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REVERSE JENSEN’S TYPE TRACE INEQUALITIES
FOR CONVEX FUNCTIONS OF SELFADJOINT

OPERATORS IN HILBERT SPACES

Sever S. Dragomir

Abstract. Some reverse Jensen’s type trace inequalities for convex functions
of selfadjoint operators in Hilbert spaces are provided. Applications for some
convex functions of interest and reverses of Hölder and Schwarz trace inequal-
ities are also given.

1. Introduction

Let (H, 〈·, ·〉) be a complex Hilbert space and {ei}i∈I an orthonormal basis
of H. We say that A ∈ B (H) is a Hilbert-Schmidt operator if

(1.1)
∑
i∈I
‖Aei‖2 <∞.

It is well know that, if {ei}i∈I and {fj}j∈J are orthonormal bases for H and
A ∈ B (H) then

(1.2)
∑
i∈I
‖Aei‖2 =

∑
j∈I
‖Afj‖2 =

∑
j∈I
‖A∗fj‖2
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showing that the definition (1.1) is independent of the orthonormal basis and
A is a Hilbert-Schmidt operator iff A∗ is a Hilbert-Schmidt operator.

Let B2 (H) the set of Hilbert-Schmidt operators in B (H) . For A ∈ B2 (H)
we define

(1.3) ‖A‖2 :=

(∑
i∈I
‖Aei‖2

)1/2

for {ei}i∈I an orthonormal basis of H. This definition does not depend on the
choice of the orthonormal basis.

Using the triangle inequality in l2 (I) , one checks that B2 (H) is a vec-
tor space and that ‖·‖2 is a norm on B2 (H) , which is usually called in the
literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator A ∈ B (H) by |A| := (A∗A)
1/2

.
Because ‖|A|x‖ = ‖Ax‖ for all x ∈ H, A is Hilbert-Schmidt iff |A| is

Hilbert-Schmidt and ‖A‖2 = ‖|A|‖2 . From (1.2) we have that if A ∈ B2 (H) ,
then A∗ ∈ B2 (H) and ‖A‖2 = ‖A∗‖2 .

The following theorem collects some of the most important properties of
Hilbert-Schmidt operators.

Theorem 1.1. We have
(i) (B2 (H) , ‖·‖2) is a Hilbert space with inner product

(1.4) 〈A,B〉2 :=
∑
i∈I
〈Aei, Bei〉 =

∑
i∈I
〈B∗Aei, ei〉

and the definition does not depend on the choice of the orthonormal basis
{ei}i∈I ;

(ii) We have the inequalities

(1.5) ‖A‖ ≤ ‖A‖2

for any A ∈ B2 (H) and

(1.6) ‖AT‖2 , ‖TA‖2 ≤ ‖T‖ ‖A‖2

for any A ∈ B2 (H) and T ∈ B (H) ;
(iii) B2 (H) is an operator ideal in B (H) , i.e.

B (H)B2 (H)B (H) ⊆ B2 (H) ;

(iv) Bfin (H) , the space of operators of finite rank, is a dense subspace of
B2 (H) ;
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(v) B2 (H) ⊆ K (H) , where K (H) denotes the algebra of compact operators
on H.

If {ei}i∈I an orthonormal basis of H, we say that A ∈ B (H) is trace class
if

(1.7) ‖A‖1 :=
∑
i∈I
〈|A| ei, ei〉 <∞.

The definition of ‖A‖1 does not depend on the choice of the orthonormal basis
{ei}i∈I . We denote by B1 (H) the set of trace class operators in B (H) .

The following proposition holds.

Proposition 1.2. If A ∈ B (H) , then the following are equivalent:
(i) A ∈ B1 (H) ;

(ii) |A|1/2 ∈ B2 (H) ;
(iii) A (or |A|) is the product of two elements of B2 (H) .

The following properties are also well known.

Theorem 1.3. With the above notations:
(i) We have

(1.8) ‖A‖1 = ‖A∗‖1 and ‖A‖2 ≤ ‖A‖1

for any A ∈ B1 (H) ;
(ii) B1 (H) is an operator ideal in B (H) , i.e.

B (H)B1 (H)B (H) ⊆ B1 (H) ;

(iii) We have

B2 (H)B2 (H) = B1 (H) ;

(iv) We have

‖A‖1 = sup {〈A,B〉2 | B ∈ B2 (H) , ‖B‖ ≤ 1} ;

(v) (B1 (H) , ‖·‖1) is a Banach space.
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(vi) We have the following isometric isomorphisms

B1 (H) ∼= K (H)
∗ and B1 (H)

∗ ∼= B (H) ,

where K (H)
∗ is the dual space of K (H) and B1 (H)

∗ is the dual space
of B1 (H) .

We define the trace of a trace class operator A ∈ B1 (H) to be

(1.9) tr (A) :=
∑
i∈I
〈Aei, ei〉 ,

where {ei}i∈I an orthonormal basis of H. Note that this coincides with the
usual definition of the trace if H is finite-dimensional. We observe that the
series (1.9) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace.

Theorem 1.4. We have
(i) If A ∈ B1 (H) then A∗ ∈ B1 (H) and

(1.10) tr (A∗) = tr (A);

(ii) If A ∈ B1 (H) and T ∈ B (H) , then AT, TA ∈ B1 (H) and

(1.11) tr (AT ) = tr (TA) and |tr (AT )| ≤ ‖A‖1 ‖T‖ ;

(iii) tr (·) is a bounded linear functional on B1 (H) with ‖tr‖ = 1;
(iv) If A, B ∈ B2 (H) then AB, BA ∈ B1 (H) and tr (AB) = tr (BA) ;
(v) Bfin (H) is a dense subspace of B1 (H) .

Utilising the trace notation we obviously have that

〈A,B〉2 = tr (B∗A) = tr (AB∗) and ‖A‖22 = tr (A∗A) = tr
(
|A|2

)
for any A, B ∈ B2 (H) .

For the theory of trace functionals and their applications the reader is
referred to [38].

For some classical trace inequalities see [5, 7, 35, 50], which are continu-
ations of the work of Bellman [2]. For related works the reader can refer to
[1, 3, 5, 29, 32–34, 36, 47].
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Consider the orthonormal basis E := {ei}i∈I in the complex Hilbert space
(H, 〈·, ·〉) and for a nonzero operator B ∈ B2 (H) let introduce the subset of
indices from I defined by

IE,B := {i ∈ I : Bei 6= 0} .

We observe that IE,B is non-empty for any nonzero operator B and if ker (B) =
0, i.e. B is injective, then IE,B = I. We also have for B ∈ B2 (H) that

tr
(
|B|2

)
= tr (B∗B) =

∑
i∈I
〈B∗Bei, ei〉 =

∑
i∈I
‖Bei‖2 =

∑
i∈IE,B

‖Bei‖2 .

In the recent paper [26] we obtained among others the following result for
convex functions.

Theorem 1.5. Let A be a selfadjoint operator on the Hilbert space H and
assume that Sp (A) ⊆ [m,M ] for some scalars m, M with m < M. If f is a
continuous convex function on [m,M ] , E := {ei}i∈I is an orthonormal basis

in H and B ∈ B2 (H) \ {0} , then tr(|B|2A)
tr(|B|2)

∈ [m,M ] and

(1.12) f

tr
(
|B|2A

)
tr
(
|B|2

)
 tr

(
|B|2

)
≤ JE (f ;A,B) ≤ tr

(
|B|2 f (A)

)

≤ 1

M −m

(
f (m) tr

[
|B|2 (M1H −A)

]
+ f (M) tr

[
|B|2 (A−m1H)

])
,

where

(1.13) JE (f ;A,B) :=
∑
i∈IE,B

f

(
〈B∗ABei, ei〉
‖Bei‖2

)
‖Bei‖2 .

For related functionals and their superadditivity and monotonicity prop-
erties see [26].

In [27] we obtained the following reverse of Jensen’s inequality.

Theorem 1.6. Let A be a selfadjoint operator on the Hilbert space H and
assume that Sp (A) ⊆ [m,M ] for some scalars m, M with m < M. If f is a
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continuously differentiable convex function on [m,M ] and P ∈ B1 (H) \ {0} ,
P ≥ 0, then we have

0 ≤ tr (Pf (A))

tr (P )
− f

(
tr (PA)

tr (P )

)
(1.14)

≤ tr (Pf ′ (A)A)

tr (P )
− tr (PA)

tr (P )
· tr (Pf ′ (A))

tr (P )

≤


1
2 [f ′ (M)− f ′ (m)]

tr(P |A− tr(PA)
tr(P )

1H |)
tr(P )

1
2 (M −m)

tr

(
P

∣∣∣∣f ′(A)− tr(Pf′(A))
tr(P )

1H

∣∣∣∣)
tr(P )

≤



1
2 [f ′ (M)− f ′ (m)]

[
tr(PA2)
tr(P ) −

(
tr(PA)
tr(P )

)2]1/2

1
2 (M −m)

[
tr
(
P [f ′(A)]

2
)

tr(P ) −
(

tr(Pf ′(A))
tr(P )

)2
]1/2

≤ 1

4
[f ′ (M)− f ′ (m)] (M −m) .

For some inequalities for convex functions see [8–12, 28, 46]. For inequali-
ties for functions of selfadjoint operators, see [14–23, 39, 41–44] and the books
[24, 25, 30].

Motivated by the above results we establish in this paper other trace in-
equalities for convex functions of selfadjoint operators. Some examples for
convex functions of interest are also given.

2. New Reverse Inequalities for Convex Functions

We recall the gradient inequality for the convex function f : [m,M ]→ R,
namely

(2.1) f (ς)− f (τ) ≥ δf (τ) (ς − τ)

for any ς, τ ∈ [m,M ] where δf (τ) ∈
[
f ′− (τ) , f ′+ (τ)

]
, (for τ = m we take

δf (τ) = f ′+ (m) and for τ = M we take δf (τ) = f ′− (M)). Here f ′+ (m) and
f ′− (M) are the lateral derivatives of the convex function f.
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The following result holds.

Theorem 2.1. Let A be a selfadjoint operator on the Hilbert space H and
assume that Sp (A) ⊆ [m,M ] for some scalars m, M with m < M. If f is a
continuos convex function on [m,M ] and P ∈ B1 (H) \ {0} , P ≥ 0 is such
that tr(PA)

tr(P ) ∈ (m,M) then we have

0 ≤ tr (Pf (A))

tr (P )
− f

(
tr (PA)

tr (P )

)
(2.2)

≤

(
M − tr(PA)

tr(P )

)(
tr(PA)
tr(P ) −m

)
M −m

Ψf

(
tr (PA)

tr (P )
;m,M

)

≤

(
M − tr(PA)

tr(P )

)(
tr(PA)
tr(P ) −m

)
M −m

sup
t∈(m,M)

Ψf (t;m,M)

≤
(
M − tr (PA)

tr (P )

)(
tr (PA)

tr (P )
−m

)
f ′− (M)− f ′+ (m)

M −m

≤ 1

4
(M −m)

[
f ′− (M)− f ′+ (m)

]
,

where Ψf (·;m,M) : (m,M)→ R is defined by

Ψf (t;m,M) =
f (M)− f (t)

M − t
− f (t)− f (m)

t−m
.

We also have

0 ≤ tr (Pf (A))

tr (P )
− f

(
tr (PA)

tr (P )

)
(2.3)

≤

(
M − tr(PA)

tr(P )

)(
tr(PA)
tr(P ) −m

)
M −m

Ψf

(
tr (PA)

tr (P )
;m,M

)
≤ 1

4
(M −m) Ψf

(
tr (PA)

tr (P )
;m,M

)
≤ 1

4
(M −m) sup

t∈(m,M)

Ψf (t;m,M)

≤ 1

4
(M −m)

[
f ′− (M)− f ′+ (m)

]
for any P ∈ B1 (H) \ {0} , P ≥ 0 such that tr(PA)

tr(P ) ∈ (m,M) .
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Proof. Since f is convex, then we have

f (t) = f

(
m (M − t) +M (t−m)

M −m

)
≤ (M − t) f (m) + (t−m) f (M)

M −m

for any t ∈ [m,M ] .
This scalar inequality implies, by utilizing the spectral representation of

continuous functions of selfadjoint operators, the following inequality

(2.4) f (A) ≤ f (m) (M1M −A) + f (M) (A−m1H)

M −m

in the operator order of B (H).
Utilising the properties of the trace and the inequality (2.4), we have

tr (Pf (A))

tr (P )
− f

(
tr (PA)

tr (P )

)
(2.5)

=
tr (Pf (A))

tr (P )
− f

tr
(
P m(M1H−A)+M(A−1Hm)

M−m

)
tr (P )



≤
tr
(
P f(m)(M1M−A)+f(M)(A−m1H)

M−m

)
tr (P )

− f

tr
(
P m(M1H−A)+M(A−1Hm)

M−m

)
tr (P )



=

(
M − tr(PA)

tr(P )

)
f (m) +

(
tr(PA)
tr(P ) −m

)
f (M)

M −m

− f


(
M − tr(PA)

tr(P )

)
m+

(
tr(PA)
tr(P ) −m

)
M

M −m


=: B (f, P,A,m,M)

for any P ∈ B1 (H) \ {0} , P ≥ 0.
By denoting

∆f (t;m,M) :=
(t−m) f (M) + (M − t) f (m)

M −m
− f (t) , t ∈ [m,M ] ,
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we have

∆f (t;m,M)(2.6)

=
(t−m) f (M) + (M − t) f (m)− (M −m) f (t)

M −m

=
(t−m) f (M) + (M − t) f (m)− (M − t+ t−m) f (t)

M −m

=
(t−m) [f (M)− f (t)]− (M − t) [f (t)− f (m)]

M −m

=
(M − t) (t−m)

M −m
Ψf (t;m,M)

for any t ∈ (m,M) . Therefore

(2.7) B (f, P,A,m,M)

=

(
M − tr(PA)

tr(P )

)(
tr(PA)
tr(P ) −m

)
M −m

Ψf

(
tr (PA)

tr (P )
;m,M

)
,

provided that tr(PA)
tr(P ) ∈ (m,M) . If tr(PA)

tr(P ) ∈ (m,M) , then

Ψf

(tr (PA)

tr (P )
;m,M

)
(2.8)

≤ sup
t∈(m,M)

Ψf (t;m,M)

= sup
t∈(m,M)

[
f (M)− f (t)

M − t
− f (t)− f (m)

t−m

]

≤ sup
t∈(m,M)

[
f (M)− f (t)

M − t

]
+ sup
t∈(m,M)

[
−f (t)− f (m)

t−m

]

= sup
t∈(m,M)

[
f (M)− f (t)

M − t

]
− inf
t∈(m,M)

[
f (t)− f (m)

t−m

]
= f ′− (M)− f ′+ (m) ,
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which by (2.5) and (2.7) produces the second, third and fourth inequalities
in (2.2). Since, obviously

1

M −m

(
M − tr (PA)

tr (P )

)(
tr (PA)

tr (P )
−m

)
≤ 1

4
(M −m) ,

then the last part of (2.2) also holds.
The second part of the theorem is clear and the details are omitted. �

The following result also holds.

Theorem 2.2. Let A be a selfadjoint operator on the Hilbert space H and
assume that Sp (A) ⊆ [m,M ] for some scalars m, M with m < M. If f is a
continuos convex function on [m,M ] then for all P ∈ B1 (H) \ {0} , P ≥ 0 we
have that tr(PA)

tr(P ) ∈ [m,M ] and

0 ≤ tr (Pf (A))

tr (P )
− f

(
tr (PA)

tr (P )

)
(2.9)

≤ 2 max

M −
tr(PA)
tr(P )

M −m
,

tr(PA)
tr(P ) −m
M −m


×
[
f (m) + f (M)

2
− f

(
m+M

2

)]

≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
.

Proof. Since m1H ≤ A ≤ M1H , it follows that m tr (P ) ≤ tr (PA) ≤
M tr (P ) for any P ∈ B1 (H)\{0} , P ≥ 0, which shows that tr(PA)

tr(P ) ∈ [m,M ] .

Further on, we recall the following result (see for instance [11]) that provides
a refinement and a reverse for the weighted Jensen’s discrete inequality

n min
i∈{1,...,n}

{pi}

[
1

n

n∑
i=1

f (xi)− f

(
1

n

n∑
i=1

xi

)]
(2.10)

≤ 1

Pn

n∑
i=1

pif (xi)− f

(
1

Pn

n∑
i=1

pixi

)

≤ n max
i∈{1,...,n}

{pi}

[
1

n

n∑
i=1

f (xi)− f

(
1

n

n∑
i=1

xi

)]
,
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where f : C → R is a convex function defined on the convex subset C of the
linear space X, {xi}i∈{1,...,n} ⊂ C are vectors and {pi}i∈{1,...,n} are nonnega-
tive numbers with Pn :=

∑n
i=1 pi > 0.

For n = 2 we deduce from (2.10) that

2 min {t, 1− t}
[
f (x) + f (y)

2
− f

(
x+ y

2

)]
(2.11)

≤ tf (x) + (1− t) f (y)− f (tx+ (1− t) y)

≤ 2 max {t, 1− t}
[
f (x) + f (y)

2
− f

(
x+ y

2

)]
for any x, y ∈ C and t ∈ [0, 1]. If we use the second inequality in (2.11) for
the convex function f : I → R where m, M ∈ R, m < M with [m,M ] = I, we

have for x = m, y = M and t =
M− tr(PA)

tr(P )

M−m that

B (f, P,A,m,M) =

(
M − tr(PA)

tr(P )

)
f (m) +

(
tr(PA)
tr(P ) −m

)
f (M)

M −m

− f

m
(
M − tr(PA)

tr(P )

)
+M

(
tr(PA)
tr(P ) −m

)
M −m



≤ 2 max

M −
tr(PA)
tr(P )

M −m
,

tr(PA)
tr(P ) −m
M −m


×
[
f (m) + f (M)

2
− f

(
m+M

2

)]
.

Making use of (2.5) we deduce the first inequality in (2.9).
Since

max

M −
tr(PA)
tr(P )

M −m
,

tr(PA)
tr(P ) −m
M −m

 ≤ 1,

the last part of (2.9) is also proved. �
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3. Some Examples

For p > 1 and 0 < m < M < ∞ consider the convex function f (t) =
tp defined on [m,M ] . Then Ψp (·;m,M) : (m,M)→ R is defined by

Ψp (t;m,M) =
Mp − tp

M − t
− tp −mp

t−m

=
t (Mp −mp)− tp (M −m)−mM

(
Mp−1 −mp−1)

(M − t) (t−m)
.

Let A be a nonnegative selfadjoint operator on the Hilbert spaceH and assume
that Sp (A) ⊆ [m,M ] for some scalars m, M with 0 ≤ m < M. If P ∈
B1 (H) \ {0} , P ≥ 0 such that tr(PA)

tr(P ) ∈ (m,M) , then we have from (2.2) that

0 ≤ tr (PAp)

tr (P )
−
(

tr (PA)

tr (P )

)p
(3.1)

≤

(
M − tr(PA)

tr(P )

)(
tr(PA)
tr(P ) −m

)
M −m

Ψp

(
tr (PA)

tr (P )
;m,M

)

≤

(
M − tr(PA)

tr(P )

)(
tr(PA)
tr(P ) −m

)
M −m

sup
t∈(m,M)

Ψp (t;m,M)

≤ p
(
M − tr (PA)

tr (P )

)(
tr (PA)

tr (P )
−m

)
Mp−1 −mp−1

M −m

≤ 1

4
p (M −m)

(
Mp−1 −mp−1)

and from (2.3) that

0 ≤ tr (PAp)

tr (P )
−
(

tr (PA)

tr (P )

)p
(3.2)

≤

(
M − tr(PA)

tr(P )

)(
tr(PA)
tr(P ) −m

)
M −m

Ψp

(
tr (PA)

tr (P )
;m,M

)
≤ 1

4
(M −m) Ψp

(
tr (PA)

tr (P )
;m,M

)
≤ 1

4
(M −m) sup

t∈(m,M)

Ψp (t;m,M) ≤ 1

4
p (M −m)

(
Mp−1 −mp−1) .
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For p = 2, we have

Ψ2 (t;m,M) =
M2 − t2

M − t
− t2 −m2

t−m
= M −m

and by (3.1) we get

0 ≤
tr
(
PA2

)
tr (P )

−
(

tr (PA)

tr (P )

)2

≤
(
M − tr (PA)

tr (P )

)(
tr (PA)

tr (P )
−m

)
(3.3)

≤ 1

4
(M −m)

2

for any P ∈ B1 (H) \ {0} , P ≥ 0. Making use of the inequality (2.9) we have

0 ≤ tr (PAp)

tr (P )
−
(

tr (PA)

tr (P )

)p
(3.4)

≤ 2 max

M −
tr(PA)
tr(P )

M −m
,

tr(PA)
tr(P ) −m
M −m


[
mp +Mp

2
−
(
m+M

2

)p]

≤ 2

[
mp +Mp

2
−
(
m+M

2

)p]
for any positive operatorA with Sp (A) ⊆ [m,M ] and for any P ∈ B1 (H)\{0} ,
P ≥ 0.

In particular, for p = 2 we get

0 ≤
tr
(
PA2

)
tr (P )

−
(

tr (PA)

tr (P )

)2

(3.5)

≤ 1

2
(M −m) max

{
M − tr (PA)

tr (P )
,

tr (PA)

tr (P )
−m

}
≤ 1

2
(M −m)

2
.

Since

max

{
M − tr (PA)

tr (P )
,

tr (PA)

tr (P )
−m

}
=

1

2
(M −m) +

∣∣∣∣tr (PA)

tr (P )
− 1

2
(m+M)

∣∣∣∣ ,
then the second inequality in (3.5) is not as good as the second inequality
in (3.3).
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For p = −1 and 0 < m < M < ∞ consider the convex function f (t) =
t−1 defined on [m,M ] . Then Ψ−1 (·;m,M) : (m,M)→ R is defined by

Ψ−1 (t;m,M) =
M−1 − t−1

M − t
− t−1 −m−1

t−m
=
M −m
mMt

.

The definition of Ψ−1 (·;m,M) can be extended to the closed interval [m,M ] .
We also have that

sup
t∈(m,M)

Ψ−1 (t;m,M) =
M −m
m2M

.

From the inequality (2.2) we get

0 ≤
tr
(
PA−1

)
tr (P )

− tr (P )

tr (PA)
(3.6)

≤

(
M − tr(PA)

tr(P )

)(
tr(PA)
tr(P ) −m

)
mM

tr (P )

tr (PA)

≤ 1

m2M

(
M − tr (PA)

tr (P )

)(
tr (PA)

tr (P )
−m

)

≤ 1

4

(M −m)
2

(M +m)

m2M2
,

while from (2.3) we get

0 ≤
tr
(
PA−1

)
tr (P )

− tr (P )

tr (PA)
(3.7)

≤

(
M − tr(PA)

tr(P )

)(
tr(PA)
tr(P ) −m

)
mM

tr (P )

tr (PA)

≤ 1

4

(M −m)
2

mM

tr (P )

tr (PA)

≤ 1

4

(M −m)
2

m2M

for any positive definite operator A with Sp (A) ⊆ [m,M ] and P ∈ B1 (H) \
{0} , P ≥ 0. Since m > 0, then tr (PA) ≥ m tr (P ) > 0.
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From the inequality (2.9) we have

0 ≤
tr
(
PA−1

)
tr (P )

− tr (P )

tr (PA)
(3.8)

≤ (M −m)
2

mM (m+M)
max

M −
tr(PA)
tr(P )

M −m
,

tr(PA)
tr(P ) −m
M −m


≤ (M −m)

2

mM (m+M)

for any positive definite operator A with Sp (A) ⊆ [m,M ] and any P ∈
B1 (H) \ {0} , P ≥ 0.

In order to compare the upper bounds provided by (3.7) and (3.8) consider
the difference

∆ (m,M) :=
1

4

(M −m)
2

m2M
− (M −m)

2

mM (m+M)

=
(M −m)

2

mM

(
1

4m
− 1

m+M

)

=
(M −m)

2
(M − 3m)

4m2M (m+M)
,

where 0 < m < M.
We observe that if M < 3m, then the upper bound provided by (3.7) is

better than the bound provided by (3.8). The conclusion is the other way
around if M ≥ 3m.

If we consider the convex function f (t) = − ln t defined on [m,M ] ⊂
(0,∞) , then Ψ− ln (·;m,M) : (m,M)→ R is defined by

Ψ− ln (t;m,M) =
− lnM + ln t

M − t
− − ln t+ lnm

t−m

=
(M −m) ln t− (M − t) lnm− (t−m) lnM

(M − t) (t−m)

= ln

(
tM−m

mM−tM t−m

) 1
(M−t)(t−m)

.
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Utilising the inequality (2.2) we have

0 ≤ ln

(
tr (PA)

tr (P )

)
− tr (P lnA)

tr (P )
(3.9)

≤ 1

M −m
ln


(

tr(PA)
tr(P )

)M−m
mM− tr(PA)

tr(P ) M
tr(PA)
tr(P )

−m



≤

(
M − tr(PA)

tr(P )

)(
tr(PA)
tr(P ) −m

)
M −m

sup
t∈(m,M)

Ψ− ln (t;m,M)

≤ 1

Mm

(
M − tr (PA)

tr (P )

)(
tr (PA)

tr (P )
−m

)

≤ (M −m)
2

4mM

for any positive definite operator A with Sp (A) ⊆ [m,M ] and P ∈ B1 (H) \
{0} , P ≥ 0.

From (2.3) we have

0 ≤ ln

(
tr (PA)

tr (P )

)
− tr (P lnA)

tr (P )
(3.10)

≤ 1

M −m
ln


(

tr(PA)
tr(P )

)M−m
mM− tr(PA)

tr(P ) M
tr(PA)
tr(P )

−m



≤ 1

4

(M −m)(
M − tr(PA)

tr(P )

)(
tr(PA)
tr(P ) −m

) ln


(

tr(PA)
tr(P )

)M−m
mM− tr(PA)

tr(P ) M
tr(PA)
tr(P )

−m


≤ 1

4
(M −m) sup

t∈(m,M)

Ψ− ln (t;m,M)

≤ (M −m)
2

4mM

for any positive definite operator A with Sp (A) ⊆ [m,M ] and P ∈ B1 (H) \
{0} , P ≥ 0.
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From the inequality (2.9) we get

0 ≤ ln

(
tr (PA)

tr (P )

)
− tr (P lnA)

tr (P )
(3.11)

≤ max

M −
tr(PA)
tr(P )

M −m
,

tr(PA)
tr(P ) −m
M −m

 ln

((
m+M

2

)2
mM

)

≤ ln

((
m+M

2

)2
mM

)

for any positive definite operator A with Sp (A) ⊆ [m,M ] and P ∈ B1 (H) \
{0} , P ≥ 0.

We observe that, since lnx ≤ x− 1 for any x > 0, then

ln

((
m+M

2

)2
mM

)
≤
(
m+M

2

)2
mM

− 1 =
(M −m)

2

4mM
,

which shows that the absolute upper bound for

ln

(
tr (PA)

tr (P )

)
− tr (P lnA)

tr (P )

provided by the inequality (3.11) is better than the one provided by (3.10).

4. Reverses of Hölder’s Inequality

We have the following result.

Theorem 4.1. Assume that p, q > 1 with 1
p + 1

q = 1. Let S be a positive
operator that commutes with Q, a positive invertible operator and such that
there exists the constants k, K > 0 with

(4.1) k1H ≤ SQ1−q ≤ K1H .

If Sp, Qq ∈ B1 (H) , then we have

(4.2) 0 ≤ [tr (Sp)]
1/p

[tr (Qq)]
1/q − tr (SQ) ≤ Bp (k,K) tr (Qq) ,
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where

(4.3) Bp (k,K) =


1

41/p
p1/p (K − k)

1/p (
Kp−1 − kp−1

)1/p
21/p

[
kp+Kp

2 −
(
k+K
2

)p]1/p
.

Proof. If we write the inequality

(4.4) 0 ≤ tr (PAp)

tr (P )
−
(

tr (PA)

tr (P )

)p
≤ 1

4
p (M −m)

(
Mp−1 −mp−1)

for the operators P = Qq and A = SQ1−q then we get

0 ≤
tr
(
Qq
(
SQ1−q)p)

tr (Qq)
−

(
tr
(
QqSQ1−q)
tr (Qq)

)p
(4.5)

≤ 1

4
p (K − k)

(
Kp−1 − kp−1

)
.

Observe that, by the properties of trace we have

tr
(
QqSQ1−q) = tr

(
SQ1−qQq

)
= tr (SQ) .

It is known, see for instance [45, p. 356-358], that if A and B are two commut-
ing bounded selfadjoint operators on the complex Hilbert space H, then there
exists a bounded selfadjoint operator T on H and two bounded functions ϕ
and ψ such that A = ϕ (T ) and B = ψ (T ) . Moreover, if {Eλ} is the spec-
tral family over the closed interval [0, 1] for the selfadjoint operator T , then
T =

∫ 1

0− λdEλ, where the integral is taken in the Riemann-Stieltjes sense, the
functions ϕ and ψ are summable with respect with {Eλ} on [0, 1] and

A = ϕ (T ) =

∫ 1

0−
ϕ (λ) dEλ and B = ψ (T ) =

∫ 1

0−
ψ (λ) dEλ.

Now, if A and B are as above with Sp (A) , Sp (B) ⊆ J an interval of real
numbers, then for any continuous functions f, g : J → C we have the repre-
sentations

f (A) =

∫ 1

0−
(f ◦ ϕ) (λ) dEλ and g (B) =

∫ 1

0−
(g ◦ ψ) (λ) dEλ.

If we apply the above property to the commuting selfadjoint operators S
and Q, then we have two positive functions ϕ and ψ such that S = ϕ (T )
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and Q = ψ (T ) . Moreover, using the integral representation for functions of
selfadjoint operators, we have

Qq
(
SQ1−q)p = [ψ (T )]

q
(
ϕ (T ) [ψ (T )]

1−q
)p

=

∫ 1

0−
[ψ (λ)]

q
(
ϕ (λ) [ψ (λ)]

1−q
)p
dEλ

=

∫ 1

0−
[ψ (λ)]

q
[ϕ (λ)]

p
[ψ (λ)]

(1−q)p
dEλ

=

∫ 1

0−
[ϕ (λ)]

p
[ψ (λ)]

q+p−qp
dEλ =

∫ 1

0−
[ϕ (λ)]

p
dEλ = Sp.

Therefore, the inequality (4.5) is equivalent to

(4.6) 0 ≤ tr (Sp)

tr (Qq)
−
(

tr (SQ)

tr (Qq)

)p
≤ 1

4
p (K − k)

(
Kp−1 − kp−1

)
,

which is of interest in itself. From this inequality we have

tr (Sp) [tr (Qq)]
p−1 ≤ (tr (SQ))

p
+

1

4
p (K − k)

(
Kp−1 − kp−1

)
[tr (Qq)]

p
.

Taking the power 1/p ∈ (0, 1) and using the property that

(α+ β)
r ≤ αr + βr, where α, β ≥ 0 and r ∈ (0, 1) ,

we get

[tr (Sp)]
1/p

[tr (Qq)]
(p−1)/p

≤
[
(tr (SQ))

p
+

1

4
p (K − k)

(
Kp−1 − kp−1

)
[tr (Qq)]

p

]1/p
≤ tr (SQ) +

1

41/p
p1/p (K − k)

1/p (
Kp−1 − kp−1

)1/p
[tr (Qq)] ,

i.e.

[tr (Sp)]
1/p

[tr (Qq)]
1/q − tr (SQ)

≤ 1

41/p
p1/p (K − k)

1/p (
Kp−1 − kp−1

)1/p
[tr (Qq)] .
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The second part follows from the inequality

0 ≤ tr (PAp)

tr (P )
−
(

tr (PA)

tr (P )

)p
≤ 2

[
mp +Mp

2
−
(
m+M

2

)p]
,

and the details are omitted. �

Remark 4.2. We observe that under the previous assumptions, from any
upper bound for the difference

0 ≤ tr (PAp)

tr (P )
−
(

tr (PA)

tr (P )

)p
we can deduce in a similar way an upper bound for the Hölder’s difference

0 ≤ [tr (Sp)]
1/p

[tr (Qq)]
1/q − tr (SQ) .

Also, if the commutativity property of the operators S and Q is dropped, then
we can prove that

0 ≤
[
tr
(
Qq
(
SQ1−q)p)]1/p [tr (Qq)]

1/q − tr (SQ)(4.7)

≤ Bp (k,K) tr (Qq)

with the same Bp (k,K) . However, the noncommutative case of the second
inequality in (4.2) is an open question for the author.

The following reverse of Schwarz inequality holds.

Corollary 4.3. Let S be a positive operator that commutes with Q, a
positive invertible operator and such that there exists the constants k, K > 0
with

(4.8) k1H ≤ SQ−1 ≤ K1H .

If S2, Q2 ∈ B1 (H) , then we have

(4.9) 0 ≤
[
tr
(
S2
)]1/2 [

tr
(
Q2
)]1/2 − tr (SQ) ≤

√
2

2
(K − k) tr

(
Q2
)
.
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Remark 4.4. If we take p = q = 2 in (4.7) and drop the commutativity
assumption, then we get

0 ≤
[
tr
(
QSQ−1S

)]1/2 [
tr
(
Q2
)]1/2 − tr (SQ) ≤

√
2

2
(K − k) tr

(
Q2
)
,

provided that (4.8) holds true.
Also, if we use the inequality (3.3), then we have

0 ≤ tr
(
QSQ−1S

)
tr
(
Q2
)
− [tr (SQ)]

2(4.10)

≤
(
K tr

(
Q2
)
− tr (SQ)

) (
tr (SQ)− k tr

(
Q2
))

≤ 1

4
(K − k)

2 [
tr
(
Q2
)]2

provided that (4.8) holds true.
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