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Abstract. Under some simple conditions on the real functions f and g defined
on an interval I ⊂ (0,∞), the two-place functions Af (x, y) = f (x)+ y− f (y)

and Gg(x, y) =
g(x)
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y generalize, respectively, A and G, the classical weighted
arithmetic and geometric means. In this note, basing on the invariance identity
G ◦ (H,A) = G (equivalent to the Pythagorean harmony proportion), a suit-
able weighted extension Hf,g of the classical harmonic mean H is introduced.
An open problem concerning the symmetry of Hf,g is proposed. As an ap-
plication a method of effective solving of some functional equations involving
means is presented.
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1. Introduction

Let I ⊂ R be an interval and let f, ϕ : I → R be arbitrary functions. In [8]
it was shown that the two-variable function M : I2 → R of the form

M (x, y) = f (x) + ϕ (y) , x, y ∈ I,

is a mean in I, i.e. that

min (x, y) ≤M (x, y) ≤ max (x, y) , x, y ∈ I,

if, and only if, ϕ = id |I−f , and the functions f and id |I−f are non-decreasing,
and the function M = Af defined by Af (x, y) = f (x) + y − f (y) , strictly
related to addition, generalizes the weighted arithmetic mean. In particular,
if Af is symmetric then Af = A, where A (x, y) := x+y

2 (see Proposition 1).
Let I ⊂ (0,∞) and let g, ψ : I → (0,∞) . In the present note we first

observe that the function M : I2 → R of the form

M (x, y) = g (x)ψ (y) , x, y ∈ I,

is a mean in I, iff ψ = id |I
g and both functions g, id |I

g are non-decreasing.

Moreover the mean M = Gg defined by Gg (x, y) = g(x)
g(y)y, strictly related to

multiplication, generalizes the weighted geometric mean. In particular, if Gg
is symmetric then Gg = G, where G (x, y) =

√
xy (see Proposition 2).

The generalizations of the weighted arithmetic and geometric means given
by Proposition 1 and Proposition 2, are based, respectively, on relation of
the classical arithmetic mean A to addition, and the geometric mean G to
multiplication.

Having these generalizations, a legitimate question arises if the classical
harmonic mean H (x, y) = 2xy

x+y can be also extended. The main result of
the present paper, Theorem 1 in section 4, gives the affirmative answer. It
turns out that, with the aid of the weighted extensions Af and Gg of the
arithmetic and geometric means, basing on the identity G ◦ (H,A) = G, the
invariance of the geometric mean G with respect to the mean-type mapping
(H,A) (equivalent to the classical Pythagorean harmony proportion), one
can obtain the means Hf,g generalizing the harmonic mean. In section 5 the
symmetry of the mean Hf,g is considered and an open problem is proposed. In
section 6, given Hf,g, we ask for its harmonically complementary mean Hϕ,ψ,
i.e. such that H ◦(Hf,g, Hϕ,ψ) = H. In section 7 we apply Theorem 1 to obtain
the effective form of the continuous solutions Φ of functional equations of form

Φ (Hf,g (x, y) , Af (x, y)) = Φ (x, y) .
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2. Generalization of weighted arithmetic mean

We begin with recalling the following

Proposition 1 (see [8]). Let I ⊂ R be an interval and let f, ϕ : I → R.
Then the function

M (x, y) = f (x) + ϕ (y) , x, y ∈ I,

is a mean iff ϕ = id |I − f , i.e. M = Af , where Af : I2 → R is defined by

Af (x, y) := f (x) + y − f (y) , x, y ∈ I,

and the functions f and id |I − f are non-decreasing.
Moreover

(i) Af is a mean iff the function f is non-decreasing and non-expansive;
(ii) Af is a strict mean iff f and id |I − f are strictly increasing, or equiva-

lently, iff f is strictly increasing and strictly contractive;
(iii) Af is symmetric iff Af = A, or equivalently, iff the function f (x) − x

2
is constant in I.

Remark 1. Let a, b, c be positive real numbers and let f : (0,∞)→ R be
defined by

f (x) =
ax2 + bx

cx+ 1
, x > 0.

Then
(i) f is strictly increasing;
(ii) if a ≤ c and b < 1, or a < c and b ≤ 1 then id |(0,∞) − f is strictly

increasing.

Proof. It is enough to note that, for all x > 0,

f ′(x) =
acx2 + 2ax+ b

(cx+ 1)
2 ,

(
id |(0,∞) − f

)′
(x) =

(c− a)x (cx+ 2) + (1− b)
(cx+ 1)

2 ,

are positive, so the assumptions of Proposition 1 are satisfied. �

Let us also note some general properties of functions of the form Af , not
assuming that Af is a mean.
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Remark 2. Let f : (0,∞)→ R. The following conditions are equivalent:
(i) the function Af is sub-homogeneous, i.e.

Af (tx, ty) ≤ tAf (x, y) , t, x, y > 0;

(ii) the function Af is super-homogeneous, i.e.

Af (tx, ty) ≥ tAf (x, y) , t, x, y > 0;

(iii) the function Af is homogeneous, i.e.

Af (tx, ty) = tAf (x, y) , t, x, y > 0;

(iv) the function f is linear, that is f (x) = f (1)x for all x > 0, and

Af (x, y) = f (1)x+ y − f (1) y, x, y > 0.

Indeed, if Af is sub-homogeneous then, for all t, x, y > 0, we have f (tx) +
ty − f (ty) ≤ t [f (x) + y − f (y)] , whence, for all t, x, y > 0, we have f (tx)−
tf (x) ≤ f (ty)− tf (y) . This implies that there is a real constant b such that
f (tx)− tf (x) = b for all t, x > 0. Taking here x = 1 and setting a = f (1) we
obtain f (t) = at+ b for all t > 0.

Similarly, applying the basic fact of additive functions (cf. [1], [4]) we get
the following

Remark 3. Let f : R→ R. The following conditions are equivalent:
(i) the function Af is sub-translative, i.e.

Af (x+ t, y + t) ≤ Af (x, y) + t, t, x, y ∈ R;

(ii) the function Af is super-translative, i.e.

Af (x+ t, y + t) ≥ Af (x, y) + t, t, x, y ∈ R;

(iii) the function Af is translative, i.e.

Af (x+ t, y + t) = Af (x, y) + t, t, x, y ∈ R;

(iv) there is additive function α : R → R and b ∈ R such that the function
f (x) = α (x) + b for all x ∈ R, and

Af (x, y) = α (x− y) + y, x, y ∈ R.
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3. Generalization of weighted geometric mean

It is easy to prove the following

Proposition 2. Let I ⊂ (0,∞) be an interval and let g, ψ : I → (0,∞).
Then the function

M (x, y) = g (x)ψ (y) , x, y ∈ I,

is a mean iff ψ = id |I
g i.e. M = Gg, where Gg : I2 → (0,∞) is defined by

Gg (x, y) :=
g (x)

g (y)
y, x, y ∈ I,

and the functions g and id |I
g are non-decreasing.

Moreover
(i) Gg is a mean iff the function g is non-decreasing and

1 ≤ g (y)

g (x)
≤ y

x
, x, y ∈ I, x < y;

(ii) Gg is a strict mean iff g and id |I
g are strictly increasing, or equiva-

lently, iff

1 <
g (y)

g (x)
<
y

x
, x, y ∈ I, x < y;

(iii) Gg is symmetric iff Gg = G, or equivalently, iff the function g(x)√
x

is
constant in I.

To determine a possible broad class of functions g : (0,∞) → (0,∞) ,
being good candidates for generating the generalized geometric means, let us
fix p ∈ (0, 1], write g in the form

g (x) = xpγ (x) , x > 0,

where γ : (0,∞)→ (0,∞) should be chosen in such a way that the functions
g and id |I

g are increasing. Since

g′(x) = xp−1 [pγ (x) + xγ′(x)] ,

(
id |I
g

)′
(x) = x−p [(1− p) γ (x)− xγ′(x)] ,
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the function γ should be such that

pγ (x) + xγ′(x) ≥ 0 (1− p) γ (x)− xγ′(x) ≥ 0 for all x > 0,

or equivalently, such that

0 ≤ γ′(x)

γ (x)
x+ p ≤ 1, x > 0.

The homographic function (0,∞) 3 x 7−→ ax+b
cx+1 with positive parameters

a, b, c > 0 satisfies the inequality

0 ≤ ax+ b

cx+ 1
≤ 1, x > 0,

iff

0 < a ≤ c and 0 < b ≤ 1.

Solving the differential equation

γ′(x)

γ (x)
x+ p =

ax+ b

cx+ 1
,

we get

γ (x) = dxb−p (cx+ 1)
c(a−bc)

, x > 0,

whence

g (x) = dxb (cx+ 1)
c(a−bc)

for some d > 0. Setting q := −c (a− bc) , p = b, r = c, and taking into account
that 0 < a ≤ c, we hence get the following

Remark 4. If d > 0, r > 0, p ∈ (0, 1], and q is such that

− (1− p) r2 ≤ q < pr2,

and g : (0,∞)→ (0,∞) is given by

g (x) =
dxp

(rx+ 1)
q , x > 0,

then the functions g and id |I
g are increasing, and strictly increasing if p ∈

(0, 1) . (Of course, without any loss of generality, one can take d = 1.)
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Let us also note some general properties of functions of the form Gg, not
assuming that Gg is a mean.

Remark 5. Let g : (0,∞) → (0,∞). The following conditions are equiv-
alent:
(i) the function Gg is sub-homogeneous, i.e.

Gg (tx, ty) ≤ tGg (x, y) , t, x, y > 0;

(ii) the function Gg is super-homogeneous, i.e.

Gg (tx, ty) ≥ tGg (x, y) , t, x, y > 0;

(iii) the function Gg is homogeneous, i.e.

Gg (tx, ty) = tGg (x, y) , t, x, y > 0;

(iv) the function g is multiplicative, i.e.,

g (tx) = g (t) g (x) , t, x, y > 0.

Moreover, if the graph of g is not dense in (0,∞)
2 then there exists p ∈ R

such that

g (x) = xp, x > 0.

Indeed, assume that Gg is sub-homogeneous. Replacing x by x
t and y by

y
t in (i), we get 1

tGg (x, y) ≤ Gg
(
x
t ,
y
t

)
for all t, x, y, which shows that Gg

is super-homogeneous, so it is homogeneous. The implication (iii)=⇒ (iv) is
obvious. For the “moreover” part see [1], [4].

4. Main result – generalization of weighted harmonic mean

The above considerations lead to the natural question if one can define
a relevant counterpart of the harmonic mean

H (x, y) =
2xy

x+ y
, x, y > 0.
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In this section we show that, basing on the classical invariance identity G ◦
(H,A) = G, and applying the above generalizations of the arithmetic and geo-
metric means, one can give a positive answer. Namely, we prove the following

Theorem 1. Let I ⊂ (0,∞) be an interval and assume that f : I → R,
g : I → (0,∞) be such that the functions f, id |I − f , g and id |I

g are strictly
increasing. Then
(i) f, g are continuous, and the function Hf,g : I2 → (0,∞) defined by

(1) Hf,g (x, y) := g−1
(
g (Af (x, y))

Af (x, y)
Gg (x, y)

)
, x, y ∈ I,

is reflexive in I, that is

Hf,g (x, x) = x, x ∈ I;

(ii) if moreover the function

(2) I 3 t 7−→ t

[g (t)]
2 is nonincreasing

then the function Hf,g is a strict mean in I;
(iii) if the function

(3) I2 3 (x, y) 7−→ g (Af (x, y))

Af (x, y)

g (x)

g (y)
y is (strictly) increasing

in both variables, then Hf,g is a (strict) mean in I;
(iv) if (2) or (3) holds, the mean Gg is invariant with respect to the mean-

type mapping (Hf,g, Af ) : I2 → I2, that is

(4) Gg ◦ (Hf,g, Af ) = Gg;

and the sequence of iterates ((Hf,g, Af )
n

: n ∈ N) converges in I2 pointwise
to (Gg, Gg) .

Proof. (i) The continuity of the functions f and g follows from the as-
sumed increasing monotonicity of the functions f, id |I − f , g and id |I

g . For
every x ∈ I, by the definition of Af and Gg, we have

Hf,g (x, x) = g−1
(
g (Af (x, x))

Af (x, x)
Gg (x, x)

)
= g−1

(
g (x)

x
x

)
= x,

so Hf,g is reflexive.
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(ii) Take x, y ∈ I. If x < y then, as g is strictly increasing, this inequality
is equivalent to

g (x) ≤ g (Af (x, y))

Af (x, y)

g (x)

g (y)
y ≤ g (y) .

Since the function id |I
g is increasing and x < Af (x, y) < y we have

Af (x, y)

g (Af (x, y))
<

y

g (y)
,

or equivalently

1 <
g (Af (x, y))

Af (x, y)

y

g (y)
.

Multiplying both sides by g (x) gives

g (x) <
g (Af (x, y))

Af (x, y)

g (x)

g (y)
y

whence, by the monotonicity of g and the definition of Hf,g, we get

min (x, y) = x < g−1
(
g (Af (x, y))

Af (x, y)

g (x)

g (y)
y

)
= Hf,g (x, y) .

Since x < Af (x, y) < y, applying in turn the monotonicity of g and (2)
we have

g (Af (x, y))

Af (x, y)
g (x) <

[g (Af (x, y))]
2

Af (x, y)
≤ [g (y)]

2

y
,

so

g (Af (x, y))

Af (x, y)

g (x)

g (y)
y < g (y) .

Hence, by the monotonicity of g and the definition of Hf,g,

Hf,g (x, y) = g−1
(
g (Af (x, y))

Af (x, y)

g (x)

g (y)
y

)
< y = max (x, y) .
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If x > y the argument is similar, so we omit it. Thus, for all x, y ∈ I,
x 6= y , we have

min (x, y) < g−1
(
g (Af (x, y))

Af (x, y)

g (x)

g (y)
y

)
< max (x, y) ,

which shows that Hf,g is a strict mean.
To prove (iii) take arbitrary x, y ∈ I. Without any loss of generality, we

can assume that x < y, so that x = min (x, y) and y = max (x, y). Apply-
ing the reflexivity of Hf,g, the definitions of Hf,g, Af , Gg, increasing strict
monotonicity of the function (3) with respect to both variables and increasing
strict monotonicity of g−1, we obtain

min (x, y) = x = Hf,g (x, x) = g−1
(
g (f (x) + x− f (x))

f (x) + x− f (x)

g (x)

g (x)
x

)

< g−1
(
g (f (x) + y − f (y))

f (x) + y − f (y)

g (x)

g (y)
y

)
= Hf,g (x, y)

< g−1
(
g (f (y) + y − f (y))

f (y) + y − f (y)

g (y)

g (y)
y

)
= y = max (x, y) ,

so Hf,g is a strict mean. The monotonicity of Hf,g is obvious.
(iv) Note that, for all x, y ∈ I, by the definitions of Gg, Af and (1), we have

Gg (Hf,g (x, y) , Af (x, y)) =
g (Hf,g (x, y))

g (Af (x, y))
Af (x, y)

=
g
(
g−1

(
g(Af (x,y))
Af (x,y)

Gg (x, y)
))

g (Af (x, y))
Af (x, y)

=

g(Af (x,y))
Af (x,y)

Gg (x, y)

g (Af (x, y))
Af (x, y) = Gg (x, y) ,

so (4) holds, that is Gg is invariant with respect to the mean-type map-
ping (Hf,g, Af ).

The remaining statement follows from the main result in [6] (cf.
also [7]). �

To illustrate an application of this result recall that if a, b, c are positive
real numbers such that a ≤ c and b < 1 , then, in view of Remark 1, the
function Af with f : (0,∞)→ R given by f (x) = ax2+bx

cx+1 is a mean in (0,∞).
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Similarly, if p ∈ (0, 1], and q is such that p − 1 ≤ q < p, then in view of
Remark 4, the function Gg with g : (0,∞)→ (0,∞) given by g (x) = xp

(x+1)q ,
is a mean in (0,∞).

Using these functions and Theorem 1 we give two examples of generaliza-
tions of the classical harmonic mean.

Example 1. For the functions f and g with a = 1, b = 1
2 , c = 2, an

arbitrary p ∈ (0, 1], and q = 0, we have

g (Af (x, y))

Af (x, y)

g (x)

g (y)
y = 21−p

xpy1−p

(x+ y)
1−p , x, y > 0.

Since

∂

∂x

xpy1−p

(x+ y)
1−p = y1−p (x+ y)

p−2 [
(2p− 1)xp + pxp−1y

]
,

∂

∂y

xpy1−p

(x+ y)
1−p = (1− p)x1+py−p (x+ y)

p−2
,

the above function is increasing with respect to both variables if p ≥ 1
2 . By

Theorem 1, taking into account that g−1 (x) = x1/p for all x > 0, we conclude
that, for every p ∈

[
1
2 , 1
]
, the function

Hf,g (x, y) =

(
21−p

xpy1−p

(x+ y)
1−p

)1/p

=
2

1
p−1xy

1
p−1

(x+ y)
1
p−1

, x, y > 0,

is a mean in (0,∞). In particular, taking p = 1
2 , we obtain

Hf,g (x, y) =
2xy

x+ y
, x, y > 0,

so, in this case, Hf,g coincides with the classical harmonic mean.

Example 2. Taking the functions f and g with a = 1, b = 1
2 , c = 2;

p ∈
[
1
2 , 1
]
, and q = p− 1

2 , one can check that the function

g (Af (x, y))

Af (x, y)

g (x)

g (y)
y = 21−p

xpy1−p

(x+ y)
1−p , x, y > 0.
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is increasing with respect to each variable. Consequently, by Theorem 1, the
function Hf,g is a mean. In particular, in the case p = 1 we obtain

g (x) =
x√
x+ 1

, g−1 (x) =
x2

2

(
1 +

√
1 +

4

x2

)
, x > 0,

g (Af (x, y))

Af (x, y)

g (x)

g (y)
y =

√
2x
√
y + 1

√
x+ y + 2

√
x+ 1

, x, y > 0,

and

Hf,g(x, y) =
x2(y + 1)

(x+ 1)(x+ y + 2)

(
1 +

√
1 + 2

(x+ 1)(x+ y + 2)

x2(y + 1)

)
, x, y > 0.

Remark 6. Since, in view of Theorem 1,

Hf,g (x, y) = g−1
(
g (Af (x, y)) g

(
g−1

(
Gg (x, y)

Af (x, y)

)))
, x, y ∈ I,

the mean Hf,g is a composition of the bivariable function g−1 (g (u) g (v)) , the
mapping

(
u, g−1

(
v
u

))
and the means Af ,Gg (compare [3] where the composi-

tions of quasi-arithmetic means are considered; see also [9]).

5. Symmetry of generalized weighted harmonic mean
and an open question

It is easy to verify that the generalized weighted means Af and Gg are
symmetric iff they coincide with the classical arithmetic geometric means A
and G, respectively. It is interesting that the problem of symmetry of the
generalized weighted mean Hf,g appears to be nontrivial. To show it we begin
with the following

Proposition 3. Let I ⊂ (0,∞) be an interval and t ∈ (0, 1). Assume
that f (x) := tx for x ∈ I → R, the function g : I → (0,∞) is increasing,
differentiable and the function id |I

g is increasing.
The mean Hf,g : I2 → (0,∞) defined by (1) is symmetric, i.e.

Hf,g (x, y) = Hf,g (y, x) , x, y ∈ I,



116 Peter Kahlig, Janusz Matkowski

iff Af = A, Gg = G and Hf,g = H, where A,G,H are the classical symmetric
arithmetic, geometric and harmonic means.

Proof. Since Af (x, y) = tx + (1− t) y is the standard weighted arith-
metic mean in I, in view of formula (1),

Hf,g (x, y) = g−1
(
g (tf (x) + (1− t) f (y))

tf (x) + (1− t) f (y)

g (x)

g (y)
y

)
, x, y ∈ I.

Thus Hf,g is symmetric iff

g (tx+ (1− t) y)

tx+ (1− t) y
g (x)

g (y)
y =

g ((1− t)x+ ty)

(1− t)x+ ty

g (y)

g (x)
x, x, y ∈ I,

which is equivalent to

[(1− t)x+ ty] g (tx+ (1− t) y) [g (x)]
2
y

= [tx+ (1− t) y] g ((1− t)x+ ty) [g (y)]
2
x, x, y ∈ I.

Differentiating both sides with respect to x and then setting y = x we get

x [g(x)]
2 {(2t+ 1) g′(x)x− 2tg(x)} = 0, x > 0,

whence

g′(x)

g(x)
=

2t

2t+ 1

1

x
, x > 0.

Solving this differential equation we obtain

g (x) = cx
2t

2t+1 , x > 0,

for some c > 0. Now, from the definition of Hf,g, after simple calculations,
we get

Hf,g (x, y) = x

(
y

tx+ (1− t) y

) 1
2t

, x, y > 0.

It is obvious that Hf,g is a symmetric mean iff t = 1
2 . Thus f(x) = x

2 , g(x) =

c
√
x for all x ∈ I, and, consequently, Af (x, y) = x+y

2 = A(x, y); Gg(x, y) =
√
xy = G(x, y) and, Hf,g(x, y) = 2xy

x+y = H(x, y) for all x, y ∈ I. �
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Proposition 4. Let I ⊂ (0,∞) be an interval and t ∈ (0, 1). Assume
that g (x) = xt for x ∈ I → R, the functions f : I → (0,∞) and id |I − f are
increasing.

The mean Hf,g : I2 → (0,∞) defined by (1) is symmetric iff Af = A,
Gg = G and Hf,g = H, where A,G,H are the classical symmetric arithmetic,
geometric and harmonic means.

Proof. Since Gg (x, y) = xty1−t is the weighted arithmetic mean in I,
making use of (1), the mean Hf,g is symmetric iff

[Af (x, y)]
t

Af (x, y)

xt

yt
y =

[Af (y, x)]
t

Af (y, x)

yt

xt
x, x, y ∈ I,

or, equivalently, iff

Af (x, y)x
2t−1
t−1 = Af (y, x) y

2t−1
t−1 , x, y ∈ I.

By the definition of Af , setting here

p :=
2t− 1

t− 1
,

we get

[f (x) + y − f (y)]xp = [f (y) + x− f (x)] yp, x, y ∈ I,

whence

f (x)− f (y) =
xyp − yxp

xp + yp
, x, y ∈ I.

Thus f is of the class C∞ in I and, clearly,

∂2

∂x∂y

xyp − yxp

xp + yp
= 0, x, y ∈ I.

Since

∂2

∂x∂y

xyp − yxp

xp + yp

= p
xp−1yp−1

(xp + yp)
3

[
(1− p)

(
xp+1 − yp+1

)
+ (1 + p)xy

(
yp−1 − xp−1

)]
,
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for all x, y ∈ I, it follows that p = 0 and, by the definition of p, we get t = 1
2 .

Hence g (x) =
√
x and f (x) = x

2 + c for some c > 0. It follows that Af = A,
Gg = G and Hf,g = H. �

In this context a natural and open question arises:

Problem 1. Is it generally true that the generalized harmonic mean Hf,g

is symmetric if, and only if, Hf,g = H, Af = A and Gg = G?

The above two propositions seem to suggest that the answer is affirmative.
In this case it would strengthen the central position of the classical means in
the rich family of means, and the very special role of the Pythagorean harmony
proportion identity.

Remark 7. The mean Hf,g is symmetric iff

g(Af (x, y))

Af (x, y)

g(x)

g(y)
y =

g(Af (y, x))

Af (y, x)

g(y)

g(x)
x, x, y ∈ I,

or, equivalently, iff

(5) Af (y, x)g(Af (x, y))[g(x)]2y = Af (x, y)g(Af (y, x))[g(y)]2x, x, y ∈ I.

Assuming that f, g are three times differentiable, taking derivative of both
sides in x, and then setting y = x, we get

[g (x)]
2
x {xg′(x)− 2f ′(x) [g (x)− xg′(x)]} = 0, x ∈ I,

whence

2f ′(x) [g (x)− xg′(x)] = xg′(x) , x ∈ I.

If g (x) − xg′ (x) = 0 then xg′ (x) = 0 and, consequently, we would have
g (x) = 0, contradicting the assumption that g (x) is positive for every x ∈ I.
It follows that

f ′(x) =
1

2

xg′(x)

g (x)− xg′(x)
, x ∈ I,

and, obviously,

f ′′(x) =
1

2

g′(x) [g (x)− xg′ (x) + xg′′(x)]

[g (x)− xg′ (x)]
2 , x ∈ I.
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Differentiating both sides of (5) in x and y, and then setting y = x gives no
information about f and g. It turns out that the additional differentiation
(with respect to x or y), setting y = x and applications of the above formulas
for f ′ and f ′′ lead to a rather complicated ordinary differential equation of
the third order for the function g.

6. Harmonically complementary generalized harmonic means

For a real one-to-one and continuous function ϕ defined in an interval I and
t ∈ (0, 1), let M [ϕ]

t : I2 → I be the weighted quasi-arithmetic mean given by

M
[ϕ]
t (x, y) := ϕ−1 (tϕ (x) + (1− t)ϕ (y)) , x, y ∈ I,

(for this and other classes of means see, for instance, [2]). Of course, M [ϕ]
t is

symmetric iff t = 1
2 , that is iff M

[ϕ]
t = M [ϕ], where

M [ϕ] (x, y) := ϕ−1
(
ϕ (x) + ϕ (y)

2

)
, x, y ∈ I.

Note the following easy to verify

Remark 8. For every t ∈ (0, 1), the quasi-arithmetic mean M [ϕ] is in-
variant with respect to the weighted quasi-arithmetic mean-type mapping(
M

[ϕ]
t ,M

[ϕ]
1−t

)
, i.e.

M [ϕ] ◦
(
M

[ϕ]
t ,M

[ϕ]
1−t

)
= M [ϕ].

In particular, taking I = (0,∞) and ϕ (x) := 1
x for all x ∈ I, we have

H ◦ (Ht, H1−t) = H,

where

Ht (x, y) =
xy

(1− t)x+ ty
, H (x, y) =

2xy

x+ y
, x, y > 0,

are, respectively, the weighted harmonic mean and symmetric harmonic mean.
Thus the harmonic weighted means Ht and H1−t are complementary with
respect to the harmonic mean H (cf. [5]).
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In this connection, taking into account the key role played by the invariant
means in effective finding the limits of the iterates of the mean-type mappings,
as well as the considerations in the previous section, the following crucial
question arises.

Given an interval I⊂(0,∞), determine all functions f, g, ϕ, ψ : I →(0,∞),
satisfying the suitable conditions of Theorem 1, such that

H ◦ (Hf,g, Hϕ,ψ) = H,

i.e. such that the generalized weighted means Hf,g and Hϕ,ψ are complemen-
tary with respect to the harmonic mean H.

Assume that Hf,g is a mean. Since H is continuous, symmetric and in-
creasing in each variable, there exists a unique mean N : I2 → I such that
H ◦ (Hf,g, N) = H (see Remark 1 in [5]). So the question is if there are ϕ and
ψ such that N = Hϕ,ψ. Note that this equality is equivalent to the functional
equation

(x+ y)Hf,g (x, y)Hϕ,ψ (x, y) = xy [Hf,g (x, y) +Hϕ,ψ (x, y)] , x, y ∈ I.

7. An application

Theorem 2. Let I ⊂ (0,∞) be an interval. Assume that the functions
f : I → R, g : I → (0,∞) are such that f, id |I − f , g and id |I

g are strictly
increasing, and the function

I2 3 (x, y) 7−→ g (Af (x, y))

Af (x, y)

g (x)

g (y)
y

is increasing with respect to each variable. Then:
(i) A function Φ: I2 → R, continuous on the diagonal {(x, x) : x ∈ I} , sat-

isfies the functional equation

(7.1) Φ (Hf,g (x, y) , Af (x, y)) = Φ (x, y) , x, y ∈ I,

if and only if there is a single-variable continuous function ϕ : I → R
such that

(7.2) Φ = ϕ ◦Gg.



Generalized harmonic weighted mean 121

(ii) A mean M : I2 → I satisfies the functional equation

M (Hf,g (x, y) , Af (x, y)) = M (x, y) , x, y ∈ I,

if and only if

M = Gg.

Proof. (i) Assume that a continuous on the diagonal {(x, x) : x ∈ I}
function Φ: I2 → R satisfies equation (7.1), and define ϕ : I → R by

(7.3) ϕ (u) := Φ (u, u) , u ∈ I.

From (7.1), by induction, we get

(7.4) Φ (x, y) = (Φ ◦ (Hf,g, Af )
n
) (x, y) , x, y ∈ I, n ∈ N,

where (Hf,g, Af )
n denotes the nth iterate of the mean-type mapping (Hf,g, Af ) .

In view of Theorem 1 we have

lim
n→∞

(Hf,g, Af )
n

(x, y) = (Gg (x, y) , Gg (x, y)) , x, y ∈ I.

Since for every x, y ∈ I, the point (Gg (x, y) , Gg (x, y)) belongs to the diagonal
∆ := {(x, x) : x ∈ I}, and the function Φ is continuous on ∆, it follows from
(7.4) and (7.3) that

Φ (x, y) = lim
n→∞

(Φ ◦ (Hf,g, Af )
n
) (x, y)

= Φ ((Gg (x, y) , Gg (x, y))) = ϕ (Gg (x, y)) ,

which proves (7.2).
To prove the converse implication, assume that there is a function ϕ: I →R

such that (7.2) holds. Then, by Theorem 1(iii), the mean Gg is invariant with
respect to the mean-type mapping (Hf,g, Af ) , and, for all x, y ∈ I,

Φ (x, y) = ϕ◦Gg (x, y) = ϕ◦(Gg (Hf,g, Af )) (x, y) = Φ (Hf,g (x, y) , Af (x, y)) ,

which proves that Φ satisfies functional equation (7.1).
(ii) Since every mean is reflexive and continuous on the diagonal, the result

follows from (i). �
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