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TOPOLOGICAL SPACES
WITH THE FREESE–NATION PROPERTY

Judyta Bąk, Andrzej Kucharski

Abstract. We give a proposal of generalization of the Freese–Nation property
for topological spaces. We introduce a few properties related to Freese–Nation
property: FNS, FN, FNS∗, FNI. This article presents some relationship be-
tween these concepts. We show that spaces with the FNS property satisfy ccc
and any product of such spaces also satisfies ccc. We show that all metrizable
spaces have the FN property.

1. Introduction

R. Freese and J.B. Nation ([2]) characterize projective lattices by four con-
ditions. One of the conditions is called the FNS property. L. Heindorf and L.B.
Shapiro ([6]) have used the FNS property to characterize Boolean algebras
with a club consisting of countable relatively complete Boolean subalgebras.
In other words, they showed that a family of all clopen sets of 0-dimensional
compact space X has the FNS property if and only if X is openly generated.
E.V. Shchepin introduced the concept of openly generated spaces in [11] and
developed this theory in [12] and [13]. It is natural to generalize the Freese–
Nation property to arbitrary topological spaces. The FNS property and some
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versions of it for compact spaces were studied in the papers [3], [4], [6], [9]
and [10]. In [6] there are three definitions of the Freese–Nation property: FN,
the interpolative version FNI and the separative version FNS.
(FN) A Boolean algebra B has the FN property if for each b ∈ B there are

two finite sets u(b) ⊆ {c ∈ B : b ≤ c} and l(b) ⊆ {c ∈ B : b ≥ c} such
that if a ≤ b then u(a) ∩ l(b) 6= ∅.

(FNI) A Boolean algebra B has the FNI property if there is I : B → [B]<ω

such that if a ≤ b then a ≤ x ≤ b for some x ∈ I(a) ∩ I(b).
(FNS) A Boolean algebra B has the FNS property if there is s : B → [B]<ω

such that if a ∧ b = 0, then a ≤ c and b ≤ d for some disjoint c, d ∈
s(a) ∩ s(b).

These three versions of the Freese–Nation property are equivalent for
Boolean algebras. There are many possibilities to generalize the concept of
the Freese–Nation property for topological spaces, depending on the subfam-
ily of P(X) and the existence of finite subsets of P(X) with certain properties.

We give a proposal of concepts FNS,FN,FNS∗,FNI for a topological space
(in the next section we introduce definitions). We prove that spaces with the
FNS∗ property satisfy ccc and any product of such spaces also satisfies ccc. All
metrizable spaces have the FN property. Finally we give a topological proof
of Heindorf and Shapiro’s result that 0-dimensional openly generated spaces
have the FNS property.

All topological spaces under consideration are assumed to be at least Ty-
chonoff. For a topological space X let Clop(X) denote the set of all clopen
sets in X. For the family of sets B we denote by [B]<ω the set of all finite
families consisting of elements of the family B. We assume that the readers
are familiar with typical notations concerning Boolean algebras (cf., [6]) and
unexplained notions can be found in [1].

2. On generalizations of the Freese–Nation property

A family B of open sets in a topological space X has the FNS property
if there exists a map s : B → [B]<ω such that if U, V ∈ B are disjoint then
there are disjoint sets WU ,WV ∈ s(U) ∩ s(V ) such that U ⊆ WU , V ⊆ WV .
A topological space has the FN property if there exists a base B such that
for every V ∈ B there are two finite sets u(V ) ⊆ {U ∈ B : V ⊆ U} and
l(V ) ⊆ {U ∈ B : U ⊆ V } such that if V ⊆ W , then u(V ) ∩ l(W ) 6= ∅. We
say that a topological space has the FNS property whenever there exists a
base with the FNS property. We say that a topological space has the FNS∗

property whenever there exists a π-network with the FNS property. A family
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N of subsets of a topological spaceX is a π-network forX if for any open non-
empty set U there is an M ∈ N such that M ⊆ U . We say that a topological
space has the FNI property whenever there exists a base B of open sets in
a topological space X and there is I : B → [B]<ω such that if V ⊆ U then
V ⊆ W ⊆ U for some W ∈ I(V ) ∩ I(U). It is obvious that the FNI property
is equivalent to the FN property for any topological space. Since every base
is a π-network we have

Lemma 2.1. Every space with the FNS property has the FNS∗ property.

It turns out that if the FNS and FN properties are defined on a special
basis, they are equivalent.

Proposition 2.2. If a base B has the FNS property, then the base
{int clV : V ∈ B} has also the FNS property.

Proof. Let s : B → [B]<ω be witness on the FNS property. For each
W ∈ {int clV : V ∈ B} we choose VW ∈ B such that int cl(VW ) = W and put
s′(W ) = {int clU : U ∈ s(VW )}. The function s′ is as we desired. �

Proposition 2.3. If a base B, for a topological space X, has the FNS
property and X \ clV ∈ B, whenever V ∈ B, then X has the FN property.

Proof. Let s : B → [B]<ω be a witness on the property FNS. By Propo-
sition 2.2, without loss of generality, we can assume that B consists of regular
open sets. Put

u(U) = s(U) and l(U) = s(X \ clU),

for each U ∈ B. Suppose that U, V ∈ B and U ⊆ V, i.e. U ∩ (X \ clV ) = ∅.
By the FNS property there are disjoint open sets

U ′, V ′ ∈ s(U) ∩ s(X \ clV ) = u(U) ∩ l(V )

such that U ⊆ U ′ and X \ clV ⊆ V ′. Finally we get U ⊆ U ′ ⊆ X \ clV ′ ⊆
int clV = V . �

Proposition 2.4. If a base B, for a topological space X, has the FN
property and X \ clV ∈ B, whenever V ∈ B, then X has the FNS property.

Proof. Let u, l : B → [B]<ω be witnesses on the FN property. For each
U ∈ B let s(U) be a family

u(U) ∪ l(X \ clU) ∪ {X \ clV : V ∈ u(U)} ∪ {X \ clV : V ∈ l(X \ clU)}.
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Suppose U, V ∈ B are disjoint, i.e. U ⊆ X \ clV . By the FN property for B,
choose

W ∈ u(U) ∩ l(X \ clV ) ⊆ s(U) ∩ s(V )

such that U ⊆W ⊆ X \ clV . Then check that X \ clW belongs to

{X \ clG : G ∈ u(U)} ∩ {X \ clG : G ∈ l(X \ clV )} ⊆ s(U) ∩ s(V ).

Sets W,X \ clW are disjoint and V ⊆ X \ clW and U ⊆W . �

Any space with countable weight has the FNS and the FN property.

Proposition 2.5. If B is a countable base consisting of regular open sets
of X, then the base B ∪ {X \ clV : V ∈ B} has the FNS property.

Proof. Let B be a countable base for X consisting of regular open sets.
Put B0 = B ∪ {X \ clV : V ∈ B}. Let {Un : n ∈ ω} enumerates the elements
of B0. Define a map s : B0 → [B0]<ω in the following way

s(Un) = {Uk : k ≤ n} ∪ {X \ clUk : k ≤ n},

for any Un ∈ B0. If Uk ∩ Ui = ∅ and k < i, then

Uk, X \ clUk ∈ s(Uk) ∩ s(Ui) and Uk ⊆ Uk and Ui ⊆ X \ clUk

and Uk ∩ (X \ clUk) = ∅. �

Proposition 2.6. If a space has a countable base, then this base has the
FN property.

Proof. Enumerate a countable base B = {Vn : n ∈ ω} and define maps
u, l : B → [B]<ω in the following way

u(Vn) = {Vk : k ≤ n, Vn ⊆ Vk} and l(Vn) = {Vk : k ≤ n, Vk ⊆ Vn}.

Finally we get that if Vi ⊆ Vj , then Vmin{i,j} ∈ u(Vi) ∩ l(Vj). �

Corollary 2.7. The family Clop(X) of a 0-dimensional compact metriz-
able space has the FNS property.
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One can ask if a 0-dimensional compact space with the FNS must also
have the FNS property for the base Clop(X). We can prove only that if there
exists a base B closed under finite intersections with the FNS property, then
one can enlarge the base B to a base B′ with FNS that contains both families
B and Clop(X). In fact, we know how to define a map s : B′ → [B′]<ω which is
a witness on the FNS property, but it is not necessarily that s assigns a clopen
set to a family of clopen sets.

Proposition 2.8. Assume that X is a 0-dimensional compact space. If
there exists a base B closed under finite intersections with the FNS property,
then there exists a base B′ with the FNS property such that B ∪Clop(X) ⊆ B′
where B′ is closed under finite unions.

Proof. Let B be a base closed under finite intersections and let s : B →
[B]<ω be a witness on the FNS property. If S is a family of subsets of X, then
let S∧ be the family of all non-empty intersections of finitely many elements
of S. Put

s(V1 ∪ . . . ∪ Vn) =
{⋃

R : R ⊆ (s(V1) ∪ . . . ∪ s(Vn))∧
}
,

for each V1, . . . , Vn ∈ B. Let B′ = {
⋃
R : R ∈ [B]<ω}. Observe that B ∪

Clop(X) ⊆ B′. Note that s(V1 ∪ . . . ∪ Vn) is closed under finite intersections.
Indeed, if R1,R2 ⊆ (s(V1) ∪ . . . ∪ s(Vn))∧, then

R = {V ∩ U : V ∈ R1 and U ∈ R2} and
⋃
R1 ∩

⋃
R2 =

⋃
R.

We shall prove that s : B′ → [B′]<ω is a witness on the FNS property. Suppose
that V1, . . . , Vn, U1, . . . , Uk ∈ B are such that

(V1 ∪ . . . ∪ Vn) ∩ (U1 ∪ . . . ∪ Uk) = ∅.

For each Vi there exist families T (Vi),R(Vi) ⊆ s(Vi) ∩ (s(U1) ∪ . . . ∪ s(Uk))
such that

Vi ⊆
⋂
R(Vi) ∈ (s(U1) ∪ . . . ∪ s(Uk))∧ ∩ (s(Vi))

∧

and

U1 ∪ . . . ∪ Uk ⊆
⋃
T (Vi) ∈ s(V1 ∪ . . . ∪ Vn) ∩ s(U1 ∪ . . . ∪ Uk)



46 Judyta Bąk, Andrzej Kucharski

and
⋃
T (Vi)∩

⋂
R(Vi) = ∅. Families s(V1∪ . . .∪Vn), s(U1∪ . . .∪Uk) are closed

under finite intersections, hence we get⋃
T (V1) ∩ . . . ∩

⋃
T (Vn) ∈ s(V1 ∪ . . . ∪ Vn) ∩ s(U1 ∪ . . . ∪ Uk).

We have also

V1 ∪ . . .∪ Vn ⊆
⋂
R(V1)∪ . . .∪

⋂
R(Vn) ∈ s(V1 ∪ . . .∪ Vn)∩ s(U1 ∪ . . .∪Uk)

and (
⋂
R(V1)∪. . .∪

⋂
R(Vn))∩(

⋃
T (V1)∩. . .∩

⋃
T (Vn)) = ∅ and U1∪. . .∪Uk ⊆⋃

T (V1) ∩ . . . ∩
⋃
T (Vn). �

Now we prove that the FNS property is preserved by products.

Theorem 2.9. The product of spaces with the FNS property has the FNS
property.

Proof. Let X =
∏
{Xi : i ∈ A}, where each space Xi has the FNS

property. Fix a base Bi and si : Bi → [Bi]<ω which are witnesses on the FNS
property for Xi, for each i ∈ A. We shall show that the base

B =
{ ⋂
k∈E

pr−1
k (Uk) : E ∈ [A]<ω and Uk ∈ Bk for every k ∈ E

}
has the FNS property. Define s : B → [B]<ω in the following way

s(U) = {pr−1
k (U ′) : U ′ ∈ sk(Uk) and k ∈ EU}

for each U =
⋂
k∈EU pr−1

k (Uk) ∈ B. Fix disjoint sets U, V ∈ B where

U =
⋂
k∈EU

pr−1
k (Uk) and V =

⋂
k∈EV

pr−1
k (Vk).

There exists k ∈ EU ∩ EV such that Uk ∩ Vk = ∅. Hence there exist U ′, V ′ ∈
sk(Uk) ∩ sk(Vk) such that Uk ⊆ U ′, Vk ⊆ V ′ and U ′ ∩ V ′ = ∅. Therefore

U ⊆ pr−1
k (U ′) and V ⊆ pr−1

k (V ′) and pr−1
k (U ′) ∩ pr−1

k (V ′) = ∅

and pr−1
k (U ′),pr−1

k (V ′) ∈ s(U) ∩ s(V ). �

It turns out that the FN property is also preserved by products, the proof
is similar to the proof of Theorem 2.9. We give a proof for the reader’s con-
venience.
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Theorem 2.10. The product of spaces with the FN property has the FN
property.

Proof. LetX =
∏
{Xi : i ∈ A} where each spaceXi has the FN property.

Fix a base Bi and ui, li : Bi → [Bi]<ω which are witnesses on the FN property
for Xi, for each i ∈ A We shall show that the base

B =
{ ⋂
k∈E

pr−1
k (Uk) : E ∈ [A]<ω and Uk ∈ Bk for every k ∈ E

}
has the FN property. Define l,u: B → [B]<ω in the following way

l(U) =
{ ⋂
k∈E

pr−1
k (U ′k) : U ′k ∈ lk(Uk) and k ∈ EU

}
and

u(U) =
{ ⋂
k∈H

pr−1
k (U ′k) : U ′k ∈ uk(Uk) and k ∈ H ⊆ EU

}
for every set U =

⋂
k∈EU pr−1

k (Uk) ∈ B. Assume that U, V ∈ B, U ⊆ V and

U =
⋂
k∈EU

pr−1
k (Uk) and V =

⋂
k∈EV

pr−1
k (Vk).

Then EV ⊆ EU and Uk ⊆ Vk for every k ∈ EV . Hence there exists
Wk ∈ uk(Uk) ∩ lk(Vk) such that Uk ⊆ Wk ⊆ Vk for every k ∈ EV . There-
fore U ⊆

⋂
k∈EV pr−1

k (Wk) ⊆ V. �

Similarly, one can prove the following.

Corollary 2.11. The product of spaces with the FNS∗ property has the
FNS∗ property.

Recall that a topological space satisfies the countable chain condition
(briefly ccc) if every family of pairwise disjoint non-empty open sets is count-
able. R. Laver has shown that under the continuum hypothesis, there are two
topological spaces satisfying ccc and the product of them does not satisfy
ccc. A simple proof of Laver’s result was given by F. Galvin in [5]. Following
F. Galvin [5] let us add that: K. Kunen, F. Rowbottom and R. M. Solovay
independently showed that under Martin’s Axiom and the negation of the
continuum hypothesis the product of arbitrarily many ccc spaces is ccc.

We will need the ∆-lemma.
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Theorem (∆-lemma). For any uncountable family R of finite sets there
exists an uncountable family R′ ⊆ R and a set J such that A∩B = J for any
different sets A,B ∈ R′.

Theorem 2.12. Every space with the FNS∗ property satisfies the countable
chain condition.

Proof. LetN be a π-network with the FNS property i.e. there exists some
s : N → [N ]<ω witnessing on the property FNS. Suppose that there exists an
uncountable family A of pairwise disjoint open sets. For each V ∈ A we choose
FV ∈ N such that FV ⊆ V . Therefore the family P = {FV : V ∈ A} ⊆ N is
uncountable and consists of pairwise disjoint sets.

Suppose that the collection {s(F ) : F ∈ P} is countable, then there exists a
set F0 ∈ P such that a family P ′ = {G ∈ P : s(G) = s(F0)} is uncountable. Let
s(F0) = {H1, . . . ,Hn} ⊆ N and for every G ∈ P ′ define IG = {i ∈ {1, . . . , n} :
G ⊆ Hi}. By the FNS property the set IG is non-empty for each G ∈ P ′. There
existsG0 ∈ P ′ such that IG0 = IG for some uncountable many setsG ∈ P ′. Let
G1, G2 ∈ P ′ be such that IG1 = IG2 = IG0 and G1 6= G2. Since G1 ∩G2 = ∅,
then there are G′1, G′2 ∈ s(G1) = s(G2) = s(F0) such that G1 ⊆ G′1, G2 ⊆ G′2
and G′1 ∩ G′2 = ∅. On the other hand G1, G2 ⊆

⋂
{Hi : i ∈ IG0} ⊆ G′1 ∩ G′2,

a contradiction. Hence the family {s(F ) : F ∈ P} is uncountable.
By ∆-lemma there exists an uncountable family R ⊆ {s(F ) : F ∈ P} and

a set J such that s(G1) ∩ s(G2) = J for any different sets G1, G2 ∈ P ′ =
{F ∈ P : s(F ) ∈ R}. The family P ′ is obviously uncountable and the set J is
non-empty and finite. Let J = {H1, . . . ,Hn}. By the FNS property for each
G ∈ P ′ there exists i ≤ n such that G ⊆ Hi. The rest of the proof is analogous
to the first part of the proof, but for the sake of completeness we will repeat
it. For every G ∈ P ′ we define IG = {i ∈ {1, . . . , n} : G ⊆ Hi}. There exists
G0 ∈ P ′ such that IG0 = IG for some uncountable many sets G ∈ P ′. Let
G1, G2 ∈ P ′ be such that IG1 = IG2 = IG0 and G1 6= G2. Since G1 ∩G2 = ∅,
then there are G′1, G′2 ∈ s(G1) ∩ s(G2) = J such that G1 ⊆ G′1, G2 ⊆ G′2
and G′1 ∩ G′2 = ∅. On the other hand G1, G2 ⊆

⋂
{Hi : i ∈ IG0} ⊆ G′1 ∩ G′2,

a contradiction. Hence the family P has to be countable. �

By Lemma 2.1 and Theorem 2.12 we get the following corollary.

Corollary 2.13. Every space with the FNS property satisfies the count-
able chain condition.

The following corollary is an immediate consequence of Theorem 2.9 and
Corollary 2.13.

Corollary 2.14. The product of topological spaces with the FNS property
satisfies the countable chain condition.
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We say that a cover R is a refinement of a cover P if for each U ∈ R there
is V ∈ P such that U ⊆ V .

Theorem (The Stone theorem [1, 4.4.1]). Every open cover R of a metriz-
able space has an open refinement B which is locally finite and σ-discrete and
if W ⊆ V then W = V for all W,V ∈ B.

Proof. Let R be an open cover of X. Recalling the standard proof of the
Stone theorem [1, 4.4.1], one can define a locally finite refinement

B =
⋃
{Pn : n ∈ ω}, where Pn = {H(U, n) : U ∈ R} is discrete

and

H(U, n) =
⋃{

K(x,
1

2n
) : K(x,

3

2n
) ⊆ U, x /∈ V for V ≺ U

and x /∈
⋃{⋃

Pi : i < n
}}
,

where ≺ is a well-order relation on R. We say that a point x ∈ X is an
essential point for H(U, n) whenever

K(x,
3

2n
) ⊆ U, x /∈ V for V ≺ U and x /∈

⋃{⋃
Pi : i < n

}
.

Let ∅ 6= H(V, s) ∈ Ps, ∅ 6= H(U, p) ∈ Pp, then H(V, s) ⊆ H(U, p) if and only
if V = U and s = p. Indeed, let H(V, s) ⊆ H(U, p). Then there exist an
essential point c for H(V, s) and an essential point a for H(U, p) such that
c ∈ K(a, 1

2p ) ⊆ H(U, p). Suppose that s < p. Then a ∈ K(c, 1
2p ) ⊆ K(c, 1

2s ) ⊆
H(V, s) ⊆

⋃
Ps, a contradiction, because a /∈

⋃
Ps. Now suppose that p < s.

Then c ∈ K(a, 1
2p ) ⊆ H(U, p) ⊆

⋃
Pp, a contradiction, because c /∈

⋃
Pp.

Therefore we get p = s. Since Ps is a discrete family we get V = U . �

The next theorem contrasts with Corollary 2.13 and the case of 0-dimen-
sional compact spaces.

Theorem 2.15. Every metrizable space has the FN property.

Proof. We define a base B =
⋃
{Bk : k ∈ ω} such that Bk+1 is an open

refinement of Bk consisting of sets with diameter ≤ 1
k+1 , each Bk is locally

finite and σ-discrete and if W,V ∈ Bk and W ⊆ V then W = V . Let R0 be
a cover consisting of balls with radius ≤ 1. By the Stone theorem the cover R0

has an open refinement B0 which is locally finite and σ-discrete and if W ⊆ V
then W = V for all W,V ∈ B0.
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Assume that we have just defined B0, . . . ,Bk such that for each i < k the
family Bi+1 is an open refinement of Bi consisting of sets with diameter ≤ 1

i+1 ,
Bi is locally finite and σ-discrete and if W,V ∈ Bi and W ⊆ V then W = V .

The cover Bk has a refinement Rk+1 consisting of balls with radius ≤ 1
k+2 .

By the Stone theorem we get an open refinement Bk+1 which is locally finite
and σ-discrete and if W,V ∈ Bk+1 and W ⊆ V then W = V .

A family B =
⋃
{Bk : k ∈ ω} has the required properties. For each U ∈ B

we define the sets l(U) and u(U) by the following formula

l(U) = {U} and u(U) = {W ∈ Bi : U ⊆W, i ≤ min{n ∈ ω : U ∈ Bn}}.

Assume that min{n ∈ ω : U ∈ Bn} = k. Since {W ∈ Bk : U ⊆W} = {U} and
each Bi is locally finite the set u(U) is finite.

Let U, V ∈ B and U ⊆ V . Put n = min{j ∈ ω : U ∈ Bj} and k = min{j ∈
ω : V ∈ Bj}. Suppose that n < k. Since Bk is the refinement of Bn, there
exists V ′ ∈ Bn such that V ⊆ V ′. Then U = V ′ = V and U ∈ l(V ) ∩ u(U). If
k ≤ n, then V ∈ l(V ) ∩ u(U), this completes the proof. �

We showed that the properties FN and FNS are not equivalent.

3. Openly generated spaces

L. Heindorf and L.B. Shapiro [6] proved that Boolean algebras with a club
consisting of countable relatively complete Boolean subalgebras have the FNS
property. We prove this result in the language of topological spaces, namely
the family Clop(X) of 0-dimensional openly generated space X has the FNS
property.

We say that X is an openly generated space if X = lim←−{Xσ, p
σ
ρ ,Σ} and

{Xσ, p
σ
ρ ,Σ} is a continuous σ-complete inverse system consisting of compact

metrizable spaces Xσ and open maps pσρ . If X = lim←−{Xα, p
β
α, α < β < κ} is a

continuous inverse limit consisting of compact spaces Xα and open maps pβα,
where α < β < κ = w(X), then for any U ⊆ X we define the set

d(U) = {α < κ : (pα+1)−1(pα+1(U)) ( (pα)−1(pα(U))}.

The above definition was introduced by E. V. Shchepin [11].

Lemma 3.1 ([6, Lemma 2.1.3]). Let X = lim←−{Xα, p
β
α, α < β < κ} be

a continuous inverse limit of compact Hausdorff spaces Xα and open maps
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pβα, where κ = w(X). If U, V are disjoint clopen sets then p0(U) ∩ p0(V ) = ∅
or pα+1(U) ∩ pα+1(V ) = ∅ for some α ∈ d(U) ∩ d(V ).

Proof. Assume that U, V are disjoint clopen sets and p0(U)∩p0(V ) 6= ∅.
There exists the minimal β < κ such that pβ(U)∩pβ(V ) = ∅. The ordinal num-
ber β is not a limit ordinal. Suppose β is a limit ordinal. Since pβ(U), pβ(V )
are disjoint clopen sets in Xβ there is γ < β such that pγ(U) ∩ pγ(V ) = ∅,
a contradiction. Let β = α+1. Suppose that α 6∈ d(V ). Thus (pα)−1(pα(V )) =
(pα+1)−1(pα+1(V )) and

U ⊆ (pα+1)−1(pα+1(U)) ⊆ X \ (pα+1)−1(pα+1(V )) = X \ (pα)−1(pα(V )).

Finally, U ∩ (pα)−1(pα(V )) = ∅ and hence pα(U)∩pα(V ) = ∅, a contradiction
with the minimality of β. �

Lemma 3.2. In a compact space the intersection of any strictly decreasing
sequence {Un : n ∈ ω} of clopen sets is not clopen.

Proof. Suppose {Un : n ∈ ω} is a sequence of clopen sets such that
Un+1 ( Un for all n ∈ ω and

⋂
{Un : n ∈ ω} = U is clopen. Then

X = (X \U0)∪
⋃
{Un \Un+1 : n ∈ ω} ∪U , a contradiction with compactness

of X. �

It is easy to prove the following lemma.

Lemma 3.3. Let f : X → Y be a continuous surjection between Hausdorff
spaces. The map f is open if and only if for any open non-empty set U ⊆ X
there is the minimal open set V ⊆ Y with respect to “⊆” such that f(U) ⊆ V ,
i.e. if W ⊆ Y is an open subset and f(U) ⊆ W then V ⊆ W . Moreover, if
X and Y are 0-dimensional compact spaces then f is open if and only if for
any clopen non-empty set U ⊆ X there is the minimal clopen set V ⊆ Y with
respect to “⊆” such that f(U) ⊆ V .

Lemma 3.4 ([6, Lemma 2.1.2 and 2.1.3]). Let X = lim←−{Xα, p
β
α, α < β < κ}

be a continuous inverse limit of compact spaces Xα and open maps pβα, where
α < β < κ = w(X). Then the set d(U) is finite for every clopen set U.

Proof. Let U ⊆ X be a clopen non-empty set. Suppose that d(U) is
infinite. Let {αn : n ∈ ω} ⊆ d(U) be an increasing sequence and α =
sup{αn : n ∈ ω}. Then (pα)−1(pα(U)) =

⋂
{(pαn)−1(pαn(U)) : n ∈ ω} and

{(pαn)−1(pαn(U)) : n ∈ ω} is the strictly decreasing sequence of clopen sets,
a contradiction with Lemma 3.2. �
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The next lemma we prove only in the 0-dimensional case but it is true
without this restriction. This lemma is similar to [13, Lemma 2.6] but we do
not assume that B is σ-complete.

Lemma 3.5. Let X = lim←−{Xσ, p
σ
ρ ,Σ} and {Xσ, p

σ
ρ ,Σ} be a continuous

σ-complete inverse system consisting of 0-dimensional compact metrizable
spaces Xσ and open maps pσρ . If B ⊆ Σ is an upward directed set then
pB : X → XB given by the formula pB((xa)a∈Σ) = (xa)a∈B, where XB =
lim←−{Xσ, p

σ
ρ , B} is an open map.

Proof. Suppose that pB : X → XB is not open. By Lemma 3.3 there
is a clopen set U ⊆ X, such that there is no minimal V ∈ Clop(XB) with
pB(U) ⊆ V . Inductively we construct a chain {bn : n ∈ ω} ⊆ B such that

pB(U) ⊆ (pBbn+1
)−1(pbn+1(U)) ( (pBbn)−1(pbn(U)).

Assume that we have just constructed b0, . . . , bn ∈ B. According to Lemma
3.3 (pBbn)−1(pbn(U)) is not the minimal clopen subset ofXB such that pB(U) ⊆
(pBbn)−1(pbn(U)), thus there exists a clopen set V ⊆ XB such that

pB(U) ⊆ V ( (pBbn)−1(pbn(U)).

Since V is the clopen set there exists bn+1 ∈ B such that bn+1 > bn and
V = (pBbn+1

)−1(pBbn+1
(V )). Therefore, pbn+1(U) ⊆ pBbn+1

(V ) and

pB(U) ⊆ (pBbn+1
)−1(pbn+1(U)) ⊆ V ( (pBbn)−1(pbn(U)).

Put b = sup{bn : n ∈ ω}. Since (pBbn+1
)−1(pbn+1(U)) ( (pBbn)−1(pbn(U)) we

have pbn+1(U) ( (p
bn+1

bn
)−1(pbn(U)) for any n ∈ ω. Hence we have

pb(U) =
⋂
{(pbbn)−1(pbn(U)) : n ∈ ω}

and the sequence {(pbbn)−1(pbn(U)) : n ∈ ω} is the strictly decreasing sequence
of clopen sets, a contradiction with Lemma 3.2. �

Theorem 3.6 ([6, Theorem 2.2.3]). Let X be a 0-dimensional openly gen-
erated space. Then the family Clop(X) has the FNS property.
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Proof. Let X = lim←−{Xσ, p
σ
ρ ,Σ} and {Xσ, p

σ
ρ ,Σ} be a continuous σ-

complete inverse system consisting of 0-dimensional compact metrizable spaces
Xσ and open maps pσρ . We are going to prove that the family of all clopen sets
in XB = lim←−{Xσ, p

σ
ρ , B} has the FNS property by transfinite induction with

respect to the cardinality of upward directed sets B ⊆ Σ. This is true if B is
countable by Corollary 2.7. Assume that Clop(XA) has the FNS property for
any upward directed set A of cardinality less than τ , where τ ≤ w(X) is an
uncountable cardinal. Suppose B ⊆ Σ is an upward directed set of cardinality
τ . Then, according to [7] (or [8]) there exists a sequence {Bα : α < τ} of
upward directed sets such that:
(1) |Bα| = |α|+ ω for α < τ ,
(2) Bα ⊆ Bβ for α < β < τ ,
(3) B =

⋃
{Bα : α < τ}.

Due to our assumption for each α < τ there exists sα : Clop(XBα) →
[Clop(XBα)]<ω which is witness on the FNS property for Clop(XBα). Define
sB : Clop(XB)→ [Clop(XB)]<ω in the following way:

sB(U) =
{

(pBB0
)−1(V ) : V ∈ s0

(
pBB0

(U)
)}
∪⋃{

{(pBBα+1
)−1(V ) : V ∈ sα+1

(
pBBα+1

(U)
)
} : α ∈ d(U)

}
.

By Lemma 3.5 a map pBBα is open for any α < τ . Hence pBBα+1
(U) is clopen

for any clopen set U . According to Lemma 3.4 the set d(U) is finite, so the
set sB(U) is finite and well defined. Now assume that U, V ⊆ XB are disjoint
clopen sets. By Lemma 3.1 we have

pBB0
(U) ∩ pBB0

(V ) = ∅ or pBBα+1
(U) ∩ pBBα+1

(V ) = ∅

for some α ∈ d(U)∩d(V ). Therefore there exist disjoint sets V ′, U ′ ∈ sB(U)∩
sB(V ) such that U ⊆ U ′ and V ⊆ V ′. �

We establish that spaces with the FNS property have some properties that
belong to openly generated compact spaces. L. Heindorf and L.B. Shapiro [6]
showed that a family of all clopen sets of 0-dimensional compact space X has
the FNS property if and only if X is openly generated. This raises questions
about the further properties of spaces with the FNS property. For example,
the referee suggested the following questions:
(1) Do retracts preserve the FNS?
(2) Do continuous open surjections preserve the FNS?
(3) Do symmetric powers preserve the FNS?
(4) Does the Vietoris hyperspace operation preserve the FNS?
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(5) If Y is a continuous image of a compact FNS space, must its π-character
be equal to its weight?
Acknowledgments. The authors wish to thank the anonymous referee
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comments and questions have caused a huge change in the paper in comparison
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