AN EXTENSION OF THE ABEL-LIOUVILLE IDENTITY

Zsolt PÁles (iD, Amr Zakaria

Abstract

In this note, we present an extension of the celebrated AbelLiouville identity in terms of noncommutative complete Bell polynomials for generalized Wronskians. We also characterize the range equivalence of n-dimensional vector-valued functions in the subclass of n-times differentiable functions with a nonvanishing Wronskian.

1. Introduction

Throughout this paper let \mathbb{R}, \mathbb{N} and \mathbb{N}_{0} denote the set of real and the sets of positive and nonnegative integers, respectively, and let I stand for a nonempty open real interval.

For an n-dimensional vector-valued $(n-1)$-times continuously differentiable function $f: I \rightarrow \mathbb{R}^{n}$, its Wronskian $W_{f}: I \rightarrow \mathbb{R}$ is defined by

$$
W_{f}:=\left|f^{(n-1)} \quad \ldots \quad f^{\prime} \quad f\right|
$$

Received: 02.11.2021. Accepted: 29.03.2022. Published online: 18.04.2022.
(2020) Mathematics Subject Classification: 34A30.

Key words and phrases: Abel-Liouville identity, generalized Wronskians, complete Bell polynomials.

The research of the first author was supported by the K-134191 NKFIH Grant and the 2019-2.1.11-TÉT-2019-00049 and the EFOP-3.6.1-16-2016-00022 projects. The last project is co-financed by the European Union and the European Social Fund. The research of the second author was supported by the Bilateral State Scholarship of the Tempus Public Foundation of Hungary BE AK 2020-2021/157507.
© 2022 The Author(s).
This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY (http://creativecommons.org/licenses/by/4.0/1.

Here we usually interpret the elements of \mathbb{R}^{n} as column vectors. In the sequel, the standard inner product on \mathbb{R}^{n} will be denoted by $\langle\cdot, \cdot\rangle$.

Consider now the n th-order homogeneous linear differential equation

$$
\begin{equation*}
y^{(n)}=a_{1} y^{(n-1)}+\cdots+a_{n} y \tag{1}
\end{equation*}
$$

where $a_{1}, \ldots, a_{n}: I \rightarrow \mathbb{R}$ are continuous functions. By the classical AbelLiouville identity (cf. [4]), if $f: I \rightarrow \mathbb{R}^{n}$ is a fundamental system of solutions of (1), then W_{f} does not vanish on I and

$$
W_{f}^{\prime}=a_{1} W_{f}
$$

For a sufficiently smooth function $f: I \rightarrow \mathbb{R}^{n}$ and $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}_{0}^{n}$, we introduce now the generalized Wronskian $W_{f}^{k}: I \rightarrow \mathbb{R}$ by

$$
W_{f}^{k}:=\left|f^{\left(k_{1}\right)} \quad \ldots \quad f^{\left(k_{n}\right)}\right|
$$

One can easily see that, with this notation, we have

$$
W_{f}=W_{f}^{(n-1, n-2, \ldots, 0)} \quad \text { and } \quad W_{f}^{\prime}=W_{f}^{(n, n-2, \ldots, 0)}
$$

Therefore, the Abel-Liouville identity can be rewritten as

$$
\begin{equation*}
W_{f}^{(n, n-2, \ldots, 0)}=a_{1} W_{f}^{(n-1, n-2, \ldots, 0)} \tag{2}
\end{equation*}
$$

One of the main goals of this short paper is to establish a formula for W_{f}^{k} in terms of the coefficients of differential equation (1). Another goal is to introduce the range equivalence for n-dimensional vector-valued functions and to characterize this equivalence relation in the subclass of n-times differentiable functions with a nonvanishing Wronskian.

2. Main results

For the description of our main result, we recall the notion of noncommutative complete Bell polynomials, which was introduced by Schimming and Rida ([3]). Let $\mathbb{R}^{n \times n}$ denote the ring of $n \times n$ matrices with real entries and
let \mathbb{I}_{n} denote the $n \times n$ unit matrix. Now define $B_{m}:\left(\mathbb{R}^{n \times n}\right)^{m} \rightarrow \mathbb{R}^{n \times n}$ by the following recursive formula

$$
B_{0}:=\mathbb{I}_{n}, \quad B_{m+1}\left(X_{1}, \ldots, X_{m+1}\right):=\sum_{j=0}^{m}\binom{m}{j} B_{j}\left(X_{1}, \ldots, X_{j}\right) X_{m+1-j}
$$

The notion of complete Bell polynomials in the commutative setting (i.e., when $n=1$) was introduced by Bell ([1], [2]). One can easily compute the first few Bell polynomials as follows:

$$
\begin{aligned}
B_{1}\left(X_{1}\right)= & X_{1} \\
B_{2}\left(X_{1}, X_{2}\right)= & X_{1}^{2}+X_{2} \\
B_{3}\left(X_{1}, X_{2}, X_{3}\right)= & X_{1}^{3}+2 X_{1} X_{2}+X_{2} X_{1}+X_{3} \\
B_{4}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)= & X_{1}^{4}+3 X_{1}^{2} X_{2}+2 X_{1} X_{2} X_{1}+3 X_{1} X_{3}+3 X_{2}^{2} \\
& +X_{2} X_{1}^{2}+X_{3} X_{1}+X_{4} \\
B_{5}\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)= & X_{1}^{5}+4 X_{1}^{3} X_{2}+3 X_{1}^{2} X_{2} X_{1}+6 X_{1}^{2} X_{3}+8 X_{1} X_{2}^{2} \\
& +2 X_{1} X_{2} X_{1}^{2}+3 X_{1} X_{3} X_{1}+4 X_{1} X_{4}+3 X_{2}^{2} X_{1} \\
& +X_{2} X_{1}^{3}+4 X_{2} X_{1} X_{2}+6 X_{2} X_{3}+X_{3} X_{1}^{2} \\
& +4 X_{3} X_{2}+X_{4} X_{1}+X_{5}
\end{aligned}
$$

The statement of the next basic lemma was proved in the paper [3].
Lemma 1. For every $j \in \mathbb{N}_{0}$, and j-times differentiable matrix-valued function $X: I \rightarrow \mathbb{R}^{n \times n}$,

$$
B_{j+1}\left(X, \ldots, X^{(j)}\right)=X B_{j}\left(X, \ldots, X^{(j-1)}\right)+\left(B_{j}\left(X, \ldots, X^{(j-1)}\right)\right)^{\prime}
$$

Lemma 2. Let $n, m \in \mathbb{N}$, let $X: I \rightarrow \mathbb{R}^{n \times n}$ be an $(m-1)$-times continuously differentiable function and $Y: I \rightarrow \mathbb{R}^{n \times n}$ be a differentiable function such that

$$
\begin{equation*}
Y^{\prime}=Y X \tag{3}
\end{equation*}
$$

holds on I. Then Y is m-times continuously differentiable and

$$
\begin{equation*}
Y^{(j)}=Y B_{j}\left(X, \ldots, X^{(j-1)}\right) \quad(j \in\{0, \ldots, m\}) \tag{4}
\end{equation*}
$$

Proof. If $m=1$, then X is continuous, hence the continuity of Y and (3) imply that Y is continuously differentiable. If $m>1$, then using (3), a simple inductive argument shows that Y is m-times continuously differentiable.

The equality (4) is trivial if $j=0$, because $B_{0}=\mathbb{I}_{n}$. For $j=1$, the equality (4) is equivalent to (3). Now assume that (4) has been verified for some j with $1 \leq j<m$. Then, using (3) and Lemma 1, we get

$$
\begin{aligned}
Y^{(j+1)} & =\left(Y^{(j)}\right)^{\prime}=\left(Y B_{j}\left(X, \ldots, X^{(j-1)}\right)\right)^{\prime} \\
& =Y^{\prime} B_{j}\left(X, \ldots, X^{(j-1)}\right)+Y\left(B_{j}\left(X, \ldots, X^{(j-1)}\right)\right)^{\prime} \\
& =Y\left[X B_{j}\left(X, \ldots, X^{(j-1)}\right)+\left(B_{j}\left(X, \ldots, X^{(j-1)}\right)\right)^{\prime}\right] \\
& =Y B_{j+1}\left(X, \ldots, X^{(j)}\right)
\end{aligned}
$$

This proves the assertion for $j+1$.
In what follows, let e_{1}, \ldots, e_{n} denote the elements of the standard basis in \mathbb{R}^{n}.

Corollary 3. Let $n, m \in \mathbb{N}$, let $a=\left(a_{1}, \ldots, a_{n}\right): I \rightarrow \mathbb{R}^{n}$ be an $(m-1)$ times continuously differentiable function and let $f: I \rightarrow \mathbb{R}^{n}$ be a fundamental system of solutions of the differential equation (1). Let the matrix-valued functions $X_{a}: I \rightarrow \mathbb{R}^{n \times n}$ and $Y_{f}: I \rightarrow \mathbb{R}^{n \times n}$ be defined by

$$
X_{a}:=\left(\begin{array}{llll}
a & e_{1} & \ldots & e_{n-1}
\end{array}\right) \quad \text { and } \quad Y_{f}:=\left(\begin{array}{lllll}
f^{(n-1)} & \ldots & f^{\prime} & f \tag{5}
\end{array}\right)
$$

Then Y_{f} is m-times continuously differentiable and

$$
Y_{f}^{(j)}=Y_{f} B_{j}\left(X_{a}, \ldots, X_{a}^{(j-1)}\right) \quad(j \in\{0, \ldots, m\})
$$

Proof. The function f satisfies the differential equation (1), therefore $f^{(n)}=Y_{f} \cdot a$. On the other hand, $f^{(n-i)}=Y_{f} \cdot e_{i}$ holds for $i \in\{1, \ldots, n-1\}$. These equalities imply that

$$
\begin{aligned}
Y_{f}^{\prime} & =\left(\begin{array}{llll}
f^{(n)} & f^{(n-1)} & \ldots & f^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{llll}
Y_{f} \cdot a & Y_{f} \cdot e_{1} & \ldots & Y_{f} \cdot e_{n-1}
\end{array}\right)=Y_{f} X_{a}
\end{aligned}
$$

Therefore, equation (3) holds with $Y:=Y_{f}$ and $X:=X_{a}$, consequently, the statement is a consequence of Lemma 2 .

Using the above corollary, we can easily establish a formula for the computation of the generalized Wronskian W_{f}^{k}.

Theorem 4. Let $n, m \in \mathbb{N}$, let $a=\left(a_{1}, \ldots, a_{n}\right): I \rightarrow \mathbb{R}^{n}$ be an $(m-1)$ times continuously differentiable function and let $f: I \rightarrow \mathbb{R}^{n}$ be a fundamental system of solutions of the differential equation (1). Let the matrix-valued functions $X_{a}: I \rightarrow \mathbb{R}^{n \times n}$ be defined by (5). Then, for $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}_{0}^{n}$ with $\max \left(k_{1}, \ldots, k_{n}\right) \leq m+n-1$,
(6) $W_{f}^{k}=W_{f} \mid B_{\ell_{1}}\left(X_{a}, \ldots, X_{a}^{\left(\ell_{1}-1\right)}\right) e_{n+\ell_{1}-k_{1}}$

$$
\ldots \quad B_{\ell_{n}}\left(X_{a}, \ldots, X_{a}^{\left(\ell_{n}-1\right)}\right) e_{n+\ell_{n}-k_{n}}
$$

where, for $i \in\{1, \ldots, n\}, \ell_{i}:=\left(k_{i}-n+1\right)^{+}:=\max \left(k_{i}-n+1,0\right)$.
Proof. Define the matrix valued function $Y_{f}: I \rightarrow \mathbb{R}^{n \times n}$ by (5) and observe that, in view of Corollary 3, for all $\ell \in\{0, \ldots, m+n-1\}$ and $i \in$ $\left\{(\ell-n+1)^{+}, \ldots, \min (\ell, m)\right\}$, we have that

$$
f^{(\ell)}=Y_{f}^{(i)} e_{n+i-\ell}=Y_{f} B_{i}\left(X_{a}, \ldots, X_{a}^{(i-1)}\right) e_{n+i-\ell}
$$

By taking the smallest possible value for i in the above formula, we get

$$
f^{(\ell)}=Y_{f} B_{(\ell-n+1)^{+}}\left(X_{a}, \ldots, X_{a}^{\left((\ell-n+1)^{+}-1\right)}\right) e_{n+(\ell-n+1)^{+}-\ell}
$$

Applying this equality for $\ell \in\left\{k_{1}, \ldots, k_{n}\right\}$, we obtain

$$
\begin{aligned}
\left(f^{\left(k_{1}\right)} \ldots f^{\left(k_{n}\right)}\right)=Y_{f}\left(B _ { \ell _ { 1 } } \left(X_{a}, \ldots,\right.\right. & \left.X_{a}^{\left(\ell_{1}-1\right)}\right) e_{n+\ell_{1}-k_{1}} \\
\ldots & \left.B_{\ell_{n}}\left(X_{a}, \ldots, X_{a}^{\left(\ell_{n}-1\right)}\right) e_{n+\ell_{n}-k_{n}}\right)
\end{aligned}
$$

Now taking the determinant side by side and using the product rule for determinants, the equality (6) follows.

In the subsequent corollary, we consider the case when $\ell_{i}=0$ for $i \in$ $\{2, \ldots, n\}$. In this particular setting, the determinant on the left hand side of (6) can easily be computed.

Corollary 5. Let $n, m \in \mathbb{N}$, let $a=\left(a_{1}, \ldots, a_{n}\right): I \rightarrow \mathbb{R}^{n}$ be an $(m-1)$ times continuously differentiable function and let $f: I \rightarrow \mathbb{R}^{n}$ be a fundamental system of solutions of the differential equation (1). Let the matrix-valued
functions $X_{a}: I \rightarrow \mathbb{R}^{n \times n}$ be defined by (5) and let $d \in\{0, \ldots, m-1\}$ and $j \in\{0, \ldots, n-1\}$. Then

$$
\begin{align*}
W_{f}^{(n+d, n-1, \ldots, j+1, j-1, \ldots, 0)} & \tag{7}\\
& =(-1)^{n-j-1} W_{f}\left\langle B_{d+1}\left(X_{a}, \ldots, X_{a}^{(d)}\right) e_{1}, e_{n-j}\right\rangle
\end{align*}
$$

If $d=0$ and $j=n-1$, then this equality reduces to the Abel-Liouville identity (2). More generally, for $d=0,1,2$, we get the following formulas:

$$
W_{f}^{(n, n-1, \ldots, j+1, j-1, \ldots, 0)}=(-1)^{n-j-1} W_{f} a_{n-j}
$$

$W_{f}^{(n+1, n-1, \ldots, j+1, j-1, \ldots, 0)}=(-1)^{n-j-1} W_{f}\left(a_{1} a_{n-j}+a_{n-j+1}+a_{n-j}^{\prime}\right)$,
$W_{f}^{(n+2, n-1, \ldots, j+1, j-1, \ldots, 0)}=(-1)^{n-j-1} W_{f}\left(a_{1}^{2} a_{n-j}+a_{1} a_{n-j+1}+a_{2} a_{n-j}\right.$

$$
\begin{equation*}
\left.+a_{n-j+2}+a_{1} a_{n-j}^{\prime}+2 a_{1}^{\prime} a_{n-j}+2 a_{n-j+1}^{\prime}+a_{n-j}^{\prime \prime}\right) \tag{8}
\end{equation*}
$$

(Here we define $a_{n+1}:=a_{n+2}:=0$.)
Proof. We apply the previous theorem for $k:=(n+d, n-1, \ldots$, $j+1, j-1, \ldots, 0)$, where $d \in\{0, \ldots, m-1\}$ and $j \in\{0, \ldots, n-1\}$. Then we get that $\ell_{1}=d+1$, and $\ell_{i}=0$ for $i \in\{2, \ldots, n\}$. Therefore,

$$
\begin{aligned}
& W_{f}^{(n+d, n-1, \ldots, j+1, j-1, \ldots, 0)}=W_{f} \mid B_{d+1}\left(X_{a}, \ldots, X_{a}^{(d)}\right) e_{1} \quad \mathbb{I}_{n} e_{1} \\
& \ldots \quad \mathbb{I}_{n} e_{n-j-1} \quad \mathbb{I}_{n} e_{n-j+1} \quad \ldots \quad \mathbb{I}_{n} e_{n} \\
& =(-1)^{n-j-1} W_{f}\left\langle B_{d+1}\left(X_{a}, \ldots, X_{a}^{(d)}\right) e_{1}, e_{n-j}\right\rangle .
\end{aligned}
$$

Thus, equality (7) has been shown. In the case $d=0$, we have that

$$
\left\langle B_{1}\left(X_{a}\right) e_{1}, e_{n-j}\right\rangle=\left\langle X_{a} e_{1}, e_{n-j}\right\rangle=a_{n-j}
$$

because the $(n-j)$ th entry of X_{a} equals a_{n-j}. This implies the first equality in (8) for $j \in\{0, \ldots, n-1\}$. In particular, for $j=n-1$, this equality is equivalent to the Abel-Liouville identity (2).

In the case $d=1$, a simple computation gives that

$$
\left\langle B_{2}\left(X_{a}, X_{a}^{\prime}\right) e_{1}, e_{n-j}\right\rangle=\left\langle\left(X_{a}^{2}+X_{a}^{\prime}\right) e_{1}, e_{n-j}\right\rangle=a_{1} a_{n-j}+a_{n-j+1}+a_{n-j}^{\prime}
$$

which yields the second equality in (8) for $j \in\{0, \ldots, n-1\}$.

In the case $d=2$, a somewhat more difficult computation gives that

$$
\begin{aligned}
\left\langle B_{3}\left(X_{a}, X_{a}^{\prime}, X_{a}^{\prime \prime}\right) e_{1}, e_{n-j}\right\rangle= & \left\langle\left(X_{a}^{3}+2 X_{a} X_{a}^{\prime}+X_{a}^{\prime} X_{a}+X_{a}^{\prime \prime}\right) e_{1}, e_{n-j}\right\rangle \\
= & a_{1}^{2} a_{n-j}+a_{1} a_{n-j+1}+a_{2} a_{n-j}+a_{n-j+2} \\
& +a_{1} a_{n-j}^{\prime}+2 a_{1}^{\prime} a_{n-j}+2 a_{n-j+1}^{\prime}+a_{n-j}^{\prime \prime}
\end{aligned}
$$

which then yields the third equality in (8).
For the sake of convenience and brevity, we introduce the following notation: for an n-times continuously differentiable function $f: I \rightarrow \mathbb{R}^{n}$ such that W_{f} is nonvanishing and $j \in\{0, \ldots, n-1\}$, the function $\Phi_{f}^{[j]}: I \rightarrow \mathbb{R}$ is defined by

$$
\Phi_{f}^{[j]}:=(-1)^{n-j-1} \frac{W_{f}^{(n, \ldots, j+1, j-1, \ldots, 0)}}{W_{f}}
$$

For instance, if f is n-times continuously differentiable function whose components form a fundamental system of solutions for (1), then the Abel-Liouville identity (2) can be rewritten as

$$
\Phi_{f}^{[n-1]}=a_{1} .
$$

More generally, the first equality in (8) gives that

$$
\Phi_{f}^{[j]}=a_{n-j} \quad(j \in\{0, \ldots, n-1\})
$$

or, equivalently,

$$
\begin{equation*}
a_{j}=\Phi_{f}^{[n-j]} \quad(j \in\{1, \ldots, n\}) \tag{9}
\end{equation*}
$$

Lemma 6. Let $f: I \rightarrow \mathbb{R}^{n}$ be an n-times continuously differentiable function such that W_{f} is nonvanishing. Then the components of f form a fundamental system of solutions of the nth-order homogeneous linear differential equation

$$
\begin{equation*}
y^{(n)}=\sum_{j=0}^{n-1} \Phi_{f}^{[j]} y^{(j)} \tag{10}
\end{equation*}
$$

Proof. This equation is equivalent to the following identity

$$
\begin{aligned}
\left|\begin{array}{lllll}
f^{(n-1)} & \ldots & f^{(0)} \mid y^{(n)} \\
& =\sum_{j=0}^{n-1}(-1)^{n-j-1} \mid f^{(n)} & \ldots & f^{(j+1)} & f^{(j-1)}
\end{array} \ldots \quad f^{(0)}\right| y^{(j)}
\end{aligned}
$$

We can now rearrange this equation to obtain

$$
\left|\begin{array}{cccc}
y^{(n)} & y^{(n-1)} & \ldots & y \\
f_{1}^{(n)} & f_{1}^{(n-1)} & \ldots & f_{1} \\
\vdots & \vdots & \ddots & \vdots \\
f_{n}^{(n)} & f_{n}^{(n-1)} & \ldots & f_{n}
\end{array}\right|=0
$$

It is easily seen that if $y \in\left\{f_{1}, \ldots, f_{n}\right\}$, then the determinant vanishes. Therefore, f_{1}, \ldots, f_{n} are solutions of (10). Due to the condition that W_{f} is nonvanishing, the components of f are linearly independent, therefore they form a fundamental solution system for 10 .

Corollary 7. Let $n, m \in \mathbb{N}$ with $m \geq n$ and let $f: I \rightarrow \mathbb{R}^{n}$ be an m-times continuously differentiable function such that W_{f} is nonvanishing. Define $a=\left(a_{1}, \ldots, a_{n}\right): I \rightarrow \mathbb{R}^{n}$ by (9) and $X_{a}: I \rightarrow \mathbb{R}^{n \times n}$ by (5). Then the equality (6) holds for $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}_{0}^{n}$, if $k_{i} \leq m$ and $\ell_{i}:=\left(k_{i}-n+1\right)^{+}$ for $i \in\{1, \ldots, n\}$.

Proof. It follows from the definition of a, that it is $(m-n)$-times continuously differentiable. On the other hand, by Lemma 6, we have that f satisfies the n-th order homogeneous linear differential equation (1). Thus, the statement is a consequence of Theorem 4.

We say that two continuous functions $f, g: I \rightarrow \mathbb{R}^{n}$ are range equivalent, denoted by $f \sim g$, if there exists a nonsingular $n \times n$-matrix A such that

$$
\begin{equation*}
f=A g \tag{11}
\end{equation*}
$$

ThEOREM 8. Let $f, g: I \rightarrow \mathbb{R}^{n}$ be n-times continuously differentiable functions such that W_{f} and W_{g} are nonvanishing. Then $f \sim g$ holds if and only if

$$
\begin{equation*}
\Phi_{f}^{[j]}=\Phi_{g}^{[j]} \quad(j \in\{0, \ldots, n-1\}) . \tag{12}
\end{equation*}
$$

Proof. If $f \sim g$, then there exists a nonsingular $n \times n$-matrix A such that $f=A g$. The product rule for determinants shows that $W_{f}^{k}=|A| W_{g}^{k}$ for every $k \in \mathbb{N}_{0}^{n}$. Using this identity and the definition of $\Phi_{f}^{[j]}$ and $\Phi_{g}^{[j]}$, we obtain the equalities in (12).

On the other hand, if the identities 12 are valid on I, then the n th-order homogeneous linear differential equation (10) is equivalent to the following one

$$
y^{(n)}=\sum_{j=0}^{n-1} \Phi_{g}^{[j]} y^{(j)}
$$

Therefore, the (n-dimensional) solution spaces of these differential equations are identical, which in view of Lemma 6 yields that the components of f are linear combinations of the components of g. Thus identity (11) holds for some nonsingular $n \times n$-matrix A.

References

[1] E.T. Bell, Partition polynomials, Ann. of Math. (2) 29 (1927/28), no. 1-4, 38-46.
[2] E.T. Bell, Exponential polynomials, Ann. of Math. (2) 35 (1934), no. 2, 258-277.
[3] R. Schimming and S.Z. Rida, Noncommutative Bell polynomials, Internat. J. Algebra Comput. 6 (1996), no. 5, 635-644.
[4] G. Teschl, Ordinary Differential Equations and Dynamical Systems, Graduate Studies in Mathematics, 140, American Mathematical Society, Providence, RI, 2012.

Zsolt PÁles

Institute of Mathematics
University of Debrecen
H-4002 Debrecen
Pf. 400
Hungary
e-mail: pales@science.unideb.hu
Amr Zakaria
Department of Mathematics
Faculty of Education
Ain Shams University
Cairo 11341
Egypt
e-mail: amr.zakaria@edu.asu.edu.eg

