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LEFT DERIVABLE MAPS AT NON-TRIVIAL
IDEMPOTENTS ON NEST ALGEBRAS

HOGER GHAHRAMANI, SAMAN SATTARI

Abstract. Let Alg/N be a nest algebra associated with the nest A/ on a (real
or complex) Banach space X. Suppose that there exists a non-trivial idempo-
tent P € Alg N with range P(X) € N, and §: AlgN — Alg N is a continuous
linear mapping (generalized) left derivable at P, i.e. §(ab) = ad(b) + bd(a)
(6(ab) = ad(b) + bd(a) — bad(l)) for any a,b € AlgN with ab = P, where
I is the identity element of Alg N'. We show that § is a (generalized) Jordan
left derivation. Moreover, in a strongly operator topology we characterize con-
tinuous linear maps § on some nest algebras Alg N with the property that
§(P) =2P5(P) or §(P) = 2P§(P) — P§(I) for every idempotent P in AlgN.

1. Introduction

Throughout this paper, all algebras and vector spaces will be over [F, where
F is either the real field R or the complex field C. Let A be an algebra with
unity 1, M be a left A-module and §: A — M be a linear mapping. The
mapping J is said to be a left derivation (or a generalized left derivation) if
d(ab) = ad(b) + bd(a) (or d(ab) = ad(b) 4+ bé(a) — bad(1)) for all a,b € A. It
is called a Jordan left derivation (or a generalized Jordan left derivation) if
§(a?) = 2ad(a) (or §(a?) = 2aé(a) — a?5(1)) for any a € A. Obviously, any
(generalized) left derivation is a (generalized) Jordan left derivation, but in
general the converse is not true (see [15, Example 1.1]). The concepts of left
derivation and Jordan left derivation were introduced by Bresar and Vukman
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in [4]. For results concerning left derivations and Jordan left derivations we
refer the readers to [I0] and the references therein.

In recent years, several authors studied the linear (additive) maps that
behave like homomorphisms, derivations or left derivations when acting on
special products (for instance, see [3], [7, @ 6, 11, 12] 16] and the references
therein). In this article we study the linear maps on nest algebras behaving
like left derivations at idempotent-product elements.

Let A be an algebra with unity 1, M be a left A-module and 6: A — M be a
linear mapping. We say that ¢ is left derivable (or generalized left derivable) at
a given point z € A if §(ab) = ad(b) +bd(a) (or 6(ab) = ad(b)+bd(a) —bad(1))
for any a,b € A with ab = 2. In this paper, we characterize the continuous
linear maps on nest algebras which are (generalized) left derivable at a non-
trivial idempotent operator P. Moreover, in a strongly operator topology we
describe continuous linear maps § on some nest algebra Alg N with the pro-
perty that 6(P) = 2P§(P) or 6(P) = 2P§(P) — P§(I) for every idempotent
P in Alg N, where I is the identity element of Alg N\ .

The following are the notations and terminologies which are used through-
out this article.

Let X be a Banach space. We denote by B(X) the algebra of all bounded
linear operators on X, and F(X) denotes the algebra of all finite rank operators
in B(X). A subspace lattice £ on a Banach space X is a collection of closed
(under norm topology) subspaces of X which is closed under the formation
of arbitrary intersection and closed linear span (denoted by V), and which
includes {0} and X. For a subspace lattice £, we define Alg L by

AlgL ={T € B(X)|T(N) C Nfor allN € L}.

A totally ordered subspace lattice A on X is called a nest and Alg N is called
a nest algebra. When N # {{0}, X}, we say that N is non-trivial. It is clear
that if AV is trivial, then AlgN = B(X). Denote Algr N := AlgN N F(X),
the set of all finite rank operators in Alg N and for N € N, let N_ = V{M €
N|M C N}. The identity element of a nest algebra will be denoted by I.
An element P in a nest algebra is called a non-trivial idempotent if P # 0,1
and P? = P.

Let NV be a non-trivial nest on a Banach space X. If there exists a non-
trivial idempotent P € AlgN with range P(X) € N, then we have (I —
P)(AlgN)P = {0} and hence

AlgN = P(AlgN)P+P(AlgN)(I — P)+(I — P)(AlgN)(I — P)

as sum of linear spaces. This is so-called Peirce decomposition of Alg N. The

sets P(AlgN)P, P(AlgN)(I — P) and (I — P)(AlgN)(I — P) are closed
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in AlgN. In fact, P(AlgN)P and (I — P)(AlgN)(I — P) are Banach sub-
algebras of Alg /N whose unit elements are P and I — P, respectively and
P(AlgN)(I— P) is a Banach (P(AlgN)P, (I — P)(Alg N')(I — P))-bimodule.
Also P(AlgN)(I — P) is faithful as a left P(AlgN)P-module as well as a
right (I — P)(AlgN)(I — P)-module. For more information on nest algebras,
we refer to [5].

A subspace lattice £ on a Hilbert space H is called a commutative subspace
lattice, or a CSL, if the projections of H onto the subspaces of £ commute
with each other. If £ is a CSL, then Alg L is called a CSL algebra. Each nest
algebra on a Hilbert space is a C'S'L-algebra.

2. Main results

In order to prove our results we need the following result.

THEOREM 2.1 ([8]). Let A be a Banach algebra with unity 1, X be a Banach
space and let ¢ : A x A — X be a continuous bilinear map with the property
that

abe A, ab=1= ¢(a,b) = ¢(1,1).
Then,
¢(a,a) = ¢(a®,1)
for alla € A.

PropPOSITION 2.2. Let A be a Banach algebra with unity 1, and M be a
unital Banach left A-module. Let §: A — M be a continuous linear map. If §
is left derivable at 1, then § is a Jordan left derivation.

PROOF. Since 1-1 = 1, it follows that §(1) = 2§(1) and therefore §(1) = 0.
Define a continuous bilinear map ¢: A x A — M by ¢(a,b) = ad(b) + bd(a).
Then ¢(a,b) = ¢(1,1) for all a,b € A with ab = 1, since ¢ is left derivable at
1. By applying Theorem we obtain ¢(a,a) = ¢(a?,1) for all a € A. So,

§(a®) = 2ad(a) (a € A). O
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COROLLARY 2.3. Let A be a Banach algebra with unity 1, and M be a
unital Banach left A-module. Let x,y € A withxz+y =1 and let §: A — M be
a continuous linear map. If § is left derivable at x and y, then § is a Jordan
left derivation.

PRrROOF. For a,b € A with ab = 1, we have abr = x and aby = y. Since §
is left derivable at x and y, it follows that

d(x) = d(abx) = ad(bx) + bxd(a)
and
6(y) = 6(aby) = ad(by) + byd(a).
Combining the two above equations, we get that
0(1) = d(x +y) = ad(bx) + bxd(a) + ad(by) + byd(a) = ad(b) + bd(a),

i.e. § is left derivable at 1. It follows from Proposition that ¢ is a Jordan
left derivation. O

REMARK 2.4. If A is a CS L-algebra or a unital semisimple Banach algebra,
then by [12] and [I4] every continuous Jordan left derivation on A is zero.
Hence it follows from Proposition[2.2]that every continuous linear map §: A —
A which is left derivable at 1 is zero.

The following is our main result.

THEOREM 2.5. Let N be a nest on a Banach space X such that there ex-
ists non-trivial idempotent P € AlgN with range P(X) e N. If 6: AlgN —
Alg N is a continuous left derivable map at P, then § is a Jordan left deriva-
tion.

PROOF. For a notational convenience, we denote A = Alg N, A;; = PAP,
A1y = PA(I—P) and Ay = (I—P)A(I—P). As mentioned in the introduction
A = Ay +A15+Ags. Throughout the proof, a;; and b;; will denote arbitrary
elements in A;; for 1 <i,5 < 2.

First we show that §(P) = 0. Since P2 = P, we have 2P§(P) = 6(P).
It follows from equation 2PJ§(P) = §(P) that P§(P) = 0 and it implies that
5(P)=0.

We complete the proof by verifying the following steps.
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Step 1. Pd(a3,)P = 2a11Pd(a11)P and P§(a3,)(I—P) = 2a11 P§(a11)(I-P).
For any a11,b11 with a11611 = P, we have

(2.1) a11(5(b11) + b116(a11) = (5(P)

Multiplying this identity by P both from the left and from the right, we find
(111P5(b11)P+b11P(5((111)P:P(;(P)P ((111[)11 :P)

Define a continuous linear map d: Aj; — Ay by d(ai;;) = Pd(ai1)P. By

above identity d is left derivable at P. Hence by Proposition[2.2] d is a Jordan

left derivation, which implies

P(S(a%l)P = 2a11P(5(a11)P (a11 € AH).

By multiplying (2.1) by P from the left and by (I — P) from the right, we

arrive at
a11P5(b11)(I— P) +b11P6(a11)(I— P) = P5(P)(I — P) (a11b11 = P)
Define a continuous linear map D: A3 — Ajs by D(a11) = Pd(ar1)({ — P).
It is easy to see that D is a left derivable at P. It follows from Proposition [2.2]
that D is a Jordan left derivation. Thus,
P§(a?))(I — P) = 2a1:PS(a11)(I — P) (a1 € App).

Step 2. Pd(azz) = 0.
Since (P + age)P = P, we have

(P + a22)0(P) + P§(P + azz) = §(P).
From §(P) = 0 we get
P(S(agg) =0.

Step 3. P6(a12) =0.
Applying 6 to (P + a12)P = P, we get

(P + a12)0(P) + PO(P + ai2) = 6(P).
Since 0(P) = 0, it follows that

Pé(alz) =0.
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Step 4. (I — P)é(a11)(I — P) =0.
For any aq1,b11 with b11a11 = P, we have (I— P—i—bn)(lu = P and hence

(I — P+b11)(5(a11) —|—a115(I — P+b11) = (S(P)

Multiplying this identity by I — P both from the left and from the right we
arrive at

(I — P)d(an)(I — P) = 0.

Since any element in a Banach algebra with unit element is a sum of its
invertible elements ([I]), by the linearity of § and above identity we have

(I = P)é(ar)(I - P) =0

for all ai1 € Aq;.

Step 5. (I — P)d(a12)(I — P) =0.
Since (P — a12)(I + a12) = P, it follows that

(P — alg)(;(l + alg) + (I + alg)(S(P — alg) = 5(P)

Multiplying this identity by I — P both from the left and from the right and
using the fact that 6(P) = 0, we find

(I = P)é(ar2)(I — P) =0.

Step 6. (I — P)d(az2)(I — P) =0.
Applying 6 to (P + a12)(P — ai2a22 + az2) = P, we see that

(P + a12)0(P — aiza22 + a22) + (P — a12a22 + a22)0(P + a12) = 6(P).

Now, multiplying this identity from the left by P, from the right by I — P and
by Steps 2,3 and 5 and the fact that §(P) = 0, we get ai2(I—P)d(aze)(I—P) =
0. Since a1z € Aj2 is arbitrary, we have A1o((I —P)d(aze)(I—P)) = {0}. From
the fact that A5 is faithful as right Ass-module, we arrive at

(I = P)é(aze)(I — P) =0.
Since ab = PaPbP + PaPb(I — P) + Pa(I — P)b(I — P) + (I — P)a(I —

P)b(I — P), for any a,b € A, by Steps 1-6, it follows that J is a Jordan left
derivation. O
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Our next result characterizes the linear mappings on Alg N which are
generalized left derivable at P.

THEOREM 2.6. Let N be a nest on a Banach space X such that there exists
a non-trivial idempotent P € Alg N with range P(X) € N. If 6: AlgN —
Alg N is a continuous generalized left derivable map at P, then § is a gener-
alized Jordan left derivation.

PROOF. Define A: AlgN — AlgN by A(a) = 6(a) — ad(1). It is easy to
see that A is a continuous left derivable map at P. By Theorem Ais a
Jordan left derivation. Therefore

§(a?) = A(a®) + a?5(1)
= 2aA(a) + a?5(1)
= 2a(5(a) — ad(1)) + a?5(1)
= 2ad(a) — a®5(1)
for all a € AlgN. So ¢ is a generalized Jordan left derivation. O

Since every continuous Jordan left derivation on a C'SL algebra is zero ([12]),
we have the following result.

COROLLARY 2.7. Let N be a non-trivial nest on a Hilbert space H. Let P
be a non-trivial idempotent in Alg /N with range P(H) € N and 6: AlgN —
AlgN be a continuous linear map.

(i) If ¢ is left derivable at P, then § is zero.
(i) If 0 is generalized left derivable at P, then 6(a) = ad(1) for alla € AlgN'.

PROOF. (i) Since every continuous Jordan left derivation on a C'SL algebra
is zero ([12]), by Theorem 0 is zero.
(ii) By Theorem d is a generalized Jordan left derivation, so the mapping
A: AlgN — AlgN defined by A(a) = 6(a) — ad(1) is a continuous Jordan
left derivation. Therefore A = 0 and hence §(a) = ad(1) for alla € AlgN. O

Now, we characterize (generalized) left Jordan derivations which are con-
tinuous in the strongly operator topology, but in order to prove our result
we must assume an additional (mild) condition concerning the nest N. At
present we have no counter-example, so it remains an open problem if this
additional condition can be omitted.

The idea of the proof of Proposition [2.8 (i) comes from [2].
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PROPOSITION 2.8. Let N be a nest on a Banach space X, with each N € N
complemented in X whenever N_ = N. Let §: AlgN — AlgN be a continuous
linear map in a strong operator topology.

(i) If 6(P) = 2P4(P) for every idempotent P in Alg N, then 6 = 0.
(i) If §(P) = 2P§(P)— Po(I) for every idempotent P in Alg N, then §(a) =
ad(I) for all a € AlgN.

PROOF. (i) For arbitrary idempotent operator P € Alg N, by hypothe-
sis we have §(P) = 2P§(P). It follows from equation 2P§(P) = §(P) that
P§(P) =0 and it implies that 6(P) = 0.

Notice that Algr N is contained in the linear span of the idempotents
in Alg N (see [11]), which implies that §(F) = 0 for all finite rank operator
F in AlgN. Since § is continuous under the strong operator topology and

Alg;./\/'SOT = AlgN (see [13]), we find that §(a) =0 for all a € AlgN.

(ii) Define A: AlgN — AlgN by A(a) = 6(a) — ad(I). It is easy to
see that A is a continuous left map satisfying A(P) = 2PA(P) for every
idempotent P in Alg . So by (i) we have A = 0 and hence 6(a) = ad(I) for
all a € AlgN. O

It is obvious that the nests on Hilbert spaces, finite nests and the nests
having order-type w + 1 or 1 + w*, where w is the order-type of the natural
numbers, satisfy the condition in Proposition [2.8 automatically.
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