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NUMERICAL COMPARISON OF FNVIM AND FNHPM
FOR SOLVING A CERTAIN TYPE OF

NONLINEAR CAPUTO TIME-FRACTIONAL
PARTIAL DIFFERENTIAL EQUATIONS

Ali Khalouta , Abdelouahab Kadem

Abstract. This work presents a numerical comparison between two efficient
methods namely the fractional natural variational iteration method (FNVIM)
and the fractional natural homotopy perturbation method (FNHPM) to solve
a certain type of nonlinear Caputo time-fractional partial differential equations
in particular, nonlinear Caputo time-fractional wave-like equations with vari-
able coefficients. These two methods provided an accurate and efficient tool
for solving this type of equations. To show the efficiency and capability of the
proposed methods we have solved some numerical examples. The results show
that there is an excellent agreement between the series solutions obtained by
these two methods. However, the FNVIM has an advantage over FNHPM be-
cause it takes less time to solve this type of nonlinear problems without using
He’s polynomials. In addition, the FNVIM enables us to overcome the diffi-
culties arising in identifying the general Lagrange multiplier and it may be
considered as an added advantage of this technique compared to the FNHPM.

1. Introduction

In mathematics, the fractional calculus is a branch of the analysis, which
studies the generalization of the derivation and integration of integer
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order n (ordinary) to the non-integer order (fractional). It has turned out that
many phenomena in engineering, physics and other sciences can be described
very successfully by models using mathematical tools from fractional calcu-
lus. Recently, The nonlinear fractional partial differential equations appeared
in many branches of physics, engineering and applied mathematics includ-
ing fluid mechanics, viscoelasticity, aerodynamics, electrodynamics, rheology,
mathematical biology and so on (see [6],[7],[11],[13],[16],[17]). Hence, it is im-
portant to solve nonlinear fractional partial differential equations. In general,
there exists no method that yields an exact solution for nonlinear fractional
partial differential equations due to the computational complexities of nonlin-
ear parts involving them. Therefore, several different and powerful methods
for solving fractional partial differential equations have been proposed in or-
der to obtain the approximate solutions. The most commonly used ones are:
the adomian decomposition method (ADM) [4], variational iteration method
(VIM) [15] homotopy analysis method (HAM) [12], homotopy perturbation
method (HPM) [5], fractional reduced differential transform method [10], and
fractional residual power series method (FRPSM) [9].

The main objective of this paper is to introduce a numerical compar-
ison of two powerful methods, the fractional natural variational iteration
method (FNVIM) and the fractional natural homotopy perturbation method
(FNHPM) for solving certain type of nonlinear Caputo time-fractional partial
differential equations in particular, nonlinear Caputo time-fractional wave-like
equation with variable coefficients of the form ([8],[9])

Dα
t v =

n∑
i,j=1

F1ij(X, t, v)
∂k+m

∂xki ∂x
m
j

F2ij(vxi , vxj )(1.1)

+

n∑
i=1

G1i(X, t, v)
∂p

∂xpi
G2i(vxi) +H(X, t, v) + S(X, t),

with the initial conditions

(1.2) v(X, 0) = a0(X), vt(X, 0) = a1(X),

where Dα
t is the Caputo fractional derivative operator of order α, 1 < α ≤ 2

and v is a function of (X, t) ∈ Rn×R+, F1ij , G1i i, j ∈ {1, 2, ..., n} are nonlinear
functions of X, t and v, F2ij , G2i i, j ∈ {1, 2, ..., n} , are nonlinear functions of
derivatives of v with respect to xi and xj i, j ∈ {1, 2, ..., n} , respectively. Also
H,S are nonlinear functions and k,m, p are integers.
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2. Definitions and properties

We present some definitions and important properties of the fractional
calculus theory and natural transform that will be widely used in this paper.

Definition 2.1 ([11]). Let f ∈ L1(0, T ), T > 0. The Riemann-Liouville
fractional integral of order α ≥ 0 is defined by

Iαf(t) =
1

Γ(α)

t∫
0

(t− τ)
α−1

f(τ)dτ,

where Γ(.) is the Euler gamma function.

Definition 2.2 ([11]). Let f (n) ∈ L1(0, T ), T > 0. The Liouville-Caputo
fractional derivative of order α ≥ 0 is defined by

Dαf(t) =
1

Γ(n− α)

t∫
0

(t− τ)
n−α−1

f (n)(τ)dτ,

where n− 1 < α ≤ n, n = [α] + 1 with [α] being the integer part of α.

Definition 2.3 ([11]). The Mittag-Leffler function is defined as follows

(2.1) Eα (z) =

∞∑
n=0

zn

Γ(nα+ 1)
, α ∈ C, Re(α) > 0.

For α = 1, Eα (z) reduces to ez. A further generalization of (2.1) is given in
the form

Eα,β (z) =

∞∑
n=0

zn

Γ(nα+ β)
, α, β ∈ C, Re(α) > 0, Re(β) > 0.

Definition 2.4 ([1]). The natural transform is defined over the set of
functions

A =

{
f(t)/∃M, τ1, τ2 > 0, |f(t)| < Me

|t|
τj , if t ∈ (−1)j × [0,∞) , j ∈ Z+

}
,
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by the following integral

N+ [f(t)] = R+(s, u) =
1

u

+∞∫
0

e−
st
u f(t)dt, s, u ∈ (0,∞).

Theorem 2.5 ([8]). Let n ∈ N∗ and α > 0 be such that n−1 < α ≤ n and
R+(s, u) be the natural transform of the function f(t), then the natural trans-
form denoted by R+

α (s, u) of the Caputo fractional derivative of the function
f(t) of order α, is given by

N+ [Dαf(t)] = R+
α (s, u) =

sα

uα
R+(s, u)−

n−1∑
k=0

sα−(k+1)

uα−k
[
Dk
t f(t)

]
t=0

.

3. FNVIM for nonlinear Caputo time-fractional
wave-like equations

Theorem 3.1. Consider the nonlinear Caputo time-fractional wave-like
equations (1.1) with initial conditions (1.2). Then, by the FNVIM the exact
solution of the equations (1.1) and (1.2) is given as a limit of the successive
approximations vn(X, t), n = 0, 1, 2, . . . , in other words

v(X, t) = lim
n−→∞

vn(X, t).

Proof. To prove the above theorem, firstly we define the nonlinear oper-
ators

Nv =
n∑

i,j=1

F1ij(X, t, v)
∂k+m

∂xki ∂x
m
j

F2ij(vxi , vxj ),

Mv =

n∑
i=1

G1i(X, t, v)
∂p

∂xpi
G2i(vxi),

Kv = H(X, t, v).

Then, the equation (1.1) is written in the form

(3.1) Dα
t v(X, t) = Nv(X, t) +Mv(X, t) +Kv(X, t) + S(X, t).
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The methodology consists of applying the natural transform first on both
sides of (3.1) and using the Theorem 2.5, we have

N+ [v(X, t)] =
uα

sα

n−1∑
k=0

sα−(k+1)

uα−k
[
Dkv(X, t)

]
t=0

(3.2)

+
uα

sα
N+ [Nv(X, t) +Mv(X, t) +Kv(X, t) + S(X, t)] .

Operating the inverse natural transform on both sides of (3.2), we get

(3.3) v(X, t) = L(X, t) +N−1
(
uα

sα
N+ [Nv(X, t) +Mv(X, t) +Kv(X, t)]

)
,

where L(X, t) is a term arising from the source term and the prescribed initial
conditions. After that, let us take the first partial derivative with respect to t
of the equation (3.3), to obtain

∂

∂t
v(X, t) =

∂

∂t
L(X, t)

+
∂

∂t
N−1

(
uα

sα
N+ [Nv(X, t) +Mv(X, t) +Kv(X, t)]

)
.

According to the variational iteration method ([3]), we can construct a
correct functional as follows

(3.4) vn+1(X, t) = vn(X, t)

+

t∫
0

λ(τ)

[
∂vn
∂τ
− ∂

∂τ
N−1

(
uα

sα
N+ [Nṽn +Mṽn +Kṽn]

)
− ∂L

∂τ

]
dτ.

where λ(τ) is a general Lagrange multiplier which can be identified opti-
mally via the variational theory and integration by parts. The subscript n
denotes the nth-order approximation, ṽn is considered as a restricted varia-
tion (i.e. δṽn = 0). Making the above correction functional stationary, and
noting that δṽn = 0,

δvn+1(X, t) = δvn(X, t) + δ

t∫
0

λ(τ)

[
∂vn
∂τ
− ∂L

∂τ

]
dτ,
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we obtain the following stationary conditions

1 + λ(τ)|τ=t = 0,

λ′(τ)|τ=t = 0.

Therefore, the Lagrange multiplier can be easily identified as

(3.5) λ(τ) = −1.

Substituting equation (3.5) into the correction functional equation (3.4),
we get the iterative formula for n = 0, 1, 2, ..., as follows

vn+1(X, t) = vn(X, t)

−
t∫

0

[
∂vn
∂τ
− ∂

∂τ
N−1

(
uα

sα
N+ [Nvn +Mvn +Kvn]

)
− ∂L

∂τ

]
dτ.

Or

vn+1(X, t) = L(X, t) +N−1
(
uα

sα
N+ [Nvn(X, t) +Mvn(X, t) +Kvn(X, t)]

)
.

Finally, the exact solution of the equations (1.1) and (1.2) is given as a
limit of the successive approximations vn(X, t), n = 0, 1, 2, ..., in other words

v(X, t) = lim
n→∞

vn(X, t). �

4. FNHPM for nonlinear Caputo time-fractional wave-like
equations

Theorem 4.1. Consider the following nonlinear Caputo time-fractional
wave-like equations (1.1) with the initial conditions (1.2). Then, by FNHPM
the solution of the equations (1.1) and (1.2) is given in the form of infinite
series which converges rapidly to the exact solution as follows

v(X, t) =

∞∑
n=0

vn(X, t).
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Proof. Similarly like in the proof of Theorem 3.1, we have

(4.1) v(X, t) = L(X, t) +N−1
(
uα

sα
N+ [Nv(X, t) +Mv(X, t) +Kv(X, t)]

)
.

Now, applying the homotopy perturbation method ([2]), we can assume
that the solution can be expressed as a power series in p as given below

(4.2) v(X, t) =

∞∑
n=0

pnvn(X, t),

where the homotopy parameter p is considered as a small parameter p ∈ [0, 1].
The nonlinear terms can be decomposed as

Nv(X, t) =

∞∑
n=0

pnHn(v), Mv(X, t) =

∞∑
n=0

pnKn(v),(4.3)

Kv(X, t) =

∞∑
n=0

pnJn(v),

where Hn(v), Kn(v) and Jn(v) are He’s polynomials ([14]), and it can be
calculated by the formulas given below

Hn(v0, v1, ..., vn) =
1

n!

∂n

∂pn

[
N

( ∞∑
i=0

pivi

)]
p=0

,

Kn(v0, v1, ..., vn) =
1

n!

∂n

∂pn

[
M

( ∞∑
i=0

pivi

)]
p=0

,(4.4)

Jn(v0, v1, ..., vn) =
1

n!

∂n

∂pn

[
K

( ∞∑
i=0

pivi

)]
p=0

,

Substituting the equalities (4.2) and (4.3) into (4.1), we get

∞∑
n=0

pnvn(X, t) = L(X, t) + p

[
N−1

(
uα

sα
N+

[ ∞∑
n=0

pnHn(v)(4.5)

+

∞∑
n=0

pnKn(v) +

∞∑
n=0

pnJn(v)
])]

.
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Using the coefficient of the like powers of p in (4.5), the following approx-
imations are obtained

p0 : v0(X, t) = L(X, t),

p1 : v1(X, t) = N−1
(
uα

sα
N+ [H0(v) +K0(v) + J0(v)]

)
,

p2 : v2(X, t) = N−1
(
uα

sα
N+ [H1(v) +K1(v) + J1(v)]

)
,

p3 : v3(X, t) = N−1
(
uα

sα
N+ [H2(v) +K2(v) + J2(v)]

)
,

...

Finally, the solution of the equations (1.1) and (1.2) is given in the form of
infinite series as follows

v(X, t) =

∞∑
n=0

vn(X, t). �

5. Numerical applications

In order to evaluate the advantages and the accuracy of the FNVIM and
FNHPM for the resolution of nonlinear Caputo time-fractional wave-like equa-
tions with variable coefficients, we will consider the following three numeri-
cal examples. All the results are calculated using Matlab (version 7.9.0.529
(R2009b)).

Example 5.1. Consider the 2-dimensional nonlinear Caputo time-fractional
wave-like equation with variable coefficients

(5.1) Dα
t v =

∂2

∂x∂y
(vxxvyy)−

∂2

∂x∂y
(xyvxvy)− v,

with the initial conditions

(5.2) v(x, y, 0) = exy, vt(x, y, 0) = exy,
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where Dα
t is the Caputo fractional derivative operator of order α, 1 < α ≤ 2

and v is a function of (x, y, t) ∈ R2 × R+.
Application of the FNVIM. Following the description of the FNVIM pre-
sented in Section 3, we obtain the iteration formula as follows

vn+1 = exy + texy

+N−1
(
uα

sα
N+

[
∂2

∂x∂y
(vnxxvnyy)−

∂2

∂x∂y
(xyvnxvny)− vn

])
,

and

v0 = v0(x, y, t) = (1 + t) exy,

v1 = v1(x, y, t) =

(
1 + t− tα

Γ(α+ 1)
− tα+1

Γ(α+ 2)

)
exy,

v2 = v2(x, y, t) =

(
1 + t− tα

Γ(α+ 1)
− tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
exy,

...

Then, the general term in successive approximation is given by

vn(x, y, t) =

n∑
k=0

(
(−1)ktkα

Γ(kα+ 1)
+

(−1)ktkα+1

Γ(kα+ 2)

)
exy.

Therefore, the exact solution of the equations (5.1) and (5.2) using Mittag-
Leffler functions, is

v(x, y, t) = lim
n→∞

vn(x, y, t) =
∞∑
k=0

(
(−1)ktkα

Γ(kα+ 1)
+

(−1)ktkα+1

Γ(kα+ 2)

)
exy(5.3)

= (Eα(−tα) + tEα,2(−tα)) exy.

Application of the FNHPM. Following the description of the FNHPM
presented in Section 4, gives

∞∑
n=0

pnvn(x, y, t) = (1 + t)exy + p

[
N−1

(
uα

sα
N+

[ ∞∑
n=0

pnHn(v)(5.4)

− xy
∞∑
n=0

pnKn(v)−
∞∑
n=0

pnvn

])]
,
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where Hn(v) and Kn(v) are He’s polynomials that represents the nonlinear

terms,
∂2

∂x∂y
(vxxvyy) and

∂2

∂x∂y
(vxvy) respectively.

Using (4.4), the first few components of He’s polynomials, are given by

H0(v) =
∂2

∂x∂y

(
(v0)xx (v0)yy

)
,

H1(v) =
∂2

∂x∂y

(
(v

1
)xx (v

0
)yy + (v

0
)xx (v1)yy

)
,

H2(v) =
∂2

∂x∂y

(
(v

2
)xx (v

0
)yy + (v

1
)xx (v

1
)yy + (v

0
)xx (v

2
)yy

)
,

...

and

K0(v) =
∂2

∂x∂y

(
(v0)x (v0)y

)
,

K1(v) =
∂2

∂x∂y

(
(v1)x (v0)y + (v0)x (v1)y

)
,

K2(v) =
∂2

∂x∂y

(
(v2)x (v0)y + (v1)x (v1)y + (v0)x (v2)y

)
,

...

Equating the coefficients of corresponding power of p on both sides in (5.4),
we get

p0 : v0(x, y, t) = (1 + t)exy,

p1 : v1(x, y, t) = −
(

tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
exy,

p2 : v2(x, y, t) =

(
t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
exy,

...
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So, the solution of the equations (5.1) and (5.2) using Mittag-Leffler functions
can be expressed as

v(x, y, t) =

(
1 + t− tα

Γ(α+ 1)
− tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)
+ ...

)
exy

= (Eα(−tα) + tEα,2(−tα)) exy.(5.5)

Taking α = 2 in equalities (5.3) and (5.5), the solution will be as follows

v(x, y, t) =
(
E2(−t2) + tE2,2(−t2)

)
exy = (cos t+ sin t)exy,

which is exactly the same solution obtained by FNDM ([8]) and FRPSM ([9]).

0 1 2 3

t
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-0.5

0

0.5

1

1.5

2

v
(x

,y
,t
)

(a)

Exact solution

3
th

-order by FNVIM

4-term by FNHPM

0 1 2 3

t

-1.5
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-0.5

0

0.5

1

1.5

2

v
(x

,y
,t
)

(b)

Exact solution

α=2

α=1.95

α=1.8

α=1.7

Figure 1. (a) The comparison of the approximate
solutions by FNVIM, FNHPM and exact solution
when α = 2 and x = y = 0.5, (b) The behavior
of the exact solution and approximate solutions
by FNVIM and FNHPM for different values of α
when x = y = 0.5.

Table 1. The absolute errors for differences between the exact solution and approx-
imate solutions by the FNVIM and FNHPM for Example 5.1 when α = 2.

|vexact − vFNV IM | |vexact − vFNHPM | |vexact − vFNV IM | |vexact − vFNHPM |
t/x, y 0.5 0.5 0.7 0.7

0.1 3.2196× 10−13 3.2196× 10−13 4.0929× 10−13 4.0929× 10−13

0.5 1.3095× 10−7 1.3095× 10−7 1.6647× 10−7 1.6647× 10−7

1 3.5001× 10−5 3.5001× 10−5 4.4495× 10−5 4.4495× 10−5

1.5 9.2940× 10−4 9.2940× 10−4 1.1815× 10−3 1.1815× 10−3

2 9.5484× 10−3 9.5484× 10−3 1.2138× 10−2 1.2138× 10−2
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Example 5.2. Consider the following nonlinear Caputo time-fractional
wave-like equation with variable coefficients

(5.6) Dα
t v = v2

∂2

∂x2
(vxvxxvxxx) + v2x

∂2

∂x2
(v3xx)− 18v5 + v,

with the initial conditions

(5.7) v(x, 0) = ex, vt(x, 0) = ex,

where Dα
t is the Caputo fractional derivative operator of order α, 1 < α ≤ 2

and v is a function of (x, t) ∈ ]0, 1[× R+.
Application of the FNHPM. Following the description of the FNVIM
presented in Section 3, we obtain the iteration formula as follows

vn+1 = ex + tex

+N−1
(
uα

sα
N+

[
v2n

∂2

∂x2
(vnxvnxxvnxxx) + v2nx

∂2

∂x2
(v3nxx)− 18v5n + vn

])
,

and

v0 = v0(x, t) = (1 + t) ex,

v1 = v1(x, t) =

(
1 + t+

tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
ex,

v2 = v2(x, t) =

(
1 + t+

tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
ex,

...

Then, the general term in successive approximation is given by

vn(x, t) =

n∑
k=0

(
tkα

Γ(kα+ 1)
+

tkα+1

Γ(kα+ 2)

)
ex.

Therefore, the exact solution of the equations (5.6) and (5.7) using Mittag-
Leffler functions, is

v(x, t) = lim
n→∞

vn(X, t) =

∞∑
k=0

(
tkα

Γ(kα+ 1)
+

tkα+1

Γ(kα+ 2)

)
ex(5.8)

= (Eα(tα) + tEα,2(tα)) ex.
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Application of the FNHPM. Following the description of the FNHPM
presented in Section 4, gives

∞∑
n=0

pnvn(x, t) = (1 + t)ex + p

[
N−1

(
uα

sα
N+

[ ∞∑
n=0

pnHn(v) +

∞∑
n=0

pnKn(v)

− 18

∞∑
n=0

pnJn(v) +

∞∑
n=0

pnvn

])]
,(5.9)

where Hn(v), Kn(v),and Jn(v) are He’s Polynomials which represent the non-

linear terms, v2
∂2

∂x2
(vxvxxvxxx), v2x

∂2

∂x2
(v3xx) and v5 respectively.

Using (4.4), the first few components of He’s polynomials, are given by

H0(v) = v20
∂2

∂x2
((v0)x (v0)xx (v0)xxx) ,

H1(v) = 2v0v1
∂2

∂x2
((v0)x (v0)xx (v0)xxx) + v20

∂2

∂x2
((v1)x (v0)xx (v0)xxx

+ (v0)x (v1)xx (v0)xxx + (v0)x (v0)xx (v1)xxx) ,

...

K0(v) = (v0)
2
x

∂2

∂x2

(
(v0)

3
xx

)
,

K1(v) = 2 (v0)x (v1)x
∂2

∂x2

(
(v0)

3
xx

)
+ (v0)

2
x

∂2

∂x2

(
3 (v0)

2
xx (v1)xx

)
,

...

and

J0(v) = v50, J1(v) = 5v40v1, . . .

Equating the coefficients of corresponding power of p on both sides in (5.9),
we obtain

p0 : v0(x, t) = (1 + t)ex,

p1 : v1(x, t) =

(
tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
ex,

p2 : v2(x, t) =

(
t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
ex,

...
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So, the solution of the equations (5.6) and (5.7) using Mittag-Leffler functions
can be expressed as

v(x, t) =

(
1 + t+

tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)
+ ...

)
ex

= (Eα(tα) + tEα,2(tα)) ex,(5.10)

Taking α = 2 in equalities (5.8) and (5.10), the solution will be as follows

v(x, t) =
(
E2(t2) + tE2,2(t2)

)
ex = ex+t,

which is exactly the same solution obtained by FNDM ([8]) and FRPSM ([9]).
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Figure 2. (a) The comparison of the approximate
solutions by FNVIM, FNHPM and exact solu-
tion when α = 2 and x = 0.5, (b) The behavior
of the exact solution and approximate solutions
by FNVIM and FNHPM for different values of α
when x = 0.5.

Table 2. The absolute errors for differences between the exact solution and approx-
imate solutions by the FNVIM and FNHPM for Example 5.2 when α = 2.

|vexact− vFNV IM | |vexact− vFNHPM | |vexact− vFNV IM | |vexact− vFNHPM |
t/x 0.5 0.5 0.7 0.7

0.1 4.1350× 10−13 4.1350× 10−13 5.0505× 10−13 5.0505× 10−13

0.5 1.6907× 10−7 1.6907× 10−7 2.0650× 10−7 2.0650× 10−7

1 4.5934× 10−5 4.5934× 10−5 5.6104× 10−5 5.6104× 10−5

1.5 1.2529× 10−3 1.2529× 10−3 1.5303× 10−3 1.5303× 10−3

2 1.3361× 10−2 1.3361× 10−2 1.6319× 10−2 1.6319× 10−2
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Example 5.3. Consider the following one dimensional nonlinear Caputo
time-fractional wave-like equation with variable coefficients

(5.11) Dα
t v = x2

∂

∂x
(vxvxx)− x2(vxx)2 − v,

with the initial conditions

(5.12) v(x, 0) = 0, vt(x, 0) = x2,

where Dα
t is the Caputo fractional derivative operator of order α, 1 < α ≤ 2

and v is a function of (x, t) ∈ ]0, 1[× R+.

Application of the FNVIM. Following the description of the FNVIM pre-
sented in Section 3, we obtain the iteration formula as follows

vn+1 = tx2 +N−1
(
uα

sα
N+

[
x2

∂

∂x
(vnxvnxx)− x2(vnxx)2 − vn

])
,

and

v0 = v0(x, t) = tx2,

v1 = v1(x, t) =

(
t− tα+1

Γ(α+ 2)

)
x2,

v2 = v2(x, t) =

(
t− tα+1

Γ(α+ 2)
+

t2α+1

Γ(2α+ 2)

)
x2,

...

Then, the general term in successive approximation is given by

vn(x, t) = x2

(
n∑
k=0

(−1)
k
tkα+1

Γ(kα+ 2)

)
.

Therefore, the exact solution of the equations (5.11) and (5.12) using Mittag-
Leffler functions, is

v(x, t) = lim
n→∞

vn(X, t) = x2

( ∞∑
i=0

(−1)
k
tkα+1

Γ(kα+ 2)

)
(5.13)

= x2 (tEα,2(−tα)) ,
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Application of the FNHPM. Following the description of the FNHPM
presented in Section 4, gives

∞∑
n=0

pnvn(x, t) = tx2 + p

[
N−1

(
uα

sα
N+

[
x2
∞∑
n=0

pnHn(v)(5.14)

− x2
∞∑
n=0

pnKn(v)−
∞∑
n=0

pnvn

])]
,

where Hn(v), and Kn(v), are He’s Polynomials which represent the nonlinear

terms,
∂

∂x
(vxvxx), (vxx)2, respectively.

Using (4.4), the first few components of He’s polynomials, are given by

H0(v) =
∂

∂x
((v0)x (v0)xx) ,

H1(v) =
∂

∂x
((v0)x (v1)xx + (v1)x (v0)xx) ,

H2(v) =
∂

∂x
((v0)x (v2)xx + (v1)x (v1)xx + (v2)x (v0)xx) ,

...

and
K0(v) = (v0)

2
xx ,

K1(v) = 2 (v0)xx (v1)xx ,

K2(v) = (v1)
2
xx + 2 (v0)xx (v2)xx ,

...

Equating the coefficients of corresponding power of p on both sides in (5.14),
we get

p0 : v0(x, t) = tx2,

p1 : v1(x, t) = − tα+1

Γ(α+ 2)
x2,

p2 : v2(x, t) =
t2α+1

Γ(2α+ 2)
x2,

...
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So, the solution of the equations (5.11) and (5.12) using Mittag-Leffler function
can be expressed as

v(x, t) = x2
(
t− tα+1

Γ(α+ 2)
+

t2α+1

Γ(2α+ 2)
− t3α+1

Γ(3α+ 2)
...

)
(5.15)

= x2 (tEα,2(−tα)) ,

Taking α = 2 in equalities (5.13) and (5.15), the solution will be as follows

v(x, t) = x2
(
tE2,2(−t2)

)
= x2 sin t,

which is exactly the same solution obtained by FNDM ([8]) and FRPSM ([9]).
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Figure 3. (a) The comparison of the approximate
solutions by FNVIM, FNHPM and exact solu-
tion when α = 2 and x = 0.5, (b) The behavior
of the exact solution and approximate solutions
by FNVIM and FNHPM for different values of α
when x = 0.5.

Table 3. The absolute errors for differences between the exact solution and approx-
imate solutions by the FNVIM and FNHPM for Example 5.3 when α = 2.

|vexact− vFNV IM | |vexact− vFNHPM | |vexact− vFNV IM | |vexact− vFNHPM |
t/x 0.5 0.5 0.7 0.7

0.1 6.8887× 10−16 6.8887× 10−16 1.3502× 10−15 1.3502× 10−15

0.5 1.3425× 10−9 1.3425× 10−9 2.6313× 10−9 2.6313× 10−9

1 6.8271× 10−7 6.8271× 10−7 1.3381× 10−6 1.3381× 10−6

1.5 2.5951× 10−5 2.5951× 10−5 5.0864× 10−5 5.0864× 10−5

2 3.4023× 10−4 3.4023× 10−4 6.6685× 10−4 6.6685× 10−4
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6. Numerical results and discussion

In Figures 1,2 and 3 (a): represents the comparison of the 3th order ap-
proximate solutions obtained by FNVIM and the 4−term approximate solu-
tion obtained by FNHPM and the exact solution at α = 2, when x = y = 0.5
for Example 5.1 and x = 0.5 for Examples 5.2 and 5.3. The numerical results
show that the FNVIM and FNHPM are highly accurate. (b): represents the
behavior of the exact solutions and the 3th order approximate solution by FN-
VIM and the 4−term approximate solution by FNHPM at α = 1.7, 1.8, 1.95, 2.
These figures afirm that when the order of the fractional derivative α tends to
2, the approximate solutions obtained by FNVIM and FNHPM tends contin-
uously to the exact solutions. In Tables 1, 2 and 3, we compute the absolute
errors for differences between the exact solutions and the 3th order approxi-
mate solution by FNVIM and the 4−term approximate solution by FNHPM
at α = 2. The absolute errors obtained by the FNVIM are the same results
obtained by FNPHM.

7. Conclusion

In this work, we compared the fractional natural variational iteration
method (FNVIM) and the fractional natural homotopy perturbation method
(FNHPM) as applied to nonlinear Caputo time-fractional wave-like equations
with variable coefficients. For illustration purposes, we consider three differ-
ent numerical examples. The results show that FNVIM has advantages over
FNHPM, it is that it takes less time to solve this type of nonlinear problems
without using He’s polynomials and enables us to overcome the difficulties
arising in identifying the general Lagrange multipliers. However, there is the
high agreement of the numerical results obtained between the FNVIM and
the FNHPM. Therefore, it may be concluded that both methods are powerful
and efficient techniques for finding exact as well as approximate solutions for
wide classes of nonlinear fractional partial differential equations.

Acknowledgments. The authors thank the anonymous referee for his/her
careful reading of the paper and his/her valuable remarks that improved the
final version of the paper.



Numerical comparison of FNVIM and FNHPM for solving a certain type of... 221

References

[1] F.B.M. Belgacem and R. Silambarasan, Theory of natural transform, Mathematics in
Engineering, Science and Aerospace 3 (2012), no. 1, 105–135.

[2] M.H. Cherif, K. Belghaba, and Dj. Ziane, Homotopy perturbation method for solving
the fractional Fisher’s equation, International Journal of Analysis and Applications 10
(2016), no. 1, 9–16.

[3] A.M. Elsheikh and T.M. Elzaki, Variation iteration method for solving porous medium
equation, International Journal of Development Research 5 (2015), no. 6, 4677–4680.

[4] P. Guo, The Adomian decomposition method for a type of fractional differential equa-
tions, Journal of Applied Mathematics and Physics 7 (2019), 2459–2466.

[5] S. Javeed, D. Baleanu, A. Waheed, M. Shaukat Khan, and H. Affan, Analysis of ho-
motopy perturbation method for solving fractional order differential equations, Math-
ematics 7 (2019), no. 1, Art. 40, 14 pp.

[6] J.T. Katsikadelis, Nonlinear dynamic analysis of viscoelastic membranes described with
fractional differential models, J. Theoret. Appl. Mech. 50 (2012), no. 3, 743–753.

[7] A. Khalouta, A. Kadem, A new numerical technique for solving Caputo time-fractional
biological population equation, AIMS Mathematics 4 (2019), no. 5, 1307–1319.

[8] A. Khalouta and A. Kadem, Fractional natural decomposition method for solving a cer-
tain class of nonlinear time-fractional wave-like equations with variable coefficients,
Acta Univ. Sapientiae Math. 11 (2019), no. 1, 99–116.

[9] A. Khalouta and A. Kadem, An efficient method for solving nonlinear time-fractional
wave-like equations with variable coefficients, Tbilisi Math. J. 12 (2019), no. 4,
131–147.

[10] A. Khalouta and A. Kadem, A new representation of exact solutions for nonlinear
time-fractional wave-like equations with variable coefficients, Nonlinear Dyn. Syst.
Theory. 19 (2019), no. 2, 319–330.

[11] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional
Differential Equations, Elsevier, Amsterdam, 2006.

[12] Z. Odibat, On the optimal selection of the linear operator and the initial approximation
in the application of the homotopy analysis method to nonlinear fractional differential
equations, Appl. Numer. Math. 137 (2019), 203–212.

[13] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[14] D. Sharma, P. Singh, and S. Chauhan, Homotopy perturbation transform method with

He’s polynomial for solution of coupled nonlinear partial differential equations, Non-
linear Engineering 5 (2016), no. 1, 17–23.

[15] B.R. Sontakke, A.S. Shelke, and A.S. Shaikh, Solution of non-linear fractional differ-
ential equations by variational iteration method and applications, Far East Journal of
Mathematical Sciences 110 (2019), no. 1, 113–129.

[16] A. Yıldırım, Analytical approach to fractional partial differential equations in fluid me-
chanics by means of the homotopy perturbation method, Internat. J. Numer. Methods
Heat Fluid Flow 20 (2010), no. 2, 186–200.

[17] Y. Zhou and L. Peng, Weak solutions of the time-fractional Navier-Stokes equations
and optimal control, Comput. Math. Appl. 73 (2017), no. 6, 1016–1027.

Laboratory of Fundamental Mathematics and Numerical
Department of Mathematics, Faculty of Sciences
Ferhat Abbas Sétif University 1
19000 Sétif
Algeria
e-mail: nadjibkh@yahoo.fr
e-mail: abdelouahabk@yahoo.fr


	1. Introduction
	2. Definitions and properties
	3. FNVIM for nonlinear Caputo time-fractional wave-like equations
	4. FNHPM for nonlinear Caputo time-fractional wave-like equations
	5. Numerical applications
	6. Numerical results and discussion
	7. Conclusion
	Acknowledgments
	References

