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ON GENERALIZED JACOBSTHAL
AND JACOBSTHAL–LUCAS NUMBERS

Dorota Bród, Adrian Michalski

Abstract. Jacobsthal numbers and Jacobsthal–Lucas numbers are some of
the most studied special integer sequences related to the Fibonacci numbers.
In this study, we introduce one parameter generalizations of Jacobsthal num-
bers and Jacobsthal–Lucas numbers. We define two sequences, called gener-
alized Jacobsthal sequence and generalized Jacobsthal–Lucas sequence. We
give generating functions, Binet’s formulas for these numbers. Moreover, we
obtain some identities, among others Catalan’s, Cassini’s identities and sum-
mation formulas for the generalized Jacobsthal numbers and the generalized
Jacobsthal–Lucas numbers. These properties generalize the well-known results
for classical Jacobsthal numbers and Jacobsthal–Lucas numbers. Additionally,
we give a matrix representation of the presented numbers.

1. Introduction

The Jacobsthal sequence {Jn} is defined recursively in the following way

(1.1) J0 = 0, J1 = 1, Jn = Jn−1 + 2Jn−2 for n ≥ 2.

The Jacobsthal–Lucas sequence {jn} is defined by the same recurrence

(1.2) jn = jn−1 + 2jn−2 for n ≥ 2

with j0 = 2, j1 = 1.
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The Binet’s formulas of these sequences have the following form

Jn =
1

3
(2n − (−1)n), jn = 2n + (−1)n.

Some interesting properties of the Jacobsthal numbers are given in [6]. There
are many generalizations of this sequence in the literature. We recall some of
such generalizations:
1) k-Jacobsthal sequence {jk,n} ([7]), jk,n+1 = kjk,n + 2jk,n−1 for k ≥ 1 and

n ≥ 1 with jk,0 = 0, jk,1 = 1,
2) k-Jacobsthal sequence {Jk,n} ([4]), Jk,n+1 = Jk,n + kJk,n−1 for k ≥ 1 and

n ≥ 1 with Jk,0 = 0, Jk,1 = 1,
3) Jacobsthal r-sequence {J(r, n)} ([2]), for r ≥ 0 J(r, n) = 2rJ(r, n − 1) +

(2r + 4r)J(r, n− 2) for n ≥ 2 with J(r, 0) = 1, J(r, 1) = 1 + 2r+1.
4) Jacobsthal (s, p)-sequence {Jn(s, p)} ([1]), for s, p ≥ 0, n ≥ 2 Jn(s, p) =

2s+pJn−1(s, p) + (22s+p + 2s+2p)Jn−2(s, p) with J0(s, p) = 1, J1(s, p) =
2s + 2p + 2s+p.

5) Jacobsthal sequence {J(d, t, n)} ([10]), J(d, t, n) = J(d, t, n − 1) + tJ(d,
t, n − d) for n ≥ d with J(d, t, 0) = 1, J(d, t, n) = 1 for n = 1, . . . , d,
t ≥ 1, d ≥ 2.
More considerations concerning certain generalizations of Jacobsthal and

Jacobsthal–Lucas numbers were given, among others, in [3, 5, 8, 11].
We introduce a new generalization of classical Jacobsthal and Jacobsthal-

-Lucas numbers. This generalization depends on one integer parameter k used
in the recurrence relation (1.1). We will show some interesting properties of
these numbers. They generalize known properties of the numbers Jn and jn.

2. Generalized Jacobsthal and Jacobsthal–Lucas numbers

Let n ≥ 0, k ≥ 2 be integers. Generalized Jacobsthal sequence {J(k, n)}
is defined by the recurrence

J(k, n) = (k − 1)J(k, n− 1) + kJ(k, n− 2) for n ≥ 2(2.1)

with initial conditions J(k, 0) = 0, J(k, 1) = 1. Generalized Jacobsthal–Lucas
sequence {j(k, n)} we define using the same recurrence relation

j(k, n) = (k − 1)j(k, n− 1) + kj(k, n− 2) for n ≥ 2(2.2)

with j(k, 0) = 2, j(k, 1) = 1.
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For k = 2 we obtain J(2, n) = Jn and j(2, n) = jn. By (2.1) we get

J(k, 2) = k − 1

J(k, 3) = k2 − k + 1

J(k, 4) = k3 − k2 + k − 1

J(k, 5) = k4 − k3 + k2 − k + 1

J(k, 6) = k5 − k4 + k3 − k2 + k − 1

J(k, 7) = k6 − k5 + k4 − k3 + k2 − k + 1
...

By (2.2) we have

j(k, 2) = 3k − 1

j(k, 3) = 3k2 − 3k + 1

j(k, 4) = 3k3 − 3k2 + 3k − 1

j(k, 5) = 3k4 − 3k3 + 3k2 − 3k + 1

j(k, 6) = 3k5 − 3k4 + 3k3 − 3k2 + 3k − 1

j(k, 7) = 3k6 − 3k5 + 3k4 − 3k3 + 3k2 − 3k + 1
...

By the recurrences (2.1) and (2.2) we obtain the following result.

Proposition 2.1. Let n ≥ 4, k ≥ 2. Then
(i) J(k, n) = (k2 + 1)(k − 1)J(k, n− 3) + k(k2 − k + 1)J(k, n− 4),

(ii) j(k, n) = (k2 + 1)(k − 1)j(k, n− 3) + k(k2 − k + 1)j(k, n− 4).

Proof. (i) By the formula (2.1) we obtain

J(k, n) = (k − 1)J(k, n− 1) + kJ(k, n− 2)

= (k − 1)
[
(k − 1)J(k, n− 2) + kJ(k, n− 3)

]
+ kJ(k, n− 2)

= (k2 − k + 1)
[
(k − 1)J(k, n− 3) + kJ(k, n− 4)

]
+ (k − 1)kJ(k, n− 3)

= (k2 + 1)(k − 1)J(k, n− 3) + k(k2 − k + 1)J(k, n− 4).

The proof of (ii) is analogous. �
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It is easily seen that by the recurrence relation (2.1) for k = 2, 3, . . . we
get well-known sequences, see [9]. For example, sequences {J(2, n)}, {J(3, n)},
{J(4, n)}, {J(5, n)}, {J(6, n)}, {J(7, n)} are listed under the symbols A001045,
A015518, A015521, A015531, A015540, A015552, respectively.

Tables 1 and 2 include a few first terms of the sequences {J(k, n)} and
{j(k, n)} for special k and n.

Table 1. The terms of {J(k, n)} for 2 ≤ k ≤ 7 and n ≤ 8

n 0 1 2 3 4 5 6 7 8
J(2, n) 0 1 1 3 5 11 21 43 85
J(3, n) 0 1 2 7 20 61 182 547 1640
J(4, n) 0 1 3 13 51 205 819 3277 13107
J(5, n) 0 1 4 21 104 521 2604 13021 65104
J(6, n) 0 1 5 31 185 1111 6665 3991 239945
J(7, n) 0 1 6 43 300 2101 14706 102943 720600

Table 2. The terms of {j(k, n)} for 2 ≤ k ≤ 7 and n ≤ 8

n 0 1 2 3 4 5 6 7 8
j(2, n) 2 1 5 7 17 31 65 127 257
j(3, n) 2 1 8 19 62 181 548 1639 4922
j(4, n) 2 1 11 37 155 613 2459 9829 39323
j(5, n) 2 1 14 61 314 1561 7814 39061 195314
j(6, n) 2 1 17 91 557 3331 19997 119971 719837
j(7, n) 2 1 20 127 902 6301 44120 308827 2161802

We can modify the equality (2.1). Instead of the coefficients k−1, k we can
give new coefficients such that the obtained recurrence will generalize classical
Jacobsthal numbers. For example, for s ∈ N0 let

J (s, n) = (s + 1)J (s, n− 1) + (2s + 2)J (s, n− 2) for n ≥ 2(2.3)

with J (s, 0) = 0, J (s, 1) = 1. For s = 0 we obtain J (0, n) = Jn. Table 3
includes a few first terms of the sequence {J (s, n)} for special s and n.

Table 3. The terms of {J (s, n)} for 0 ≤ s ≤ 5 and n ≤ 8

n 0 1 2 3 4 5 6 7 8
J (0, n) 0 1 1 3 5 11 21 43 85
J (1, n) 0 1 2 8 24 80 256 832 2688
J (2, n) 0 1 3 15 63 279 1215 5319 23247
J (3, n) 0 1 4 24 128 704 3840 20992 114688
J (4, n) 0 1 5 35 225 1475 9625 62875 410625
J (5, n) 0 1 6 48 360 2736 20736 157248 1192320
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Now we present the Binet’s formulas of the numbers J(k, n) and j(k, n).
The characteristic equation of (2.1) is

r2 − (k − 1)r − k = 0.(2.4)

Since ∆ = (k + 1)2 > 0 for k ≥ 2, we get two real roots of (2.4)

r1 = −1, r2 = k.

Clearly,

r1 + r2 = k − 1,(2.5)

r2 − r1 = k + 1,(2.6)

r1r2 = −k.(2.7)

Theorem 2.1 (Binet’s formula). Let n ≥ 0, k ≥ 2. Then

J(k, n) =
rn2 − rn1
r2 − r1

=
kn − (−1)n

k + 1
,(2.8)

j(k, n) =
(2r2 − 1)rn1 + (1− 2r1)rn2

r2 − r1
=

(2k − 1)(−1)n + 3kn

k + 1
.(2.9)

Proof. The nth generalized Jacobsthal number may be written in the
following form

J(k, n) = C1(−1)n + C2k
n

for some constants C1 and C2. Using initial conditions of the recurrence (2.1),
we obtain the following system of two equations{

C1 + C2 = 0,

−C1 + kC2 = 1.

Hence

C1 = − 1

1 + k
and C2 =

1

1 + k
.

Thus

J(k, n) =
kn − (−1)n

k + 1
=

rn2 − rn1
r2 − r1

.
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In order to prove (2.9) we write

j(k, n) = c1(−1)n + c2k
n.

By (2.2) we get {
c1 + c2 = 2,

−c1 + kc2 = 1.

Hence

c1 =
2k − 1

1 + k
and c2 =

3

1 + k

and the result follows. �

Theorem 2.2. Let n ≥ 0, k ≥ 2. Then

3 J(k, n) = 2(−1)n+1 + j(k, n).

Proof. By (2.8) and (2.9) we get

3J(k, n)− j(k, n) =
3(kn − (−1)n)− (2k − 1)(−1)n − 3kn

k + 1

=
−(−1)n(2k + 2)

k + 1
= 2(−1)n+1,

which completes the proof. �

3. Some identities for the sequences {J(k, n)} and {j(k, n)}

Now we present interesting properties of the numbers J(k, n) and j(k, n).

Theorem 3.1. Let k ≥ 2 be an integer. Then

lim
n→∞

J(k, n + 1)

J(k, n)
= k,(3.1)

lim
n→∞

j(k, n + 1)

j(k, n)
= k.(3.2)
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Proof. Using Theorem 2.1, we have

lim
n→∞

J(k, n + 1)

J(k, n)
= lim

n→∞

C1r1
n+1 + C2r

n+1
2

C1r1n + C2rn2
= lim

n→∞

C1r1

(
r1
r2

)n
+ C2r2

C1

(
r1
r2

)n
+ C2

.

Since lim
n→∞

( r1r2 )n = 0, we get

lim
n→∞

J(k, n + 1)

J(k, n)
= r2 = k.

The proof of (3.2) is analogous. �

Theorem 3.2 (Catalan’s identity). Let n ≥ 1, k ≥ 2, r ≥ 0 be integers.
Then

J(k, n− r)J(k, n + r)− J2(k, n) = (−1)n−r+1kn−rJ2(k, r).

Proof. By formula (2.8) we obtain

J(k, n− r)J(k, n + r)− J2(k, n)

=
(rn−r2 − rn−r1 ) · (rn+r

2 − rn+r
1 )

(r2 − r1)2
−
(
rn2 − rn1
r2 − r1

)2

=
2rn1 r

n
2 − rn+r

1 rn−r2 − rn−r1 rn+r
2

(r2 − r1)2
.

After simple calculations, using formulas (2.6) and (2.7), we get

J(k, n− r)J(k, n + r)− J2(k, n)

=
(r1r2)n

(r2 − r1)2

(
2−

(
r1
r2

)r

−
(
r2
r1

)r)

=
(−k)n

(r2 − r1)2

(
2− r2r1 + r2r2

(r1r2)r

)

= − (−k)n

(−k)r(r2 − r1)2
·
(
r2r1 − 2(r1r2)r + r2r2

)
= −(−k)n−r

(
rr2 − rr1
r2 − r1

)2

= (−1)n−r+1kn−rJ2(k, r).

The proof is complete. �
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Corollary 3.1 (Cassini’s identity). Let n ≥ 1, k ≥ 2. Then

J(k, n− 1)J(k, n + 1)− J2(k, n) = (−1)nkn−1.(3.3)

By formula (3.3), taking k = 2, we obtain Cassini’s formula for the num-
bers Jn.

Corollary 3.2. For n ≥ 1 we have

Jn−1Jn+1 − J2
n = (−1)n2n−1.

Theorem 3.3 (Catalan’s identity). Let n ≥ 1, k ≥ 2, r ≥ 0. Then

j(k, n− r)j(k, n + r)− j2(k, n) = (6k − 3)(−1)n−rkn−rJ2(k, r).

Proof. By (2.9) we have

(3.4) j(k, n) = c1r
n
1 + c2r

n
2 ,

where c1 = 2k−1
k+1 , c2 = 3

k+1 . Hence

j(k, n− r)j(k, n + r)− j2(k, n)

= (c1r
n−r
1 + c2r

n−r
2 )(c1r

n+r
1 + c2r

n+r
2 )− (c1r

n
1 + c2r

n
2 )2

= c1c2(rn−r1 rn+r
2 + rn+r

1 rn−r2 − 2(r1r2)n)

= c1c2(r1r2)n
[(

r1
r2

)r

+

(
r2
r1

)r

− 2

]

=
(2r2 − 1)(1− 2r1)

(r2 − r1)2
(r1r2)n

[
r2r1 − 2(r1r2)r + r2r2

(r1r2)r

]

= (2r2 − 1)(1− 2r1)(r1r2)n−r
(
rr2 − rr1
r2 − r1

)2

.

By (2.7) and (2.8) we get

j(k, n− r)j(k, n + r)− j2(k, n) = (2r2 − 1)(1− 2r1)(−k)n−rJ2(k, r)

= (6k − 3)(−1)n−rkn−rJ2(k, r). �

Corollary 3.3 (Cassini’s identity). For n ≥ 1 and k ≥ 2 we have

j(k, n− 1)j(k, n + 1)− j2(k, n) = (6k − 3)(−1)n−1kn−1.(3.5)
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By (3.5) we obtain Cassini’s identity for the numbers jn.

Corollary 3.4. For n ≥ 1 we have

jn−1jn+1 − j2n = 9(−1)n−12n−1.

Theorem 3.4. Let k,m, n be integers and n,m ≥ 1, m ≥ n, k ≥ 2. Then

J(k,m)J(k, n + 1)− J(k,m + 1)J(k, n) = (−k)nJ(k,m− n).

Proof. By (2.8) we obtain

J(k,m)J(k, n + 1)− J(k,m + 1)J(k, n)

=
(rm2 − rm1 ) · (rn+1

2 − rn+1
1 )

(r2 − r1)2
− (rm+1

2 − rm+1
1 ) · (rn2 − rn1 )

(r2 − r1)2

= − 1

(r2 − r1)2
(
rn+1
1 rm2 + rm1 rn+1

2 − rn1 r
m+1
2 − rm+1

1 rn2
)

=
1

(r2 − r1)2
(
rn1 r

m
2 (r2 − r1)− rm1 rn2 (r2 − r1)

)
= (r1r2)n

rm−n2 − rm−n1

r2 − r1
= (−k)nJ(k,m− n). �

Corollary 3.5. For m ≥ n we have

JmJn+1 − Jm+1Jn = (−1)n2nJm−n.

Theorem 3.5. Let n,m ≥ 1, m ≥ n, k ≥ 2. Then

j(k,m)j(k, n + 1)− j(k,m + 1)j(k, n) = (3− 6k)(−k)nJ(k,m− n).

Proof. By (3.4) we have

j(k,m)j(k, n + 1)− j(k,m + 1)(k, n) = (c1r
m
1 + c2r

m
2 )(c1r

n+1
1 + c2r

n+1
2 )

− (c1r
m+1
1 + c2r

m+1
2 )(c1r

n
1 + c2r

n
2 )

= c1c2(rm1 rn+1
2 + rn+1

1 rm2 − rm+1
1 rn2 − rn1 r

m+1
2 )

= c1c2
[
rm1 rn2 (r2 − r1)− rn1 r

m
2 (r2 − r1)

]
= c1c2(r2 − r1)(rm1 rn2 − rn1 r

m
2 )
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= −c1c2(r2 − r1)(r1r2)n(rm−n2 − rm−n1 )

= −c1c2(r2 − r1)2(r1r2)n · r
m−n
2 − rm−n1

r2 − r1

= −(6k − 3)(−k)nJ(k,m− n). �

The next theorems present summation formulas for the presented numbers.

Theorem 3.6. Let n ≥ 1, k ≥ 2 be integers. Then

n∑
i=0

J(k, i) =
J(k, n + 1) + kJ(k, n)− 1

2k − 2
,(3.6)

n∑
i=0

j(k, i) =
j(k, n + 1) + kj(k, n) + 2k − 5

2k − 2
.(3.7)

Proof. Using the formula (2.8), we obtain

n∑
i=0

J(k, i) =

n∑
i=0

(C1r
i
1 + C2r

i
2) = C1

1− rn+1
1

1− r1
+ C2

1− rn+1
2

1− r2

=
C1 + C2 − (C1r2 + C2r1)− (C1r

n+1
1 + C2r

n+1
2 ) + r1r2(C1r

n
1 + C2r

n
2 )

1− (r1 + r2) + r1r2

=
C1 + C2 − (C1r2 + C2r1)− J(k, n + 1) + r1r2J(k, n)

1− (r1 + r2) + r1r2
.

By simple calculations we obtain

C1r2 + C2r1 = −1.(3.8)

By (3.8), (2.7) and (2.5) we get

n∑
i=0

J(k, i) =
J(k, n + 1) + kJ(k, n)− 1

2k − 2
.

By formulas (2.9), (2.5) and (2.7) we have

n∑
i=0

j(k, i) =

n∑
i=0

(c1r
i
1 + c2r

i
2) = c1

1− rn+1
1

1− r1
+ c2

1− rn+1
2

1− r2

=
c1 + c2 − (c1r2 + c2r1)− (c1r

n+1
1 + c2r

n+1
2 )− k(c1r

n
1 + c2r

n
2 )

1− (k − 1)− k
.
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Thus

n∑
i=0

j(k, i) =
c1 + c2 − (c1r2 + c2r1)− j(k, n + 1)− kj(k, n)

2− 2k
.

Using the fact that c1 + c2 = 2 and

c1r2 + c2r1 =
2k2 − k − 3

k + 1
= 2k − 3

we get the equality (3.7). �

Corollary 3.6. Let n ∈ N. Then

n∑
i=0

Ji =
Jn+2 − 1

2
,

n∑
i=0

ji =
jn+2 − 1

2
.

Theorem 3.7. The generating function of the sequence {J(k, n)} has the
following form

g(x) =
x

1− (k − 1)x− kx2
.

Proof. Let g(x) =
∞∑

n=0
J(k, n)xn. Then

(1− (k − 1)x− kx2)g(x) = (1− (k − 1)x− kx2)
∞∑

n=0

J(k, n)xn

=
∞∑

n=0

J(k, n)xn − (k − 1)
∞∑

n=0

J(k, n)xn+1 − k
∞∑

n=0

J(k, n)xn+2

=

∞∑
n=2

(J(k, n)− (k − 1)J(k, n− 1)− kJ(k, n− 2))xn

+ (J(k, 0) + J(k, 1)x)− (k − 1)J(k, 0)x.

Using recurrence (2.1) we have

(1− (k − 1)x− kx2)g(x) = x.
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Hence

g(x) =
x

1− (k − 1)x− kx2
,

which completes the proof. �

Similarly we get the following result for {j(k, n)}.

Theorem 3.8. The generating function of the sequence {j(k, n)} is

G(x) =
2 + (3− 2k)x

1− (k − 1)x− kx2
.

In the end we give matrix representations of the numbers J(k, n) and
j(k, n).

Theorem 3.9. Let n ≥ 1, k ≥ 2. Then

(3.9)
[
J(k, n + 1) J(k, n)
J(k, n) J(k, n− 1)

]
=

[
J(k, 2) J(k, 1)
J(k, 1) J(k, 0)

]
·
[
k − 1 1
k 0

]n−1
.

Proof. We use induction on n. If n = 1 then the result is obvious. As-
suming the formula (3.9) holds for n ≥ 1, we shall prove it for n + 1.

Using induction’s hypothesis and formula (2.1), we have[
J(k, 2) J(k, 1)
J(k, 1) J(k, 0)

]
·
[
k − 1 1
k 0

]n−1
·
[
k − 1 1
k 0

]

=

[
J(k, n + 1) J(k, n)
J(k, n) J(k, n− 1)

]
·
[
k − 1 1
k 0

]

=

[
(k − 1)J(k, n + 1) + kJ(k, n) J(k, n + 1)
(k − 1)J(k, n) + kJ(k, n− 1) J(k, n)

]

=

[
J(k, n + 2) J(k, n + 1)
J(k, n + 1) J(k, n)

]
,

which ends the proof. �

As a consequence of Theorem 3.9 we obtain Cassini’s identity (3.3).

Corollary 3.7. For n ∈ N we have

J(k, n + 1)J(k, n− 1)− J2(k, n) = (−1)nkn−1.
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Proof. Calculating determinants in formula (3.9), we obtain∣∣∣∣ J(k, n + 1) J(k, n)
J(k, n) J(k, n− 1)

∣∣∣∣ = J(k, n + 1)J(k, n− 1)− J2(k, n),∣∣∣∣ J(k, 2) J(k, 1)
J(k, 1) J(k, 0)

∣∣∣∣ =

∣∣∣∣ k − 1 1
1 0

∣∣∣∣ = −1,∣∣∣∣ k − 1 1
k 0

∣∣∣∣ = −k.

By (3.9) we get

J(k, n + 1)J(k, n− 1)− J2(k, n) = −(−k)n−1 = (−1)nkn−1,

which completes the proof. �

Similarly to Theorem 3.9 and Corollary 3.7 we can get the next results.

Theorem 3.10. Assume that n ≥ 1, k ≥ 2 are integers. Then[
j(k, n + 1) j(k, n)
j(k, n) j(k, n− 1)

]
=

[
j(k, 2) j(k, 1)
j(k, 1) j(k, 0)

]
·
[
k − 1 1
k 0

]n−1
.

Corollary 3.8. For n ∈ N we have

j(k, n + 1)j(k, n− 1)− j2(k, n) = (6k − 3)(−1)n−1kn−1.

4. Conclusions

Jacobsthal numbers belong to the family of the Fibonacci type numbers,
i.e. numbers which are defined by the homogenous linear recurrence with
constant coefficients. Such numbers are often extended to the negative domain,
too. Our results obtained for generalized Jacobsthal numbers and generalized
Jacobsthal–Lucas numbers may be a contribution to considerations about
different one parameter or two parameters generalizations of the Jacobsthal
numbers with negative index terms.
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