
Annales Mathematicae Silesianae 32 (2018), 237–245
DOI: 10.1515/amsil-2017-0016

PROPERTIES AND CHARACTERIZATIONS
OF CONVEX FUNCTIONS ON TIME SCALES

Teodoro Lara, Nelson Merentes, Edgar Rosales,
Ambrosio Tineo

Abstract. In this research we deal with algebraic properties and characteriza-
tions of convex functions in the context of a time scale; this notion of convexity
has been studied for some other authors but the setting of properties are estab-
lish here. Moreover, characterizations, a separation theorem and an inequality
of Jensen type for this class of functions are shown as well.

1. Introduction

The theory of time scales was introduced by S. Hilger in his PhD the-
sis [4]. The calculus and applications of dynamic derivatives on time scales
provide an unification and an extension of traditional differential and differ-
ence equations. In the same time, they can be seen as an unification of the
discrete theory with the continuous theory. Also, it is a crucial tool in many
computational and numerical applications. The applications of this calculus
are substantial and they have received a lot of attention in the last years.
The most important ones include the dynamic equations, which include both
differential equations and difference equations [2]. At the present time, up to
our knowledge, there are not too many results around on convex functions on
a time scale besides the papers by C. Dinu [2, 3].
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In this research we state and prove some properties on convex functions on
time scales regarding algebraic properties and characterizations. On the real
line R the concept of convex function is well known and may be seen in the
available literature, for instance in [6, 9] and the references therein, we recall
it here,

A function f : I → R, I being a real interval, is called convex on I if, for
any x, y ∈ I and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

The incoming notation and definitions are from [2] and [4]. A time scale (or
measure chain) is any nonempty closed subset T of R (together with the
topology of subspace of R). Along this paper T will denote a time scale and,
for any I interval of R (open or closed), IT = I ∩ T a time scale interval.

Definition 1.1. A function f : IT → R is called convex on IT, if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for all x, y ∈ IT and all t ∈ [0, 1] provided that tx+(1− t)y ∈ IT. The function
f is strictly convex on IT if the above inequality is strict for distinct x, y ∈ IT
and t ∈ [0, 1]. The function f is concave (respectively, strictly concave) on IT,
if −f is convex (respectively, strictly convex). A function that is both convex
and concave on IT is called affine on IT.

Example 1.1. In [7] it was proved that the natural logarithm on a time
scale, given by

LT(t) :=

∫ t

1

1

τ
∆τ

is a concave function on T∩(0,+∞). So, the function f(t) = −LT(t) is convex
on a time scale.

Remark 1.2. It is clear that if a function f : I → R is convex on I, then
f is convex on IT. That is, the usually convexity on intervals of R implies the
convexity on a time scale; however, the converse is not true.

Example 1.2. We consider I = [0, 2], T = [0, 1] and f : IT → R given by

f(x) = 1− |x− 1|.
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The function f̃ : [0, 2]→ R defined by f̃(x) = |x| is convex, and it is such that
f̃ |IT = f . Therefore, f is convex on IT ([2], Theorem 3.4), even when it is not
convex on I.

We now set characterization of convex functions on a time scale similar to
those given for convex functions and shown in [6, 9] among many others.

Theorem 1.3. Let f : IT → R be a function. The following statements are
equivalent:
(1) f is convex on IT.
(2) f(x + t(y − x)) ≤ f(x) + t(f(y) − f(x)), t ∈ (0, 1), x, y ∈ IT, provided

tx+ (1− t)y ∈ IT.
(3) f(tx + sy) ≤ tf(x) + sf(y), t, s ∈ (0, 1), s + t = 1, x, y ∈ IT, provided

tx+ sy ∈ IT.
(4) If x, y, z ∈ IT and x < z < y, then

det

 x f(x) 1
y f(y) 1
z f(z) 1

 ≥ 0.

(5) For x, y, z ∈ IT with x < z < y,

(y − z)f(x) + (y − x)f(y) + (x− z)f(z)

(z − y)(z − x)(y − x)
≥ 0.

The set of convex functions on IT will be denoted by CIT .

2. The Results

In this section we establish and prove our main results. First some simple
algebraic properties of convex functions on a time scale similar to those given
in [9] are stated. In almost all proofs we have to be aware that the correspond-
ing convex combination of the type tx + (1− t)y, for x, y ∈ IT and t ∈ [0, 1],
is in IT, which make this stuff a little restrictive.

Proposition 2.1. If f, g ∈ CIT and α ≥ 0, then αf and f + g are in CIT
as well.
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Proof. For x, y ∈ IT and any t ∈ [0, 1], provided tx + (1 − t)y ∈ IT, by
hypothesis

(f + g)(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + tg(x) + (1− t)g(y)

= t(f + g)(x) + (1− t)(f + g)(y). �

Proposition 2.2. Let f ∈ CIT and g ∈ CJT with range(f) ⊆ JT. If g is
increasing, then g ◦ f ∈ CIT , where ◦ stands for composition of functions.

Proof. For x, y ∈ IT and any t ∈ [0, 1] the only two things to worry about
are that tx + (1 − t)y ∈ IT and at the same time tf(x) + (1 − t)f(y) ∈ JT.
The rest of the proof goes in the same fashion as the corresponding result for
convex functions. �

Proposition 2.3. Suppose f, g ∈ CIT are nonnegative and increasing. If
h(x) = f(x)g(x), x ∈ JT, then h ∈ CIT and it is nonnegative and increasing as
well.

Proof. Let x, y ∈ IT with x < y, then (f(x) − f(y))(g(y) − g(x)) ≤ 0,
hence

f(x)g(y) + f(y)g(x) ≤ f(x)g(x) + f(y)g(y),

this inequality will be used in the incoming set of inequalities. Now for any
t ∈ [0, 1] and tx+ (1− t)y ∈ IT,

f(tx+ (1− t)y)g(tx+ (1− t)y) ≤ t2f(x)g(x) + t(1− t)[f(x)g(y) + f(y)g(x)]

+ (1− t)2f(y)g(y)

≤ tf(x)g(x) + (1− t)f(y)g(y). �

Theorem 2.4. Let fα ∈ CIT be an arbitrary family, and f(x) = supα fα(x),
x ∈ IT. If JT is the set given by JT = {x ∈ IT : f(x) < +∞} 6= ∅, then f ∈ CJT .

Proof. For x, y ∈ IT, t ∈ [0, 1] and tx+ (1− t)y ∈ IT,

f(tx+ (1− t)y) ≤ tfα(x) + (1− t)fα(y) ≤ tf(x) + (1− t)f(y). �

Theorem 2.5. If fn ∈ CIT is a sequence of functions converging to a finite
limit function f on IT, then f ∈ CIT .
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Proof. For x, y ∈ IT, t ∈ [0, 1] and tx+ (1− t)y ∈ IT,

f(tx+ (1− t)y) ≤ t lim
n→+∞

fn(x) + (1− t) lim
n→+∞

fn(y)

= tf(x) + (1− t)f(y). �

Proposition 2.6. Let f ∈ CIT . If IT is compact, then f is bounded from
above.

Proof. Let a := min IT, b := max IT. If x ∈ IT, then there exists t ∈ [0, 1]
such that x = ta+ (1− t)b. Hence by hypothesis

f(x) = f(ta+ (1− t)b) ≤ tf(a) + (1− t)f(b) ≤ max{|f(a)|, |f(b)|}. �

In [2] it is proved the following theorem, which connects the notions of
convexity on a time scale and the usual convexity on R.

Theorem 2.7. A function f : T→ R is convex on IT = I∩T if and only if
there exists a convex function f̃ : I → R such that f̃(x) = f(x) for all x ∈ IT.

Using this result, it is possible to prove the following characterization of
convexity for functions on a time scale.

Theorem 2.8. A function f : (a, b)T → R is convex on a time scale if and
only if there is an increasing function g : (a, b)→ R and a point c ∈ (a, b) such
that f(x)−

∫ x
c
g(t)dt is constant for all x ∈ (a, b)T.

Proof. If f is convex on (a, b)T then, by Theorem 2.7, there exists a
convex function f̃ : (a, b)→ R such that

(2.1) f̃(x) = f(x) for all x ∈ (a, b)T.

So, there is an increasing function g : (a, b) → R and c ∈ (a, b) such that for
all x ∈ (a, b), f̃(x) = f̃(c) +

∫ x
c
g(t)dt ([9, Theorem 12A]). Hence, from (2.1)

it follows that for all x ∈ (a, b)T,

f(x)−
∫ x

c

g(t)dt = k,

where k is the constant f̃(c). Notice that k = f(c), if c ∈ T.
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For the converse, we assume that for all x ∈ (a, b)T, f(x) −
∫ x
c
g(t)dt is

a constant, we say k (since c ∈ (a, b), the monotonicity of g on (a, b) implies
that

∫ x
c
g(t)dt exists for all x ∈ (a, b)). Define f̃ : (a, b)→ R by

f̃(x) =

∫ x

c

g(t)dt+ k.

Clearly, f̃(c) = k and thus f̃ is convex on (a, b) ([9, Theorem 12A]). Because
f̃(x) = f(x) for all x ∈ (a, b)T, Theorem 2.7 implies the convexity of f on
(a, b)T. �

The next result is proved by using Theorem 2.7 too, and represents a
discrete Jensen type inequality for functions defined on a time scale.

Theorem 2.9. If f : IT → R is a convex function (on a time scale) then,
for all n ∈ N,

f

( n∑
i=1

tixi

)
≤

n∑
i=1

tif(xi),

for all x1, . . . , xn ∈ IT and t1, . . . , tn > 0 such that
n∑
i=1

ti = 1 and
n∑
i=1

tixi ∈ IT.

Proof. If f is convex on IT, then by Theorem 2.7 there exists a convex
function f̃ : I → R such that f̃(x) = f(x) for all x ∈ IT. From Jensen’s
inequality on a real interval ([9, Theorem 61A]),

f̃

( n∑
i=1

tixi

)
≤

n∑
i=1

tif̃(xi),

for all x1, . . . , xn ∈ I and t1, . . . , tn > 0 with
n∑
i=1

ti = 1. The conclusion is

obtained by restricting each xi belong to IT with
n∑
i=1

tixi ∈ IT. �

In the following result we establish conditions that are necessary and suffi-
cient to separate two functions (defined on a time scale) by a convex function
(on the same time scale). The proof follows ideas from [8].
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Theorem 2.10. Let f, g : IT → R be two functions defined on a time scale.
Then, there exists a convex function h : IT → R such that f ≤ h ≤ g if and
only if for any n ∈ N,

(2.2) f

( n∑
i=1

tixi

)
≤

n∑
i=1

tig(xi),

for all x1, . . . , xn ∈ IT and t1, . . . , tn > 0 such that
n∑
i=1

ti = 1 and
n∑
i=1

tixi ∈ IT.

Proof. (⇒). By using the hypothesis and Theorem 2.9, we have that for

any n ∈ N, xi ∈ IT, ti > 0 such that
n∑
i=1

ti = 1 and
n∑
i=1

tixi ∈ IT,

f

( n∑
i=1

tixi

)
≤ h

( n∑
i=1

tixi

)
≤

n∑
i=1

tih(xi) ≤
n∑
i=1

tig(xi).

(⇐). For each x ∈ IT, we consider the set

Cx =

{
(x1, . . . , xn) ∈ (IT)n : x =

n∑
i=1

tixi, ti > 0,

n∑
i=1

ti = 1, n ∈ N
}
,

where (IT)n denotes the cartesian product IT × · · · × IT︸ ︷︷ ︸
n factors

. Notice that Cx 6= ∅

since (x, . . . , x) ∈ Cx. Therefore, the subset G of R given by

G =

{ n∑
i=1

tig(xi) : (x1, . . . , xn) ∈ Cx
}

is nonempty and, by (2.2), it is bounded from below.
Define the function h : IT → R by

h(x) = inf G.

Let x be an arbitrary element in IT. By (2.2), f(x) is a lower bound of G
and hence, f(x) ≤ h(x) on IT. Moreover, since (x, . . . , x) ∈ Cx, we have that
g(x) ∈ G and thus, h(x) ≤ g(x) on IT.



244 Teodoro Lara, Nelson Merentes, Edgar Rosales, Ambrosio Tineo

To see that h is convex on IT, let x, y ∈ IT and λ ∈ [0, 1] be such that
z := λx + (1 − λ)y ∈ IT. Then, by definition of h, we get for an arbitrary
ε > 0,

(2.3) h(x) + ε >

p∑
i=1

αig(xi) for some (x1, . . . , xp) ∈ Cx,

and

(2.4) h(y) + ε >

q∑
j=1

βjg(yj) for some (y1, . . . , yq) ∈ Cy.

Furthermore, since x =
p∑
i=1

αixi and y =
q∑
j=1

βjyj , it follows that

z =

p∑
i=1

λαixi +

q∑
j=1

(1− λ)βjyj =

p+q∑
l=1

γlzl,

where

γl =

{
λαl, for l = 1, . . . , p,

(1− λ)βl−p, for l = p+ 1, . . . , p+ q,

and

zl =

{
xl, for l = 1, . . . , p,

yl−p, for l = p+ 1, . . . , p+ q.

But
p+q∑
l=1

γl =
p∑
l=1

γl+
p+q∑
l=p+1

γl =
p∑
i=1

λαi+
q∑
j=1

(1−λ)βj = 1. Thus (z1, . . . , zp+q)∈

Cz and hence, by definition of h and using (2.3) and (2.4),

h(z) ≤
p+q∑
l=1

γlg(zl) =

p∑
l=1

γlg(zl) +

p+q∑
l=p+1

γlg(zl)

=

p∑
i=1

λαig(xi) +

q∑
j=1

(1− λ)βjg(yj)

< λ[h(x) + ε] + (1− λ)[h(y) + ε]

= λh(x) + (1− λ)h(y) + ε.

The convexity of h on IT follows by tending ε→ 0+. �
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Definition 2.11. Let ε > 0 be a fixed real number. A function f : IT → R
is called ε-convex on a time scale if for any n ∈ N, x1, . . . , xn∈IT, t1, . . . , tn> 0

with
n∑
i=1

ti = 1 and
n∑
i=1

tixi ∈ IT, we have

f

( n∑
i=1

tixi

)
≤

n∑
i=1

tif(xi) + ε.

An immediate consequence of Theorem 2.10 is the following Hyers–Ulam-
type stability result for convex functions on a time scale.

Corollary 2.12. If f : IT → R is an ε-convex function on a time scale,
then there exists a convex function h : IT → R such that

|f(x)− h(x)| ≤ ε, x ∈ IT.

Proof. We define the function g : IT → R by g(x) = f(x) + ε and apply
Theorem 2.10. �
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