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A FUNCTIONAL EQUATION
WITH BIADDITIVE FUNCTIONS

Radosław Łukasik

Abstract. Let S,H,X be groups. For two given biadditive functionsA : S2 →
X, B : H2 → X and for two unknown mappings T : S → H, g : S → S we will
study the functional equation

B(T (x), T (y)) = A(x, g(y)), x, y ∈ S,

which is a generalization of the orthogonality equation in Hilbert spaces.

1. Introduction

Let H,K be unitary spaces. It is easy to check that, if f : H → K satisfies
the orthogonality equation

(1.1) 〈f(x)|f(y)〉 = 〈x|y〉,

then f is a linear isometry (see, e.g. [6, Lemma 2.1.1 and the following Re-
mark]).

The above equation was generalized in normed spaces X,Y by consid-
ering a norm derivative ρ′+(x, y) := ‖x‖ · lim

t→0+

‖x+ty‖−‖x‖
t instead of inner
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product, i.e.

(1.2) ρ′+(f(x), f(y)) = ρ′+(x, y), x, y ∈ X,

with an unknown function f : X → Y . Note that if the norm comes from an
inner product 〈·, ·〉, we obtain ρ′+(x, y) = 〈x|y〉.

The second way of generalization of the orthogonality equation in Hilbert
spaces H,K is to look for the solutions of

(1.3) 〈f(x)|g(y)〉 = 〈x|y〉, x, y ∈ H,

where f, g : H→K are unknown functions. Solutions of (1.2) and (1.3), can
be found in the papers [1], [4], [2], [8].

In [5] authors give a natural generalization of such functional equations in
the case of commutative groups. They consider biadditive mappings instead
of inner products.

Another generalization of (1.3) we can find in the paper [7] where the
author studies the equation

〈f(x)|g(y∗)〉 = 〈x|y∗〉, x ∈ E, y∗ ∈ E∗,

where f : E → F , g : E∗ → F ∗, E,F are Banach spaces, E∗, F ∗ are spaces
dual to E and F respectively, and 〈a|ϕ〉 := ϕ(a).

In [3] we can find a different approach. Instead of taking two different
functions on the left side of (1.3), we change only the right side of (1.3), so
we obtain

〈f(x)|f(y)〉 = 〈x|g(y)〉 , x, y ∈ X,

with two unknown functions f : X → Y , g : X → X.
In this paper we generalize the above equation – we consider biadditive

mappings instead of inner products.

2. Preliminaries

We start by recalling definition of multi-additive functions. By Perm(n)
we denote the set of all bijections of the set {1, . . . , n}.
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Definition 1. Let S be a semigroup, H be a group, n ∈ N. The function
A : Sn → H is called n-additive if

A(x1, . . . , xi−1,xi + y, xi+1, . . . , xn)

= A(x1, . . . , xn) +A(x1, . . . , xi−1, y, xi+1, . . . , xn),

for all y, x1, . . . , xn ∈ S and i ∈ {1, . . . , n}.
Moreover, A is called symmetric if

A(x1, . . . , xn) = A(xσ(1), . . . , xσ(n))

for all x1, . . . , xn ∈ S and σ ∈ Perm(n).

Now we introduce some theory of the adjoint operator on groups.

Definition 2. Let S,H,X be groups, A : S2 → X, B : H2 → X be
biadditive functions. Let further T : S → H and

D(T ∗) := {v ∈ H : ∃y∈S∀x∈S B(T (x), v) = A(x, y)}.

A function T ∗ : D(T ∗) → S is called a (B,A)-adjoint operator (to T ) if and
only if

B(T (x), v) = A(x, T ∗(v)), x ∈ S, v ∈ D(T ∗).

Remark 1. Let S,X be groups, A : S2 → X be a biadditive function. We
observe that

A(x, v) +A(x, y) +A(u, v) +A(u, y) = A(x, v + y) +A(u, v + y)

= A(x+ u, v + y) = A(x+ u, v) +A(x+ u, y)

= A(x, v) +A(u, v) +A(x, y) +A(u, y), x, y, u, v ∈ S,

so

A(x, y) +A(u, v) = A(u, v) +A(x, y), x, y, u, v ∈ S.

Hence the group generated by the image of A is a commutative subgroup of X
(so we can assume that X is commutative).
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Lemma 1 (see [5, Lemma 4]). Let S,H,X be groups, A : S2 → X, B : H2 →
X be biadditive functions. Let further T : S → H and T ∗ : D(T ∗) → S be
a (B,A)-adjoint operator to T ,

SAR := {y ∈ S : ∀x∈S A(x, y) = 0},(2.1)

SALT∗ := {x ∈ S : ∀y∈imT∗ A(x, y) = 0},(2.2)

HBTR := {v ∈ H : ∀u∈imT B(u, v) = 0},(2.3)

HBLD∗ := {u ∈ H : ∀v∈D(T∗)B(u, v) = 0}.(2.4)

Then
(a) SAR, SALT∗ are normal subgroups of S, D(T ∗), HBTR, HBLD∗ are nor-

mal subgroups of H. Moreover in the case when X is torsion-free, if H
is divisible, then HBTR, HBLD∗ are divisible, if S is divisible, then SAR,
SALT∗ are divisible, if S,H are divisible, then D(T ∗) is divisible;

(b) ∀x,y∈S T (x+ y)− T (y)− T (x) ∈ HBLD∗ ;
(c) ∀x,y∈S x− y ∈ SALT∗ ⇔ T (x)− T (y) ∈ HBLD∗ ;
(d) ∀u,v∈D(T∗) T

∗(u+ v)− T ∗(v)− T ∗(u) ∈ SAR;
(e) ∀u,v∈D(T∗) u− v ∈ HBTR ⇔ T ∗(u)− T ∗(v) ∈ SAR;
(f) HBTR ⊂ D(T ∗);
(g) Let κ : S → S/SAR be a canonical homomorphism. Then the function

T̃ ∗ : D(T ∗)/HBTR → imT ∗/SAR given by

T̃ ∗(u+HBTR) = T ∗(u) + SAR, u ∈ D(T ∗),

is well-defined and it is an isomorphism.

Proof. Proofs of (b)–(f) are in [5].
Let v ∈ D(T ∗), x ∈ H. From Remark 1 we have

B(T (x), x+ v − x) = B(T (x), x) +B(T (x), v)−B(T (x), x)

= B(T (x), v) = B(x, T ∗(v)),

so D(T ∗) is a normal subgroup of G (the rest of proofs of (a) are in [5]).
Let u, v ∈ D(T ∗) be such that u − v ∈ HBTR. Then from (e) we have

T ∗(u) − T ∗(v) ∈ SAR, so T̃ ∗ is well-defined. From (d) we obtain that T̃ ∗

is a homomorphism. From (e) we obtain the injectiveness. Obviously T̃ ∗ is
surjective. �
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Remark 2. If in the previous lemma S,H,X are linear spaces over some
field K and A,B are K-linear, then SAR, SALT∗ , D(T ∗), HBTR, HBLD∗ are
linear spaces over K.

Definition 3. Let S,H,X be groups, A : S2 → X, B : H2 → X be biad-
ditive functions, T : S → H. A function T is called an (A,B)-quasi isometry if

(2.5) B(T (x), T (y)) = A(x, y), x, y ∈ S.

A function T is called an (A,B)-isometry if T is bijective and satisfies (2.5).

Lemma 2. Let H,X be groups, H̃ be a normal subgroup of H, B : H2 → X

be a biadditive function, the sets H̃BL, H̃BR be given by formulas

H̃BL = {x ∈ H̃ : ∀y∈H̃ B(x, y) = 0},(2.6)

H̃BR = {y ∈ H̃ : ∀x∈H̃ B(x, y) = 0},(2.7)

H̃B0 := H̃BL ∩ H̃BR.(2.8)

Then H̃BL, H̃BR, and H̃B0 are normal subgroups of H̃, the function
B̃ : (H̃/H̃B0)

2 → X given by the formula

(2.9) B̃(x+ H̃B0, y + H̃B0) := B(x, y), x, y ∈ H̃,

is well-defined and it is biadditive.

Proof. It is easy to observe that H̃BL, H̃BR, H̃B0 are normal subgroups
of H̃. Let x1, x2, y1, y2 ∈ H̃ be such that x2 − x1, y2 − y1 ∈ H̃B0. Then

B(x2, y2) = B(x2 − x1, y2) +B(x1, y2) = B(x1, y2)

= B(x1, y2 − y1) +B(x1, y1) = B(x1, y1),

so B̃ is well-defined. It is easy to observe that B̃ is biadditive. �

Of course each (A,B)-isometry is an (A,B)-quasi isometry. The following
result shows that for any (A,B)-quasi isometry there exists some (Ã, B̃)-
isometry connected with it.
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Theorem 1. Let S,H,X are groups, A : S2 → X, B : H2 → X be biad-
ditive functions, T : S → H be an (A,B)-quasi isometry, H̃ = 〈imT 〉. Let
further H̃B0, SAR be defined by (2.8) and (2.1),

SAL := {x ∈ S : ∀y∈S A(x, y) = 0},

SA0 = SAL ∩ SAR.

Then SAL, SA0 are normal subgroups of S, the function T̃ : S/SA0 → H̃/H̃B0

given by the formula

T̃ (x+ SA0) := T (x) + H̃B0, x ∈ S,

is well-defined and it is an (Ã, B̃)-isometry, where Ã, B̃ are defined by (2.9)
(for Ã we take B = A, H̃ = S in the previous lemma).

Proof. It is easy to observe that SAL, SA0 are normal subgroups of S.
Let x, y ∈ S. We observe that

A(x− y, z) = A(x, z)−A(y, z) = B(T (x), T (z))−B(T (y), T (z))

= B(T (x)− T (y), T (z)),

so x− y ∈ SAL ⇔ T (x)− T (y) ∈ H̃BL. In analogical way we can obtain that
x−y ∈ SAR ⇔ T (x)−T (y) ∈ H̃BR. Hence x−y ∈ SA0 ⇔ T (x)−T (y) ∈ H̃B0,
so T̃ is well-defined and it is injective.

Let v ∈ H̃, then there exist k1, . . . , kn ∈ Z, x1, . . . , xn ∈ S such that

v =
n∑
i=1

kiT (xi). Since for x, y, z ∈ S we have

0 = A(x+ y − y − x, z) = A(x+ y, z)−A(y, z)−A(x, z)

= B(T (x+ y), T (z))−B(T (y), T (z))−B(T (x), T (z))

= B(T (x+ y)− T (y)− T (x), T (z)),

0 = A(z, x+ y − y − x) = A(z, x+ y)−A(z, y)−A(z, x)

= B(T (z), T (x+ y))−B(T (z), T (y))−B(T (z), T (x))

= B(T (z), T (x+ y)− T (y)− T (x)),
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then T (x+ y)− T (y)− T (x) ∈ H̃B0. Hence we have

v + H̃B0 =

n∑
i=1

kiT (xi) + H̃B0 = T
( n∑
i=1

kixi

)
+ H̃B0 = T̃

( n∑
i=1

kixi + SA0

)
,

which means that T̃ is surjective. �

3. Main results

In this section we assume that S, H, X are groups, A : S2 → X,
B : H2 → X are biadditive functions, H̃ is a normal subgroup of H, H̃BL,
H̃BR, H̃B0, SAR are given resp. by (2.6), (2.7), (2.8), (2.1).

Remark 3. Let T : S → H, g : S → S satisfy the equation

(3.1) B(T (x), T (y)) = A(x, g(y)), x, y ∈ S.

Then we can assume that H is generated by imT .

Theorem 2. Let T : S → H, g : S → S satisfy equation (3.1),
H̃ := 〈imT 〉, T ∗ : H → S be a (B,A)-adjoint operator to T . Then H̃ ⊂ D(T ∗),

T ∗(T (y))− g(y) ∈ SAR, y ∈ S.

Moreover, if H = H̃ then HBLD∗ = H̃BL, HBTR = H̃BR, where HBTR,
HBLD∗ are given respectively by (2.3), (2.4).

Proof. From (3.1) we obtain that imT ⊂ D(T ∗), so H̃ ⊂ D(T ∗) and

A(x, T ∗(T (y))− g(y)) = A(x, T ∗(T (y)))−A(x, g(y))

= B(T (x), T (y))−B(T (x), T (y)) = 0, x, y ∈ S.

Hence T ∗(T (y))− g(y) ∈ SAR.
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Assume that H = H̃. We notice that HBR ⊂ HBTR and since H = D(T ∗),
we get HBL = HBLD∗ . Let v ∈ HBTR. For u ∈ H there exist x1, . . . , xn ∈ S
and k1, . . . , kn ∈ Z such that u =

n∑
i=1

kiT (xi). Then

B(u, v) = B
( n∑
i=1

kiT (xi), v
)
=

n∑
i=1

kiB(T (xi), v) = 0,

so v ∈ HBR. �

Theorem 3. Let T : S → H, g : S → S satisfy equation (3.1),
H̃ := 〈imT 〉, T ∗ : H → S be a (B,A)-adjoint operator to T , H̃BL ⊂ H̃BR.
Then

SALT∗ ⊂ SALg := {x ∈ S : ∀y∈S A(x, g(y)) = 0},(3.2)

g(x+ y)− g(y)− g(x) ∈ SAR, x, y ∈ S,(3.3)

g(SALT∗) ⊂ SAR,

and T is an (A1, B)-quasi isometry, where SALT∗ is given by (2.2) and
A1 : S

2 → X is given by the formula

(3.4) A1(x, y) = A(x, g(y)), x, y ∈ S.

Moreover, if H̃ = H, then SALT∗ = SALg.

Proof. Using previous theorem we get 〈im g〉 + SAR ⊂ 〈imT ∗〉 + SAR,
so SALT∗ ⊂ SALg (when H̃ = H we have 〈im g〉 + SAR = 〈imT ∗〉 + SAR, so
SALT∗ = SALg).

Using Lemma 1 (b) we have also

A(z, g(x+ y)−g(y)− g(x)) = A(z, g(x+ y))−A(z, g(y))−A(z, g(x))

= B(T (z), T (x+ y))−B(T (z), T (y))−B(T (z), T (x))

= B(T (z), T (x+ y)− T (y)− T (x)) = 0, x, y, z ∈ S.

Hence g(x+ y)− g(y)− g(x) ∈ SAR for x, y ∈ S.
Let x ∈ S, y ∈ SALT∗ . Then in view of Lemma 1 (c) we get T (y) ∈ HBLD∗ ,

so T (y) ∈ H̃BL ⊂ H̃BR. Hence we have

A(x, g(y)) = B(T (x), T (y)) = 0,

which means that g(y) ∈ SAR.
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For x, y ∈ S we have

B(T (x), T (y)) = A(x, g(y)) = A1(x, y),

which ends the proof. �

The following example shows that the assumption H̃BL ⊂ H̃BR is impor-
tant in the previous theorem.

Example 1. Let S = H = Q2, X = Q, g = (g1, g2) : S → S be an
arbitrary function, f : S → H be a function given by the formula

f(x) = (x1 + x2, g2(x)), x = (x1, x2) ∈ Q2.

Let further B : H2 → X, A : S2 → X be functions given by formulas

B((x1, x2), (y1, y2)) = x1y2, x1, x2, y1, y2 ∈ Q,

A((x1, x2), (y1, y2)) = (x1 + x2)y2, x1, x2, y1, y2 ∈ Q.

It is easy to see that A,B are biadditive and SAR = Q× 0.
We have also

A(x, g(y)) = (x1 + x2)g2(y) = B((x1 + x2, g2(x)), (y1 + y2, g2(y)))

= B(f(x), f(y)), x = (x1, x2), y = (y1, y2) ∈ Q2.

Hence (3.1) holds. Of course g2 can be nonadditive, so there exist x, y ∈ S
such that g(x+ y)− g(y)− g(x) /∈ SAR.

It is a natural question whether given a function T there exists a function
g such that (T, g) satisfies equation (3.1). The lemma below gives us an answer
for this question.

Lemma 3. Let T : S → H be such that imT ⊂ D(T ∗), where T ∗ is
a (B,A)-adjoint operator to T . Then (T, g) satisfies equation (3.1), where
g = T ∗ ◦ T : S → S.

Proof. We observe that

B(T (x), T (y)) = A(x, T ∗(T (y))) = A(x, g(y)), x, y ∈ S,

which ends the proof. �
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The second natural question is whether given a function g there exists a
function T such that (T, g) satisfies equation (3.1).

Lemma 4. Let g : S → S satisfies conditions (3.3), g(SALg) ⊂ SAR and
there exists a subgroup H̃ of H such that there exists an (A1, B)-quasi isom-
etry T : S → H̃ where A1, SALg are given resp. by (3.4), (3.2). Then (T, g)
satisfies (3.1).

Proof. Let x, y ∈ S. Then

B(T (x), T (y)) = A1(x, y) = A(x, g(y)),

which ends the proof. �

In the previous lemma, in the case when S,H are unitary spaces and
A,B are inner products, instead assuming the existence of an (A1, B)-quasi
isometry we can assume that g is positive and symmetric and there exists an
isometry from S to some subspace of H (see [3, Theorem 8]). In general we
do not have a similar result but we can write here the following

Theorem 4. Let g, h : S → S be such that imh ⊂ D(h∗) and g(x) −
(h∗ ◦ h)(x) ∈ SAR for x ∈ S, where h∗ : D(h∗) → S is an (A,A)-adjoint
operator to h. Assume that imh is (B,A)-isometric with some subset of H,
i.e. there exists I : S → H such that

B
(
I(h(x)), I(h(y))

)
= A(h(x), h(y)), x, y ∈ S.

Then (T, g) satisfies (3.1) with T := I ◦ h.

Proof. We observe that

B(T (x), T (y)) = B
(
I(h(x)), I(h(y))

)
= A(h(x), h(y))

= A(x, (h∗ ◦ h)(y)) = A(x, g(y)), x, y ∈ S. �

The following example shows that we cannot reverse the previous theorem.

Example 2. Let S = H = X = Q, A : S2 → X, B : H2 → X, g : S → S,
T : S → H be maps given by formulas

A(x, y) = xy, x, y ∈ S, B(x, y) = −xy, x, y ∈ S,

g(x) = −x, x ∈ S, T (x) = x, x ∈ S.
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Then it is easy to see that (T, g) satisfies (3.1). Suppose that there exists
a map h : S → S such that imh ⊂ D(h∗), g(x) − h∗ ◦ h(x) ∈ SAR, where
h∗ : D(h∗)→ S is (A,A)-adjoint operator to h. Then

0 ≤ h(x)2 = A(h(x), h(x)) = A
(
x, (h∗ ◦ h)(x)

)
= A(x, g(x)) = A(x,−x) = −x2, x ∈ S,

which gives us a contradiction.

We can also say something about the family of functions T which satisfy
equation (3.1) with the same g.

Theorem 5. Let T1, T : S → H, g : S → S, (T, g) satisfies (3.1), H̃ :=
〈imT1〉. Then (T1, g) satisfies (3.1) if and only if there exists a (B|〈imT 〉2 , B)-
quasi isometry I : 〈imT 〉 → 〈imT1〉 such that T1(x) − I(T (x)) ∈ H̃B0

for x ∈ S.

Proof. Assume that (T1, g) satisfies (3.1). For x ∈ 〈imT 〉 let ϕ(x) be an
arbitrary element of the set x+H̃B0. We define I : 〈imT 〉 → H̃ by the formula

I
( n∑
i=1

kiT (xi)
)
:= ϕ

( n∑
i=1

kiT1(xi) + H̃B0

)
, k1, . . . , kn ∈ Z, x1, . . . , xn ∈ S.

Let k1, . . . , kn, r1, . . . , rn ∈ Z, y, x1, . . . , xn ∈ S and
n∑
i=1

kiT (xi) =
n∑
i=1

riT (xi).

Then

0 = B
( n∑
i=1

kiT (xi)−
n∑
i=1

riT (xi), T (y)
)

=

n∑
i=1

kiB
(
T (xi), T (y)

)
−

n∑
i=1

riB
(
T (xi), T (y)

)
=

n∑
i=1

kiA
(
xi, g(y)

)
−

n∑
i=1

riA
(
xi, g(y)

)
=

n∑
i=1

kiB
(
T1(xi), T1(y)

)
−

n∑
i=1

riB
(
T1(xi), T1(y)

)
= B

( n∑
i=1

kiT1(xi)−
n∑
i=1

riT1(xi), T1(y)
)
,
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so
n∑
i=1

kiT1(xi)−
n∑
i=1

riT1(xi) ∈ H̃BL. In analogical way we can prove that

n∑
i=1

kiT1(xi)−
n∑
i=1

riT1(xi) ∈ H̃BR.

Hence
n∑
i=1

kiT1(xi)−
n∑
i=1

riT1(xi) ∈ H̃0, so I is well-defined. We have also

B
( n∑
i=1

kiT (xi),

n∑
j=1

rjT (xj)
)
=

n∑
i=1

ki

n∑
j=1

rjB
(
T (xi), T (xj)

)
=

n∑
i=1

ki

n∑
j=1

rjB
(
T1(xi), T1(xj)

)
= B

( n∑
i=1

kiT1(xi),

n∑
j=1

rjT1(xj)
)

= B

(
ϕ
( n∑
i=1

kiT1(xi)
)
, ϕ
( n∑
j=1

rjT1(xj)
))

,

so I is a (B|〈imT 〉2 , B)-quasi isometry. We have also

I(T (x)) + H̃B0 = ϕ(T1(x) + H̃B0) + H̃B0 = T1(x) + H̃B0, x ∈ S,

so T1(x)− I(T (x)) ∈ H̃B0 for x ∈ S.
Let I : 〈imT 〉 → H̃ be a (B|〈imT 〉2 , B)-quasi isometry such that T1(x) −

I(T (x)) ∈ H̃B0 for x ∈ S. Then

B(T1(x), T1(y)) = B
(
I (T (x)) , I(T (y))

)
= B(T (x), T (y)) = A(x, g(y)), x, y ∈ S,

which ends the proof. �
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