A FUNCTIONAL EQUATION WITH BIADDITIVE FUNCTIONS

Radoseaw Łukasik (i)

Abstract

Let S, H, X be groups. For two given biadditive functions $A: S^{2} \rightarrow$ $X, B: H^{2} \rightarrow X$ and for two unknown mappings $T: S \rightarrow H, g: S \rightarrow S$ we will study the functional equation $$
B(T(x), T(y))=A(x, g(y)), \quad x, y \in S
$$

which is a generalization of the orthogonality equation in Hilbert spaces.

1. Introduction

Let H, K be unitary spaces. It is easy to check that, if $f: H \rightarrow K$ satisfies the orthogonality equation

$$
\begin{equation*}
\langle f(x) \mid f(y)\rangle=\langle x \mid y\rangle, \tag{1.1}
\end{equation*}
$$

then f is a linear isometry (see, e.g. [6, Lemma 2.1.1 and the following Remark]).

The above equation was generalized in normed spaces X, Y by considering a norm derivative $\rho_{+}^{\prime}(x, y):=\|x\| \cdot \lim _{t \rightarrow 0^{+}} \frac{\|x+t y\|-\|x\|}{t}$ instead of inner

[^0]product, i.e.
\[

$$
\begin{equation*}
\rho_{+}^{\prime}(f(x), f(y))=\rho_{+}^{\prime}(x, y), \quad x, y \in X \tag{1.2}
\end{equation*}
$$

\]

with an unknown function $f: X \rightarrow Y$. Note that if the norm comes from an inner product $\langle\cdot, \cdot\rangle$, we obtain $\rho_{+}^{\prime}(x, y)=\langle x \mid y\rangle$.

The second way of generalization of the orthogonality equation in Hilbert spaces H, K is to look for the solutions of

$$
\begin{equation*}
\langle f(x) \mid g(y)\rangle=\langle x \mid y\rangle, \quad x, y \in H \tag{1.3}
\end{equation*}
$$

where $f, g: H \rightarrow K$ are unknown functions. Solutions of 1.2 and (1.3), can be found in the papers [1], [4], [2], 8].

In [5] authors give a natural generalization of such functional equations in the case of commutative groups. They consider biadditive mappings instead of inner products.

Another generalization of (1.3) we can find in the paper [7] where the author studies the equation

$$
\left\langle f(x) \mid g\left(y^{*}\right)\right\rangle=\left\langle x \mid y^{*}\right\rangle, \quad x \in E, y^{*} \in E^{*}
$$

where $f: E \rightarrow F, g: E^{*} \rightarrow F^{*}, E, F$ are Banach spaces, E^{*}, F^{*} are spaces dual to E and F respectively, and $\langle a \mid \varphi\rangle:=\varphi(a)$.

In [3] we can find a different approach. Instead of taking two different functions on the left side of (1.3), we change only the right side of (1.3), so we obtain

$$
\langle f(x) \mid f(y)\rangle=\langle x \mid g(y)\rangle, \quad x, y \in X
$$

with two unknown functions $f: X \rightarrow Y, g: X \rightarrow X$.
In this paper we generalize the above equation - we consider biadditive mappings instead of inner products.

2. Preliminaries

We start by recalling definition of multi-additive functions. By Perm (n) we denote the set of all bijections of the set $\{1, \ldots, n\}$.

Definition 1. Let S be a semigroup, H be a group, $n \in \mathbb{N}$. The function $A: S^{n} \rightarrow H$ is called n-additive if

$$
\begin{aligned}
& A\left(x_{1}, \ldots, x_{i-1}, x_{i}+y, x_{i+1}, \ldots, x_{n}\right) \\
& \quad=A\left(x_{1}, \ldots, x_{n}\right)+A\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}\right)
\end{aligned}
$$

for all $y, x_{1}, \ldots, x_{n} \in S$ and $i \in\{1, \ldots, n\}$.
Moreover, A is called symmetric if

$$
A\left(x_{1}, \ldots, x_{n}\right)=A\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

for all $x_{1}, \ldots, x_{n} \in S$ and $\sigma \in \operatorname{Perm}(n)$.
Now we introduce some theory of the adjoint operator on groups.
Definition 2. Let S, H, X be groups, $A: S^{2} \rightarrow X, B: H^{2} \rightarrow X$ be biadditive functions. Let further $T: S \rightarrow H$ and

$$
D\left(T^{*}\right):=\left\{v \in H: \exists_{y \in S} \forall_{x \in S} B(T(x), v)=A(x, y)\right\}
$$

A function $T^{*}: D\left(T^{*}\right) \rightarrow S$ is called a (B, A)-adjoint operator (to T) if and only if

$$
B(T(x), v)=A\left(x, T^{*}(v)\right), x \in S, v \in D\left(T^{*}\right)
$$

Remark 1. Let S, X be groups, $A: S^{2} \rightarrow X$ be a biadditive function. We observe that

$$
\begin{aligned}
A(x, v)+A(x, y) & +A(u, v)+A(u, y)=A(x, v+y)+A(u, v+y) \\
& =A(x+u, v+y)=A(x+u, v)+A(x+u, y) \\
& =A(x, v)+A(u, v)+A(x, y)+A(u, y), \quad x, y, u, v \in S
\end{aligned}
$$

so

$$
A(x, y)+A(u, v)=A(u, v)+A(x, y), \quad x, y, u, v \in S
$$

Hence the group generated by the image of A is a commutative subgroup of X (so we can assume that X is commutative).

Lemma 1 (see [5, Lemma 4]). Let S, H, X be groups, $A: S^{2} \rightarrow X, B: H^{2} \rightarrow$ X be biadditive functions. Let further $T: S \rightarrow H$ and $T^{*}: D\left(T^{*}\right) \rightarrow S$ be $a(B, A)$-adjoint operator to T,

$$
\begin{align*}
& S_{A R}:=\left\{y \in S: \forall_{x \in S} A(x, y)=0\right\}, \tag{2.1}\\
& S_{A L T^{*}}:=\left\{x \in S: \forall y \in \operatorname{im} T^{*} A(x, y)=0\right\}, \tag{2.2}\\
& H_{B T R}:=\left\{v \in H: \forall_{u \in \operatorname{im} T} B(u, v)=0\right\}, \tag{2.3}\\
& H_{B L D^{*}}:=\left\{u \in H: \forall_{v \in D\left(T^{*}\right)} B(u, v)=0\right\} . \tag{2.4}
\end{align*}
$$

Then
(a) $S_{A R}, S_{A L T^{*}}$ are normal subgroups of $S, D\left(T^{*}\right), H_{B T R}, H_{B L D *}$ are normal subgroups of H. Moreover in the case when X is torsion-free, if H is divisible, then $H_{B T R}, H_{B L D^{*}}$ are divisible, if S is divisible, then $S_{A R}$, $S_{A L T *}$ are divisible, if S, H are divisible, then $D\left(T^{*}\right)$ is divisible;
(b) $\forall_{x, y \in S} T(x+y)-T(y)-T(x) \in H_{B L D^{*}}$;
(c) $\forall_{x, y \in S} x-y \in S_{A L T^{*}} \Leftrightarrow T(x)-T(y) \in H_{B L D^{*}}$;
(d) $\forall_{u, v \in D\left(T^{*}\right)} T^{*}(u+v)-T^{*}(v)-T^{*}(u) \in S_{A R}$;
(e) $\forall_{u, v \in D\left(T^{*}\right)} u-v \in H_{B T R} \Leftrightarrow T^{*}(u)-T^{*}(v) \in S_{A R}$;
(f) $H_{B T R} \subset D\left(T^{*}\right)$;
(g) Let $\varkappa: S \rightarrow S / S_{A R}$ be a canonical homomorphism. Then the function $\widetilde{T^{*}}: D\left(T^{*}\right) / H_{B T R} \rightarrow \operatorname{im} T^{*} / S_{A R}$ given by

$$
\widetilde{T^{*}}\left(u+H_{B T R}\right)=T^{*}(u)+S_{A R}, \quad u \in D\left(T^{*}\right),
$$

is well-defined and it is an isomorphism.
Proof. Proofs of (b) $-(\sqrt{f})$ are in [5].
Let $v \in D\left(T^{*}\right), x \in H$. From Remark 1 we have

$$
\begin{aligned}
B(T(x), x+v-x) & =B(T(x), x)+B(T(x), v)-B(T(x), x) \\
& =B(T(x), v)=B\left(x, T^{*}(v)\right),
\end{aligned}
$$

so $D\left(T^{*}\right)$ is a normal subgroup of G (the rest of proofs of (a) are in [5]).
Let $u, v \in D\left(T^{*}\right)$ be such that $u-v \in H_{B T R}$. Then from (e) we have $T^{*}(u)-T^{*}(v) \in S_{A R}$, so $\widetilde{T^{*}}$ is well-defined. From (d) we obtain that $\widetilde{T^{*}}$ is a homomorphism. From (e) we obtain the injectiveness. Obviously $\widetilde{T^{*}}$ is surjective.

REMARK 2. If in the previous lemma S, H, X are linear spaces over some field \mathbb{K} and A, B are \mathbb{K}-linear, then $S_{A R}, S_{A L T^{*}}, D\left(T^{*}\right), H_{B T R}, H_{B L D^{*}}$ are linear spaces over \mathbb{K}.

Definition 3. Let S, H, X be groups, $A: S^{2} \rightarrow X, B: H^{2} \rightarrow X$ be biadditive functions, $T: S \rightarrow H$. A function T is called an (A, B)-quasi isometry if

$$
\begin{equation*}
B(T(x), T(y))=A(x, y), \quad x, y \in S \tag{2.5}
\end{equation*}
$$

A function T is called an (A, B)-isometry if T is bijective and satisfies 2.5 .
Lemma 2. Let H, X be groups, \widetilde{H} be a normal subgroup of $H, B: H^{2} \rightarrow X$ be a biadditive function, the sets $\widetilde{H}_{B L}, \widetilde{H}_{B R}$ be given by formulas

$$
\begin{align*}
\widetilde{H}_{B L} & =\left\{x \in \widetilde{H}: \forall_{y \in \widetilde{H}} B(x, y)=0\right\} \tag{2.6}\\
\widetilde{H}_{B R} & =\left\{y \in \widetilde{H}: \forall_{x \in \widetilde{H}} B(x, y)=0\right\} \tag{2.7}\\
\widetilde{H}_{B 0} & :=\widetilde{H}_{B L} \cap \widetilde{H}_{B R} \tag{2.8}
\end{align*}
$$

Then $\widetilde{H}_{B L}, \widetilde{H}_{B R}$, and $\widetilde{H}_{B 0}$ are normal subgroups of \widetilde{H}, the function $\widetilde{B}:\left(\widetilde{H} / \widetilde{H}_{B 0}\right)^{2} \rightarrow X$ given by the formula

$$
\begin{equation*}
\widetilde{B}\left(x+\widetilde{H}_{B 0}, y+\widetilde{H}_{B 0}\right):=B(x, y), \quad x, y \in \widetilde{H} \tag{2.9}
\end{equation*}
$$

is well-defined and it is biadditive.
Proof. It is easy to observe that $\widetilde{H}_{B L}, \widetilde{H}_{B R}, \widetilde{H}_{B 0}$ are normal subgroups of \widetilde{H}. Let $x_{1}, x_{2}, y_{1}, y_{2} \in \widetilde{H}$ be such that $x_{2}-x_{1}, y_{2}-y_{1} \in \widetilde{H}_{B 0}$. Then

$$
\begin{aligned}
B\left(x_{2}, y_{2}\right) & =B\left(x_{2}-x_{1}, y_{2}\right)+B\left(x_{1}, y_{2}\right)=B\left(x_{1}, y_{2}\right) \\
& =B\left(x_{1}, y_{2}-y_{1}\right)+B\left(x_{1}, y_{1}\right)=B\left(x_{1}, y_{1}\right)
\end{aligned}
$$

so \widetilde{B} is well-defined. It is easy to observe that \widetilde{B} is biadditive.
Of course each (A, B)-isometry is an (A, B)-quasi isometry. The following result shows that for any (A, B)-quasi isometry there exists some $(\widetilde{A}, \widetilde{B})$ isometry connected with it.

Theorem 1. Let S, H, X are groups, $A: S^{2} \rightarrow X, B: H^{2} \rightarrow X$ be biadditive functions, $T: S \rightarrow H$ be an (A, B)-quasi isometry, $\widetilde{H}=\langle\operatorname{im} T\rangle$. Let further $\widetilde{H}_{B 0}, S_{A R}$ be defined by (2.8) and (2.1),

$$
\begin{aligned}
& S_{A L}:=\left\{x \in S: \forall_{y \in S} A(x, y)=0\right\} \\
& S_{A 0}=S_{A L} \cap S_{A R}
\end{aligned}
$$

Then $S_{A L}, S_{A 0}$ are normal subgroups of S, the function $\widetilde{T}: S / S_{A 0} \rightarrow \widetilde{H} / \widetilde{H}_{B 0}$ given by the formula

$$
\widetilde{T}\left(x+S_{A 0}\right):=T(x)+\widetilde{H}_{B 0}, x \in S
$$

is well-defined and it is an $(\widetilde{A}, \widetilde{B})$-isometry, where $\widetilde{A}, \widetilde{B}$ are defined by (2.9) (for \widetilde{A} we take $B=A, \widetilde{H}=S$ in the previous lemma).

Proof. It is easy to observe that $S_{A L}, S_{A 0}$ are normal subgroups of S. Let $x, y \in S$. We observe that

$$
\begin{aligned}
A(x-y, z) & =A(x, z)-A(y, z)=B(T(x), T(z))-B(T(y), T(z)) \\
& =B(T(x)-T(y), T(z))
\end{aligned}
$$

so $x-y \in S_{A L} \Leftrightarrow T(x)-T(y) \in \widetilde{H}_{B L}$. In analogical way we can obtain that $x-y \in S_{A R} \Leftrightarrow T(x)-T(y) \in \widetilde{H}_{B R}$. Hence $x-y \in S_{A 0} \Leftrightarrow T(x)-T(y) \in \widetilde{H}_{B 0}$, so \widetilde{T} is well-defined and it is injective.

Let $v \in \widetilde{H}$, then there exist $k_{1}, \ldots, k_{n} \in \mathbb{Z}, x_{1}, \ldots, x_{n} \in S$ such that $v=\sum_{i=1}^{n} k_{i} T\left(x_{i}\right)$. Since for $x, y, z \in S$ we have

$$
\begin{aligned}
0 & =A(x+y-y-x, z)=A(x+y, z)-A(y, z)-A(x, z) \\
& =B(T(x+y), T(z))-B(T(y), T(z))-B(T(x), T(z)) \\
& =B(T(x+y)-T(y)-T(x), T(z)) \\
0 & =A(z, x+y-y-x)=A(z, x+y)-A(z, y)-A(z, x) \\
& =B(T(z), T(x+y))-B(T(z), T(y))-B(T(z), T(x)) \\
& =B(T(z), T(x+y)-T(y)-T(x))
\end{aligned}
$$

then $T(x+y)-T(y)-T(x) \in \widetilde{H}_{B 0}$. Hence we have

$$
v+\widetilde{H}_{B 0}=\sum_{i=1}^{n} k_{i} T\left(x_{i}\right)+\widetilde{H}_{B 0}=T\left(\sum_{i=1}^{n} k_{i} x_{i}\right)+\widetilde{H}_{B 0}=\widetilde{T}\left(\sum_{i=1}^{n} k_{i} x_{i}+S_{A 0}\right)
$$

which means that \widetilde{T} is surjective.

3. Main results

In this section we assume that S, H, X are groups, $A: S^{2} \rightarrow X$, $\underset{\sim}{B}: H^{2} \rightarrow X$ are biadditive functions, \widetilde{H} is a normal subgroup of $H, \widetilde{H}_{B L}$, $\widetilde{H}_{B R}, \widetilde{H}_{B 0}, S_{A R}$ are given resp. by (2.6), (2.7), (2.8), (2.1).

REmARK 3. Let $T: S \rightarrow H, g: S \rightarrow S$ satisfy the equation

$$
\begin{equation*}
B(T(x), T(y))=A(x, g(y)), \quad x, y \in S \tag{3.1}
\end{equation*}
$$

Then we can assume that H is generated by $\operatorname{im} T$.
Theorem 2. Let $T: S \rightarrow H, g: S \rightarrow S$ satisfy equation (3.1), $\widetilde{H}:=\langle\operatorname{im} T\rangle, T^{*}: H \rightarrow S$ be $a(B, A)$-adjoint operator to T. Then $\widetilde{H} \subset D\left(T^{*}\right)$,

$$
T^{*}(T(y))-g(y) \in S_{A R}, \quad y \in S
$$

Moreover, if $H=\widetilde{H}$ then $H_{B L D^{*}}=\widetilde{H}_{B L}, H_{B T R}=\widetilde{H}_{B R}$, where $H_{B T R}$, $H_{B L D^{*}}$ are given respectively by (2.3), (2.4).

Proof. From (3.1) we obtain that $\operatorname{im} T \subset D\left(T^{*}\right)$, so $\widetilde{H} \subset D\left(T^{*}\right)$ and

$$
\begin{aligned}
A\left(x, T^{*}(T(y))-g(y)\right) & =A\left(x, T^{*}(T(y))\right)-A(x, g(y)) \\
& =B(T(x), T(y))-B(T(x), T(y))=0, \quad x, y \in S
\end{aligned}
$$

Hence $T^{*}(T(y))-g(y) \in S_{A R}$.

Assume that $H=\widetilde{H}$. We notice that $H_{B R} \subset H_{B T R}$ and since $H=D\left(T^{*}\right)$, we get $H_{B L}=H_{B L D^{*}}$. Let $v \in H_{B T R}$. For $u \in H$ there exist $x_{1}, \ldots, x_{n} \in S$ and $k_{1}, \ldots, k_{n} \in \mathbb{Z}$ such that $u=\sum_{i=1}^{n} k_{i} T\left(x_{i}\right)$. Then

$$
B(u, v)=B\left(\sum_{i=1}^{n} k_{i} T\left(x_{i}\right), v\right)=\sum_{i=1}^{n} k_{i} B\left(T\left(x_{i}\right), v\right)=0,
$$

so $v \in H_{B R}$.
Theorem 3. Let $T: S \rightarrow H, g: S \rightarrow S$ satisfy equation (3.1), $\widetilde{H}:=\langle\operatorname{im} T\rangle, T^{*}: H \rightarrow S$ be a (B, A)-adjoint operator to $T, \widetilde{H}_{B L} \subset \widetilde{H}_{B R}$. Then

$$
\begin{align*}
& S_{A L T^{*}} \subset S_{A L g}:=\left\{x \in S: \forall_{y \in S} A(x, g(y))=0\right\}, \tag{3.2}\\
& g(x+y)-g(y)-g(x) \in S_{A R}, \quad x, y \in S, \tag{3.3}\\
& g\left(S_{A L T^{*}}\right) \subset S_{A R},
\end{align*}
$$

and T is an $\left(A_{1}, B\right)$-quasi isometry, where $S_{A L T^{*}}$ is given by (2.2) and $A_{1}: S^{2} \rightarrow X$ is given by the formula

$$
\begin{equation*}
A_{1}(x, y)=A(x, g(y)), \quad x, y \in S \tag{3.4}
\end{equation*}
$$

Moreover, if $\widetilde{H}=H$, then $S_{A L T^{*}}=S_{A L g}$.
Proof. Using previous theorem we get $\langle\operatorname{im} g\rangle+S_{A R} \subset\left\langle\operatorname{im} T^{*}\right\rangle+S_{A R}$, so $S_{A L T^{*}} \subset S_{A L g}$ (when $\widetilde{H}=H$ we have $\langle\operatorname{im} g\rangle+S_{A R}=\left\langle\operatorname{im} T^{*}\right\rangle+S_{A R}$, so $\left.S_{A L T^{*}}=S_{A L g}\right)$.

Using Lemma (b) we have also

$$
\begin{array}{r}
A(z, g(x+y)-g(y)-g(x))=A(z, g(x+y))-A(z, g(y))-A(z, g(x)) \\
=B(T(z), T(x+y))-B(T(z), T(y))-B(T(z), T(x)) \\
=B(T(z), T(x+y)-T(y)-T(x))=0, \quad x, y, z \in S .
\end{array}
$$

Hence $g(x+y)-g(y)-g(x) \in S_{A R}$ for $x, y \in S$.
Let $x \in S, y \in S_{A L T^{*}}$. Then in view of Lemma1(c) we get $T(y) \in H_{B L D^{*}}$, so $T(y) \in \widetilde{H}_{B L} \subset \widetilde{H}_{B R}$. Hence we have

$$
A(x, g(y))=B(T(x), T(y))=0
$$

which means that $g(y) \in S_{A R}$.

For $x, y \in S$ we have

$$
B(T(x), T(y))=A(x, g(y))=A_{1}(x, y)
$$

which ends the proof.
The following example shows that the assumption $\widetilde{H}_{B L} \subset \widetilde{H}_{B R}$ is important in the previous theorem.

Example 1. Let $S=H=\mathbb{Q}^{2}, X=\mathbb{Q}, g=\left(g_{1}, g_{2}\right): S \rightarrow S$ be an arbitrary function, $f: S \rightarrow H$ be a function given by the formula

$$
f(x)=\left(x_{1}+x_{2}, g_{2}(x)\right), \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{Q}^{2}
$$

Let further $B: H^{2} \rightarrow X, A: S^{2} \rightarrow X$ be functions given by formulas

$$
\begin{aligned}
& B\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=x_{1} y_{2}, \quad x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{Q} \\
& A\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\left(x_{1}+x_{2}\right) y_{2}, \quad x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{Q}
\end{aligned}
$$

It is easy to see that A, B are biadditive and $S_{A R}=\mathbb{Q} \times 0$.
We have also

$$
\begin{aligned}
A(x, g(y)) & =\left(x_{1}+x_{2}\right) g_{2}(y)=B\left(\left(x_{1}+x_{2}, g_{2}(x)\right),\left(y_{1}+y_{2}, g_{2}(y)\right)\right) \\
& =B(f(x), f(y)), \quad x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{Q}^{2}
\end{aligned}
$$

Hence (3.1) holds. Of course g_{2} can be nonadditive, so there exist $x, y \in S$ such that $g(x+y)-g(y)-g(x) \notin S_{A R}$.

It is a natural question whether given a function T there exists a function g such that (T, g) satisfies equation (3.1). The lemma below gives us an answer for this question.

Lemma 3. Let $T: S \rightarrow H$ be such that $\operatorname{im} T \subset D\left(T^{*}\right)$, where T^{*} is $a(B, A)$-adjoint operator to T. Then (T, g) satisfies equation (3.1), where $g=T^{*} \circ T: S \rightarrow S$.

Proof. We observe that

$$
B(T(x), T(y))=A\left(x, T^{*}(T(y))\right)=A(x, g(y)), \quad x, y \in S
$$

which ends the proof.

The second natural question is whether given a function g there exists a function T such that (T, g) satisfies equation (3.1).

Lemma 4. Let $g: S \rightarrow S$ satisfies conditions (3.3), $g\left(S_{A L g}\right) \subset S_{A R}$ and there exists a subgroup \widetilde{H} of H such that there exists an $\left(A_{1}, B\right)$-quasi isometry $T: S \rightarrow \widetilde{H}$ where $A_{1}, S_{A L g}$ are given resp. by (3.4), (3.2). Then (T, g) satisfies (3.1).

Proof. Let $x, y \in S$. Then

$$
B(T(x), T(y))=A_{1}(x, y)=A(x, g(y))
$$

which ends the proof.

In the previous lemma, in the case when S, H are unitary spaces and A, B are inner products, instead assuming the existence of an $\left(A_{1}, B\right)$-quasi isometry we can assume that g is positive and symmetric and there exists an isometry from S to some subspace of H (see [3, Theorem 8]). In general we do not have a similar result but we can write here the following

Theorem 4. Let $g, h: S \rightarrow S$ be such that $\operatorname{im} h \subset D\left(h^{*}\right)$ and $g(x)-$ $\left(h^{*} \circ h\right)(x) \in S_{A R}$ for $x \in S$, where $h^{*}: D\left(h^{*}\right) \rightarrow S$ is an (A, A)-adjoint operator to h. Assume that $\operatorname{im} h$ is (B, A)-isometric with some subset of H, i.e. there exists $I: S \rightarrow H$ such that

$$
B(I(h(x)), I(h(y)))=A(h(x), h(y)), \quad x, y \in S
$$

Then (T, g) satisfies (3.1) with $T:=I \circ h$.
Proof. We observe that

$$
\begin{aligned}
B(T(x), T(y)) & =B(I(h(x)), I(h(y)))=A(h(x), h(y)) \\
& =A\left(x,\left(h^{*} \circ h\right)(y)\right)=A(x, g(y)), \quad x, y \in S
\end{aligned}
$$

The following example shows that we cannot reverse the previous theorem.
Example 2. Let $S=H=X=\mathbb{Q}, A: S^{2} \rightarrow X, B: H^{2} \rightarrow X, g: S \rightarrow S$, $T: S \rightarrow H$ be maps given by formulas

$$
\begin{gathered}
A(x, y)=x y, \quad x, y \in S, \quad B(x, y)=-x y, \quad x, y \in S \\
g(x)=-x, \quad x \in S, \quad T(x)=x, \quad x \in S
\end{gathered}
$$

Then it is easy to see that (T, g) satisfies (3.1). Suppose that there exists a map $h: S \rightarrow S$ such that $\operatorname{im} h \subset D\left(h^{*}\right), g(x)-h^{*} \circ h(x) \in S_{A R}$, where $h^{*}: D\left(h^{*}\right) \rightarrow S$ is (A, A)-adjoint operator to h. Then

$$
\begin{aligned}
0 \leq h(x)^{2} & =A(h(x), h(x))=A\left(x,\left(h^{*} \circ h\right)(x)\right) \\
& =A(x, g(x))=A(x,-x)=-x^{2}, \quad x \in S
\end{aligned}
$$

which gives us a contradiction.
We can also say something about the family of functions T which satisfy equation (3.1) with the same g.

Theorem 5. Let $T_{1}, T: S \rightarrow H, g: S \rightarrow S,(T, g)$ satisfies (3.1), $\widetilde{H}:=$ $\left\langle\operatorname{im} T_{1}\right\rangle$. Then $\left(T_{1}, g\right)$ satisfies (3.1) if and only if there exists a $\left(\left.B\right|_{\langle\mathrm{im} T\rangle^{2}}, B\right)$ quasi isometry $I:\langle\operatorname{im} T\rangle \rightarrow\left\langle\operatorname{im} T_{1}\right\rangle$ such that $T_{1}(x)-I(T(x)) \in \widetilde{H}_{B 0}$ for $x \in S$.

Proof. Assume that $\left(T_{1}, g\right)$ satisfies (3.1). For $x \in\langle\operatorname{im} T\rangle$ let $\varphi(x)$ be an arbitrary element of the set $x+\widetilde{H}_{B 0}$. We define $I:\langle\operatorname{im} T\rangle \rightarrow \widetilde{H}$ by the formula

$$
I\left(\sum_{i=1}^{n} k_{i} T\left(x_{i}\right)\right):=\varphi\left(\sum_{i=1}^{n} k_{i} T_{1}\left(x_{i}\right)+\widetilde{H}_{B 0}\right), \quad k_{1}, \ldots, k_{n} \in \mathbb{Z}, x_{1}, \ldots, x_{n} \in S
$$

Let $k_{1}, \ldots, k_{n}, r_{1}, \ldots, r_{n} \in \mathbb{Z}, y, x_{1}, \ldots, x_{n} \in S$ and $\sum_{i=1}^{n} k_{i} T\left(x_{i}\right)=\sum_{i=1}^{n} r_{i} T\left(x_{i}\right)$. Then

$$
\begin{aligned}
0 & =B\left(\sum_{i=1}^{n} k_{i} T\left(x_{i}\right)-\sum_{i=1}^{n} r_{i} T\left(x_{i}\right), T(y)\right) \\
& =\sum_{i=1}^{n} k_{i} B\left(T\left(x_{i}\right), T(y)\right)-\sum_{i=1}^{n} r_{i} B\left(T\left(x_{i}\right), T(y)\right) \\
& =\sum_{i=1}^{n} k_{i} A\left(x_{i}, g(y)\right)-\sum_{i=1}^{n} r_{i} A\left(x_{i}, g(y)\right) \\
& =\sum_{i=1}^{n} k_{i} B\left(T_{1}\left(x_{i}\right), T_{1}(y)\right)-\sum_{i=1}^{n} r_{i} B\left(T_{1}\left(x_{i}\right), T_{1}(y)\right) \\
& =B\left(\sum_{i=1}^{n} k_{i} T_{1}\left(x_{i}\right)-\sum_{i=1}^{n} r_{i} T_{1}\left(x_{i}\right), T_{1}(y)\right)
\end{aligned}
$$

so $\sum_{i=1}^{n} k_{i} T_{1}\left(x_{i}\right)-\sum_{i=1}^{n} r_{i} T_{1}\left(x_{i}\right) \in \widetilde{H}_{B L}$. In analogical way we can prove that

$$
\sum_{i=1}^{n} k_{i} T_{1}\left(x_{i}\right)-\sum_{i=1}^{n} r_{i} T_{1}\left(x_{i}\right) \in \widetilde{H}_{B R}
$$

Hence $\sum_{i=1}^{n} k_{i} T_{1}\left(x_{i}\right)-\sum_{i=1}^{n} r_{i} T_{1}\left(x_{i}\right) \in \widetilde{H}_{0}$, so I is well-defined. We have also

$$
\begin{aligned}
B\left(\sum_{i=1}^{n} k_{i} T\left(x_{i}\right), \sum_{j=1}^{n} r_{j} T\left(x_{j}\right)\right) & =\sum_{i=1}^{n} k_{i} \sum_{j=1}^{n} r_{j} B\left(T\left(x_{i}\right), T\left(x_{j}\right)\right) \\
& =\sum_{i=1}^{n} k_{i} \sum_{j=1}^{n} r_{j} B\left(T_{1}\left(x_{i}\right), T_{1}\left(x_{j}\right)\right) \\
& =B\left(\sum_{i=1}^{n} k_{i} T_{1}\left(x_{i}\right), \sum_{j=1}^{n} r_{j} T_{1}\left(x_{j}\right)\right) \\
& =B\left(\varphi\left(\sum_{i=1}^{n} k_{i} T_{1}\left(x_{i}\right)\right), \varphi\left(\sum_{j=1}^{n} r_{j} T_{1}\left(x_{j}\right)\right)\right)
\end{aligned}
$$

so I is a $\left(\left.B\right|_{\langle\mathrm{im} T\rangle^{2}}, B\right)$-quasi isometry. We have also

$$
I(T(x))+\widetilde{H}_{B 0}=\varphi\left(T_{1}(x)+\widetilde{H}_{B 0}\right)+\widetilde{H}_{B 0}=T_{1}(x)+\widetilde{H}_{B 0}, \quad x \in S
$$

so $T_{1}(x)-I(T(x)) \in \widetilde{H}_{B 0}$ for $x \in S$.
Let $I:\langle\operatorname{im} T\rangle \rightarrow \widetilde{H}$ be a $\left(\left.B\right|_{\langle\operatorname{im} T\rangle^{2}}, B\right)$-quasi isometry such that $T_{1}(x)-$ $I(T(x)) \in \widetilde{H}_{B 0}$ for $x \in S$. Then

$$
\begin{aligned}
B\left(T_{1}(x), T_{1}(y)\right) & =B(I(T(x)), I(T(y))) \\
& =B(T(x), T(y))=A(x, g(y)), \quad x, y \in S
\end{aligned}
$$

which ends the proof.

References

[1] J. Chmieliński, Orthogonality equation with two unknown functions, Aequationes Math. 90 (2016), no. 1, 11-23.
[2] R. Łukasik, A note on the orthogonality equation with two functions, Aequationes Math. 90 (2016), no. 5, 961-965.
[3] R. Łukasik, Some orthogonality equation with two functions, Miskolc Math. Notes 18 (2017), no. 2, 953-960.
[4] R. Łukasik and P. Wójcik, Decomposition of two functions in the orthogonality equation, Aequationes Math. 90 (2016), no. 3, 495-499.
[5] R. Łukasik and P. Wójcik, Functions preserving the biadditivity, Results Math. 75 (2020), no. 3, Paper No. 82, 17 pp.
[6] W. Mlak, Hilbert Spaces and Operator Theory, PWN-Polish Scientific Publishers, Warsaw, Kluwer Academic Publishers Group, Dordrecht, 1991.
[7] M.M. Sadr, Decomposition of functions between Banach spaces in the orthogonality equation, Aequationes Math. 91 (2017), no. 4, 739-743.
[8] P. Wójcik, On an orthogonality equation in normed spaces, Funct. Anal. Appl. 52 (2018), no. 3, 224-227.

Institute of Mathematics
University of Silesia in Katowice
Bankowa 14
40-007 Katowice
Poland
e-mail: radoslaw.lukasik@us.edu.pl

[^0]: Received: 12.01.2022. Accepted: 11.04.2022. Published online: 02.05.2022.
 (2020) Mathematics Subject Classification: 39B52, 20M15, 20K25, 20 K 30.

 Key words and phrases: biadditive function, orthogonality equation, isometry, adjoint operator.
 (C) 2022 The Author(s).

 This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY (http://creativecommons.org/licenses/by/4.0/).

