω be an E-valued measure on (X,Σ) of bounded variation that is
absolutely continuous with respect to µ. If

ω =
∞∑
n=1

vnµn

where (µn)
∞
n=1 are positive measures on (X,Σ) that are absolutely continuous

with respect to µ and (vn)
∞
n=1 ∈ E are such that

∑∞
n=1 ‖vn‖µn(X) < ∞, we

define fn = dµn

dµ for n ∈ N. Since

∞∑
n=1

‖vnfn‖1 =
∞∑
n=1

‖vn‖‖fn‖1 =
∞∑
n=1

‖vn‖µn(X) <∞,
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where ‖ · ‖1 denotes the L1-norm with respect to µ, the series
∑∞
n=1 vnfn

converges to a Bochner integrable function f on (X,Σ, µ) and we have

ω(S) =

∞∑
n=1

vnµn(S) =

∞∑
n=1

vn

∫
S

fndµ =

∫
S

∞∑
n=1

vnfndµ =

∫
S

fdµ,

for every S ∈ Σ. �

Remark 2.3. The previous theorem can also be derived using tensor product
techniques. We refer the interested reader to [10] for the necessary tools.

Corollary 2.4. A Banach space E has the Radon-Nikodym property if and
only if every E-valued measure ω of bounded variation on any measurable space
(X,Σ) is of the form ω =

∑∞
n=1 vnµn, where (µn)

∞
n=1 are positive measures

on (X,Σ) that are absolutely continuous with respect to |ω| and (vn)
∞
n=1 ∈ E

are such that
∑∞
n=1 ‖vn‖µn(X) <∞.

From Theorem 2.2 we can obtain a simple proof of the Lewis-Stegall
theorem.

Theorem 2.5 (Lewis-Stegall). A Banach space E has the Radon-Nikodym
property with respect to (X,Σ, µ) if and only if every bounded linear opera-
tor T : L1(µ) → E admits a factorization T = T1T2, where T1 : `1 → E,
T2 : L1(µ)→ `1 are continuous linear operators and T2 is positive.

Proof. Suppose E has the Radon-Nikodym property with respect to
(X,Σ, µ), and let T : L1(µ) → E be a bounded linear operator. By the Riesz
Representation Theorem [4], there is a g ∈ L∞(µ,E) such that T (f) =

∫
fgdµ

for every f ∈ L1(µ). We then define the measure ω(S) =
∫
S
gdµ so that

TS(·) =
∫
S(·)gdµ = ω(S) for every chracteristic function S(·). Then by The-

orem 2.2, ω =
∑∞
n=1 vnµn where (µn)

∞
n=1 are positive measures on (X,Σ)

that are absolutely continuous with respect to µ and (vn)
∞
n=1 ∈ E are such

that
∑∞
n=1 ‖vn‖µn(X) <∞. Then for any simple function f =

∑K
k=1 αkSk(·)

Tf =

K∑
k=1

αkω(Sk) =

K∑
k=1

αk

∞∑
n=1

vnµn(Sk)

=

∞∑
n=1

vn

K∑
k=1

αkµn(Sk) =
∞∑
n=1

vn
‖vn‖

(
‖vn‖

∫
fdµn

)
,
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so we have the required factorization by defining

T2(f) =

(
‖vn‖

∫
fdµn

)∞
n=1

and T1((αn)
∞
n=1) =

∞∑
n=1

αn
vn
‖vn‖

.

Since simple functions are dense in L1(µ), the result follows.
Conversely, suppose we have a factorization of the stated form for every

bounded linear operator, and let ω be an E-valued measure of bounded varia-
tion on (X,Σ) that is absolutely continuous with respect to µ. Then we have
the factorized bounded linear operator T = T1T2 that is defined by its action
on characteristic functions: TS(·) = ω(S), and

ω(S) = T1T2S(·) =

∞∑
n=1

e∗n(T2(S(·)))T1(en),

where (en)
∞
n=1 is the standard basis of `1 and (e∗n)

∞
n=1 are the coordinate

functionals. Using the boundedness of T2, the positive measures µn(S) =
e∗n(T2(S(·))) satisfy

∞∑
n=1

µn(X) < |ω|(X) <∞.

Combining this with the boundedness of T1 and letting vn = T1(en), we have

∞∑
n=1

‖vn‖µn(X) <∞

which verifies the conditions of Theorem 2.2. Hence E has the Radon-Nikodym
property. �

3. Extension of transfunctions to vector valued measures

In this section we consider extensions of transfunctions to vector measures.
We start with three technical lemmas that will be used in the proof of the
main result.
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Lemma 3.1. Let µ1, . . . , µn be finite positive measures on (X,Σ). Then there
exists a measure µ on (X,Σ) such that for every ε > 0 there is a finite partition
π ⊂ Σ of X such that for i = 1, . . . , n we have

µi =
∑
S∈π

αi,SµS + κi

where αi,S ≥ 0 and κ1, . . . , κn are positive measures on (X,Σ) such that

(3.1) κ1(X) + · · ·+ κn(X) < ε.

In particular, we may define µ to be
∑n
i=1 µi.

Proof. Let ε > 0. Notice that the measures µ1, . . . , µn are absolutely
continuous with respect to µ as defined above. Consider the Radon-Nikodym
derivatives fi of µi, that is, µi(B) =

∫
B
fidµ for all B ∈ Σ. Since each fi

is non-negative and integrable with respect to µ, there are simple functions∑
A∈πi

αi,AA(x), with respect to finite partitions πi of X, such that αi,A ≥ 0,∑
A∈πi

αi,AA(x) ≤ fi, and∫
X

(
fi −

∑
A∈πi

αi,AA(x)

)
dµ <

ε

n
.

Now define the common refinement of the partitions πi to be π, and define
the measures κi by the equation

κi(B) =

∫
B

(
fi −

∑
A∈πi

αi,AA(x)

)
dµ

for all B ∈ Σ. Notice that each simple function with respect to πi is also
a simple function with respect to π, that is,∑

A∈πi

αi,AA(x) =
∑
S∈π

αi,SS(x)

where αi,A = αi,S if S ⊆ A. Consequently, for every B ∈ Σ, we have

µi(B) =

∫
B

∑
S∈π

αi,SS(x)dµ+

∫
B

(
fi −

∑
S∈π

αi,SS(x)

)
dµ

=
∑
S∈π

αi,SµS(B) + κi(B),

and the κi’s were constructed to satisfy (3.1). �



84 Piotr Mikusiński, John Paul Ward

Let Φ: M(X,ΣX ,R+) →M(Y,ΣY ,R+) be a transfunction. We say that
Φ is bounded if ‖Φ(µ)‖ ≤ C‖µ‖ for some C > 0 and all µ ∈M and we define

‖Φ‖ = inf{C : ‖Φ(µ)‖ ≤ C‖µ‖ for all µ ∈M(X,ΣX ,R+)},

so that we have ‖Φ(µ)‖ ≤ ‖Φ‖‖µ‖ for all µ ∈ M(X,ΣX ,R+). We say that Φ
is strongly additive if Φ(µ1 +µ2) = Φ(µ1) + Φ(µ2) for all µ1, µ2 ∈M, and we
say that Φ is homogeneous if Φ(αµ) = αΦ(µ) for any α > 0.

Lemma 3.2. Let Φ: M(X,ΣX ,R+)→M(Y,ΣY ,R+) be a bounded, strongly
additive, and homogeneous transfunction and let E be a Banach space. Then

(3.2) ‖v1Φµ1 + · · ·+ vnΦµn‖ ≤ ‖Φ‖‖v1µ1 + · · ·+ vnµn‖

for all v1, . . . , vn ∈ E, µ1, . . . , µn ∈M(X,ΣX ,R+), and n ∈ N.

Proof. Let v1, . . . , vn ∈ E, µ1, . . . , µn ∈ M(X,ΣX ,R+), and let µ =∑n
k=1 µk. By Lemma 3.1, for any ε > 0 there are disjoint sets S1, . . . , SN ∈ Σ

such that for i = 1, . . . , n we have

(3.3) µi =

N∑
j=1

αi,jµSj + κi,

where αk,j ≥ 0 and κ1, . . . , κn are measures such that

(3.4) ‖v1κ1 + · · ·+ vnκn‖ <
ε

2‖Φ‖
and ‖v1Φ(κ1) + · · ·+ vnΦ(κn)‖ < ε

2
.

Using that Φ is strongly additive and homogeneous,

‖v1Φ(µ1) + · · ·+ vnΦ(µn)‖ =

∥∥∥∥∥
n∑
i=1

viΦ

( N∑
j=1

αi,jµSj + κi

)∥∥∥∥∥
=

∥∥∥∥∥
n∑
i=1

vi

( N∑
j=1

αi,jΦ(µSj
) + Φ(κi)

)∥∥∥∥∥
=

∥∥∥∥∥
N∑
j=1

( n∑
i=1

αi,jvi

)
Φ(µSj ) +

n∑
i=1

viΦ(κi)

∥∥∥∥∥
≤

∥∥∥∥∥
N∑
j=1

( n∑
i=1

αi,jvi

)
Φ(µSj )

∥∥∥∥∥+

∥∥∥∥∥
n∑
i=1

viΦ(κi)

∥∥∥∥∥.
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Then the second bound of (3.4) implies

‖v1Φ(µ1) + · · ·+ vnΦ(µn)‖ ≤

∥∥∥∥∥
N∑
j=1

( n∑
i=1

αi,jvi

)
Φ(µSj )

∥∥∥∥∥+
ε

2

≤
N∑
j=1

∥∥∥∥∥
( n∑
i=1

αi,jvi

)
Φ(µSj )

∥∥∥∥∥+
ε

2

≤
N∑
j=1

∥∥∥∥∥
n∑
i=1

αi,jvi

∥∥∥∥∥∥∥Φ(µSj
)
∥∥+

ε

2

≤ ‖Φ‖
N∑
j=1

∥∥∥∥∥
n∑
i=1

αi,jvi

∥∥∥∥∥∥∥µSj

∥∥+
ε

2
.

For the right-hand side of (3.2), we apply (3.3) to obtain

‖Φ‖ ‖v1µ1 + · · ·+ vnµn‖ = ‖Φ‖

∥∥∥∥∥
n∑
i=1

vi

N∑
j=1

αi,jµSj +

n∑
i=1

viκi

∥∥∥∥∥
≥ ‖Φ‖

∥∥∥∥∥
n∑
i=1

vi

N∑
j=1

αi,jµSj

∥∥∥∥∥−
∥∥∥∥∥
n∑
i=1

viκi

∥∥∥∥∥
 ,

and then using (3.4),

‖Φ‖ ‖v1µ1 + · · ·+ vnµn‖ ≥ ‖Φ‖

∥∥∥∥∥
n∑
i=1

vi

N∑
j=1

αi,jµSj

∥∥∥∥∥− ε

2‖Φ‖


= ‖Φ‖

∥∥∥∥∥
N∑
j=1

n∑
i=1

αi,jviµSj

∥∥∥∥∥− ε

2
.

Finally,

‖Φ‖ ‖v1µ1 + · · ·+ vnµn‖ ≥ ‖Φ‖
N∑
j=1

∥∥∥∥∥
n∑
i=1

αi,jviµSj

∥∥∥∥∥− ε

2

= ‖Φ‖
N∑
j=1

∥∥∥∥∥
n∑
i=1

αi,jvi

∥∥∥∥∥∥∥µSj

∥∥− ε

2
,



86 Piotr Mikusiński, John Paul Ward

and we get

‖v1Φ(µ1) + · · ·+ vnΦ(µn)‖ ≤ ‖Φ‖ ‖v1µ1 + · · ·+ vnµn‖+ ε.

Since ε is an arbitrary positive number, the desired inequality follows. �

Corollary 3.3. Let Φ: M(X,ΣX ,R+)→M(Y,ΣY ,R+) be a bounded, strongly
additive, and homogeneous transfunction and let E be a Banach space. If

∞∑
n=1

vnµn = 0,

for some vn ∈ E and µn ∈M(X,ΣX ,R+), then

∞∑
n=1

vnΦµn = 0.

Proof. Since ∥∥∥∥∥
n∑
j=1

vnΦµn

∥∥∥∥∥ ≤ ‖Φ‖
∥∥∥∥∥

n∑
j=1

vnµn

∥∥∥∥∥,
we have ∥∥∥∥∥

∞∑
j=1

vnΦµn

∥∥∥∥∥ ≤ ‖Φ‖
∥∥∥∥∥
∞∑
j=1

vnµn

∥∥∥∥∥ = 0. �

In the next theorem we show that bounded, strongly additive, and homo-
geneous transfunctions can be extended to vector measures of a special type,
namely measures that can be defined as sums of series of positive measures
multiplied by elements of a Banach space E. We will denote this space of
measures byMs(X,ΣX ,E), that is,

Ms(X,ΣX ,E)=

{ ∞∑
n=1

vnµn : µn∈M(X,ΣX ,R+), vn ∈ E,
∞∑
n=1

‖vn‖‖µn‖<∞

}
.

Theorem 3.4. Let Φ: M(X,ΣX ,R+) → M(Y,ΣY ,R+) be a bounded,
strongly additive, and homogeneous transfunction and let E be a Banach space.
Then there is a unique bounded linear transfunction Φ̃ : Ms(X,ΣX ,E) →
M(Y,ΣY ,E) satisfying Φ̃(vµ) = vΦµ for every µ ∈ M(X,ΣX ,R+) and ev-
ery v ∈ E.
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Proof. Let Φ: M(X,ΣX ,R+)→M(Y,ΣY ,R+) be a bounded, strongly
additive, and homogeneous transfunction and let E be a Banach space.

If µ =
∑∞
n=1 vnµn, for some vn ∈ E and µn ∈ M(X,ΣX ,R+) such that∑∞

n=1 ‖vn‖‖µn‖ <∞, then we define

Φ̃(µ) =

∞∑
n=1

vnΦµn.

Since
∞∑
n=1

‖vnΦµn‖ ≤
∞∑
n=1

‖vn‖‖Φµn‖ ≤ ‖Φ‖
∞∑
n=1

‖vn‖‖µn‖ <∞,

the series converges. Moreover, if
∑∞
n=1 vnµn =

∑∞
n=1wnκn, for some vn, wn ∈

E and µn, κn ∈M(X,ΣX ,R+) such that

∞∑
n=1

‖vn‖‖µn‖ <∞ and
∞∑
n=1

‖wn‖‖κn‖ <∞,

then
∞∑
n=1

(vnµn − wnκn) = 0.

By Corollary 3.3,
∞∑
n=1

(vnΦµn − wnΦκn) = 0,

so
∑∞
n=1 vnΦµn =

∑∞
n=1wnΦκn. This shows that the extension is well-defined.

Clearly, Φ̃ is a linear transfunction from Ms(X,ΣX ,E) to M(Y,ΣY ,E).
Since, by Lemma 3.2, for every n ∈ N we have

‖v1Φµ1 + · · ·+ vnΦµn‖ ≤ ‖Φ‖‖v1µ1 + · · ·+ vnµn‖,

we have ‖Φ̃(µ)‖ ≤ ‖Φ‖‖µ‖, so Φ̃ is bounded.
Now let Ψ: Ms(X,ΣX ,E)→M(Y,ΣY ,E) be a bounded linear transfunc-

tion satisfying Ψ(vµ) = vΨµ for every µ ∈ M(X,ΣX ,R+) and every v ∈ E.
If µ =

∑∞
n=1 vnµn, for some vn ∈ E and µn ∈ M(X,ΣX ,R+) such that

∞∑
n=1

‖vn‖‖µn‖ <∞, then for every n ∈ N we have

Ψ(v1µ1 + · · ·+ vnµn) = Φ̃(v1µ1 + · · ·+ vnµn)

and consequently Φ̃ = Ψ by continuity. �



88 Piotr Mikusiński, John Paul Ward

From the above theorem and Theorem 2.2 we obtain the following result.

Corollary 3.5. Let E be a Banach space with the Radon-Nikodym property.
For every bounded, strongly additive, and homogeneous Φ: M(X,ΣX ,R+)→
M(Y,ΣY ,R+) there is a unique bounded linear transfunction

Φ̃ : M(X,ΣX ,E)→M(Y,ΣY ,E)

satisfying Φ̃(vµ) = vΦµ for every µ ∈M(X,ΣX ,R+) and every v ∈ E.

Corollary 3.6. Every bounded positive operator

Φ̃ : M(X,ΣX ,R)→M(Y,ΣY ,R)

is the unique extension of a bounded, strongly additive, and homogeneous
transfunction Φ: M(X,ΣX ,R+)→M(Y,ΣY ,R+).

The previous results raise questions about the structure ofM(X,ΣX ,E).
For example, isMs(X,ΣX ,E) complemented inM(X,ΣX ,E)? If so, we could
define an extension of transfunctions without the Radon-Nikodym assumption
on E.
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