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A FURTHER GENERALIZATION OF limn→∞
n
√
n!/n = 1/e

Reza Farhadian , Rafael Jakimczuk

Abstract. It is well-known, as follows from the Stirling’s approximation
n! ∼

√
2πn(n/e)n, that n

√
n!/n → 1/e. A generalization of this limit is

(11
s · 22s · · ·nns

)1/n
s+1 · n−1/(s+1) → e−1/(s+1)2 which was established by

N. Schaumberger in 1989 (see [8]). The aim of this work is to establish a new
generalization that is in fact an improvement of Schaumberger’s formula for a
general sequence An of positive real numbers. All of the results are applied to
some well-known sequences in mathematics, for example, for the prime num-
bers sequence and the sequence of perfect powers.

1. Introduction

One of the well-known consequences of the Stirling’s approximation
n! ∼

√
2πn(n/e)n is the following limit formula (see, e.g., [3], [5] and [7]):

(1.1) lim
n→∞

n
√
n!

n
=

1

e
.

In 1989, N. Schaumberger ([8]) established a generalized form of (1.1). He
proved that for any s ∈ N ∪ {0},

lim
n→∞

(
11

s · 22s · · ·nns)1/ns+1

n1/(s+1)
= e−1/(s+1)2 .(1.2)
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Obviously, if one puts s = 0 in limit formula (1.2), then limit formula (1.1) is
obtained.

In this note, we aim to generalize the Schaumberger’s formula for a general
sequence An of positive real numbers. Thus, we will show that our general-
ization gives limit formulas (1.1) and (1.2) when An = n. Furthermore, we
show that the new generalization applies to some well-known sequences in
mathematics, for example, for the prime numbers sequence and the sequence
of perfect powers.

2. Main results

In this section we aim to present our main results. First, let us consider
the following lemma:

Lemma 2.1 ([6, page 332]). Let
∑∞
i=1 ai and

∑∞
i=1 bi be two series of

positive terms such that ai
bi
→ 0 and

∑∞
i=1 bi is divergent. Then

∑n
i=1 ai∑n
i=1 bi

→ 0.

Theorem 2.2. Let An be a strictly increasing sequence of positive real
numbers tending to infinity satisfying the asymptotic formula An ∼ An+1

(i.e., limn→∞
An+1

An
= 1), and let dn = An+1 − An. Then for any integer

s > 0,

(2.1)

(∏n−1
i=1 A

diA
s
i

i

)1/As+1
n

A
1/(s+1)
n

→ e−1/(s+1)2

if and only if

(2.2)
∑n−1
i=1 A

s−1
i d2i logAi

As+1
n

→ 0.

Hint: note that condition An∼An+1 is equivalent to the condition dn
An
→0.

Proof. We have the following formula:

(2.3)
∫
xs log x dx =

xs+1

s+ 1
log x− xs+1

(s+ 1)2
+ c
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and the following two formulas (use L’Hospital’s rule)

log(1 + x) = x− 1

2
x2 + o

(
x2
)

(x→ 0),(2.4)

(1 + x)s+1 = 1 + (s+ 1)x+
s(s+ 1)

2
x2 + o

(
x2
)

(x→ 0).(2.5)

Hence, (2.3), (2.4), and (2.5) give∫ Ai+1

Ai

xs log x dx =
As+1
i+1

s+ 1
logAi+1 −

As+1
i+1

(s+ 1)2
− As+1

i

s+ 1
logAi +

As+1
i

(s+ 1)2

=
As+1
i

s+ 1
logAi

(
1 +

di
Ai

)s+1

+
As+1
i

s+ 1
log
(
1 +

di
Ai

)(
1 +

di
Ai

)s+1

− As+1
i

s+ 1
logAi +

As+1
i

(s+ 1)2
− As+1

i

(s+ 1)2

(
1 +

di
Ai

)s+1

= Asi logAi di +
s

2
As−1i logAi d

2
i + o

(
As−1i logAi d

2
i

)
.(2.6)

From (2.6) and Lemma 2.1 we find that∫ An

1

xs log x dx =
As+1
n

s+ 1
logAn −

As+1
n

(s+ 1)2
+

1

(s+ 1)2

=

∫ A1

1

xs log x dx+

n−1∑
i=1

∫ Ai+1

Ai

xs log x dx

=

∫ A1

1

xs log x dx+

n−1∑
i=1

Asi di logAi

+
(s
2
+ o(1)

) n−1∑
i=1

As−1i d2i logAi,

that is,

(2.7)
logAn
s+ 1

− 1

(s+ 1)2
+

1

As+1
n

1

(s+ 1)2
=

1

As+1
n

∫ A1

1

xs log x dx

+
1

As+1
n

n−1∑
i=1

Asi di logAi +
(s
2
+ o(1)

) 1

As+1
n

n−1∑
i=1

As−1i d2i logAi.
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Equation (2.7) implies that the equation

1

As+1
n

n−1∑
i=1

As−1i d2i logAi = o(1)

and the equation

logAn
s+ 1

− 1

(s+ 1)2
+ o(1) =

1

As+1
n

n−1∑
i=1

Asi di logAi

are equivalent. On the other hand the last equation is equivalent to the equa-
tion (∏n−1

i=1 A
diA

s
i

i

)1/As+1
n

A
1/(s+1)
n

= (1 + o(1))e−1/(s+1)2 .

This completes the proof. �

In the next theorem we consider the case s = 0 for limit formula (2.1).

Theorem 2.3. Let An be a strictly increasing sequence of positive real
numbers tending to infinity satisfying the asymptotic formula An ∼ An+1,
and let dn = An+1 −An. Then

(2.8)

(∏n−1
i=1 A

di
i

)1/An

An
→ 1

e
.

Proof. As in Theorem 2.2, by use of (2.3) (with s = 0) and (2.4), we
obtain (compare with (2.6))

(2.9)
∫ Ai+1

Ai

log x dx = di logAi +
1

2

d2i
Ai

+ o

(
d2i
Ai

)
.

From (2.9) (as in Theorem 2.2) we obtain (compare with (2.7))

(2.10) logAn − 1 +
1

An
=

∫ A1

1
log x dx

An
+

∑n−1
i=1 di logAi

An

+
1

2

∑n−1
i=1

d2i
Ai

An
+

∑n−1
i=1 o

(
d2i
Ai

)
An

.
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Equation (2.10) implies that the equation

1

2

∑n−1
i=1

d2i
Ai

An
+

∑n−1
i=1 o

(
d2i
Ai

)
An

= o(1),(2.11)

and the equation

logAn − 1 =

∑n−1
i=1 di logAi

An
+ o(1)(2.12)

are equivalent. That is, equation (2.11) holds if and only if equation (2.12)
holds.

Now, equation (2.12) is equivalent to equation (2.8) and equation (2.11)
is equivalent to the equation∑n−1

i=1
d2i
Ai

An
= o(1).(2.13)

Consider the two possible cases. That is, either the series of positive terms∑∞
i=1

d2i
Ai

converges or diverges. Now,
d2i
Ai

di
= di

Ai
→ 0 and consequently by

Lemma 2.1 we have ∑n−1
i=1

d2i
Ai∑n−1

i=1 di = An −A1

→ 0,

that is, equation (2.13) holds. The theorem is proved. �

Now, we shall prove the following theorem, which is based on a stronger
condition.

Theorem 2.4. If in Theorem 2.2 the sequence An satisfies the stronger
condition dn logAn

An
→ 0, then the limit formula (2.1) holds.

Proof. The stronger condition can be written in the form

d2i logAi

Ai

di
→ 0.

Therefore by Lemma 2.1 we have∑n−1
i=1

d2i logAi

Ai

An
→ 0.
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Finally

0 ≤
∑n−1
i=1 A

s−1
i d2i logAi

As+1
n

≤

∑n−1
i=1

As−1
i d2i logAi

As
i

An
=

∑n−1
i=1

d2i logAi

Ai

An
→ 0,

that is, limit formula (2.2) and consequently limit formula (2.1) also holds.
The theorem is proved. �

We therefore prove the following theorem that establishes a generalization
of the Schaumberger’s limit formula (1.2).

Theorem 2.5. Let An be a strictly increasing sequence of positive real
numbers tending to infinity such that dn logAn

An
→ 0, where dn = An+1 − An.

Then for any integer s ≥ 0,(∏n
i=1A

diA
s
i

i

)1/As+1
n

A
1/(s+1)
n

→ e−1/(s+1)2 .(2.14)

Proof. It is an immediate consequence of Theorem 2.2, Theorem 2.3 and
Theorem 2.4. Since(∏n

i=1A
diA

s
i

i

)1/As+1
n

A
1/(s+1)
n

=

(∏n−1
i=1 A

diA
s
i

i

)1/As+1
n

A
1/(s+1)
n

(
(An)

dnA
s
n

)1/As+1
n

=

(∏n−1
i=1 A

diA
s
i

i

)1/As+1
n

A
1/(s+1)
n

e
dn log An

An ,

then (since dn logAn

An
→ 0)

(∏n
i=1A

diA
s
i

i

)1/As+1
n

A
1/(s+1)
n

∼

(∏n−1
i=1 A

diA
s
i

i

)1/As+1
n

A
1/(s+1)
n

.

The theorem is proved. �

It can be seen that Theorem 2.5 with An = n gives Schaumberger’s limit
formula (1.2), since in this case we have dn logAn

An
= logn

n → 0. Thus, limit in
(1.1) is also obtained.
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In the following theorem, we show that if a sequence An satisfies the hy-
pothesis of Theorem 2.5, then limit formula (2.14) also holds for the sequence
Akn, where k ∈ N.

Theorem 2.6. Let An satisfies the hypothesis of Theorem 2.5. Then limit
formula (2.14) holds for the sequence Akn, where k ∈ N.

Proof. We know from the hypothesis of Theorem 2.5 that An is a strictly
increasing sequence of positive real numbers tending to infinity such that
dn logAn

An
→ 0. We must show that sequence Akn (∀k ∈ N) also holds under the

hypothesis of Theorem 2.5.
Clearly Akn (∀k ∈ N) is also a strictly increasing sequence of positive real

numbers tending to infinity. Now, we have the following well-known identity:

ak − bk = (a− b)
(
ak−1 + ak−2b+ · · ·+ abk−2 + bk−1

)
.

Therefore,

Akn+1 −Akn = dn
(
Ak−1n+1 +Ak−2n+1An + · · ·+An+1A

k−2
n +Ak−1n

)
= (1 + o(1))kdnA

k−1
n

and consequently(
Akn+1 −Akn

)
logAkn

Akn
=

(1 + o(1))kdnA
k−1
n k logAn

Akn

=

(
(1 + o(1))k2

dn logAn
An

)
→ 0.

Hence, the sequence Akn (∀k ∈ N) satisfies the hypothesis of Theorem 2.5,
therefore limit formula (2.14) also holds for Akn. The theorem is proved. �

Some well-known sequences follow the conditions of Theorem 2.5, conse-
quently limit formula (2.14) applies to them. We show this in the following
theorem and corollaries thereafter.

Theorem 2.7. Let An be a strictly increasing sequence of positive real
numbers tending to infinity and let dn = An+1 − An. If dn < cAθn, where c
and 0 < θ < 1 are constants, then limit formula (2.14) holds.



174 Reza Farhadian, Rafael Jakimczuk

Proof. Since An is a strictly increasing sequence of positive real numbers
tending to infinity, we have immediately dn logAn

An
≥ 0 for n ∈ N. Therefore

0 ≤ dn logAn
An

<
cAθn logAn

An
=
c logAn

A1−θ
n

→ 0,

which gives dn logAn

An
→ 0. Hence, by Theorem 2.5 the limit formula (2.14)

holds. The theorem is proved. �

Corollary 2.8. Limit (2.14) holds for the sequence pn of prime numbers.

Proof. It is an immediate consequence of Theorem 2.7, since it is well-
known that (see, e.g., [1], [2]) there exist constants c and 0 < θ < 1 such that
dn < cpθn. The corollary is proved. �

Corollary 2.9. Limit formula (2.14) holds for any sequence An such
that dn = An+1 −An is bounded. For example, for any linear sequence An =
an+ b, where a > 0 and b is integer. Also, limit formula (2.14) holds for any
sequence in the form An = anb, where a and b are positive integers, since
logAn ∼ b log n and by the binomial formula dn ∼ abnb−1. Another example
is the sequence Pn of perfect powers, since (see [4]) Pn ∼ n2, logPn ∼ 2 log n
and dn = Pn+1 − Pn < 2n.

Proof. Use Theorem 2.7. �
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