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FIXED POINT RESULTS SATISFYING RATIONAL TYPE
CONTRACTIVE CONDITIONS IN COMPLEX VALUED

METRIC SPACES

Poom Kumam∗, Muhammad Sarwar∗, Mian Bahadur Zada

Abstract. The aim of this manuscript is to establish fixed point results sat-
isfying contractive conditions of rational type in the setting of complex valued
metric spaces. The derived results generalize and extend some well known
results in the existing literature.

1. Introduction

The Banach contraction principle [2] is considered to be the pioneering re-
sult of the fixed point theory, and plays an important role for solving existence
problems in many branches of nonlinear analysis. This principle asserts that
every contraction in a complete metric space has a unique fixed point. Inspired
from the impact of this natural idea to functional analysis, several researchers
have been extended and generalized this principle for different kinds of con-
tractions in various spaces such as quasi-metric spaces, cone metric spaces,
G-metric spaces and vector valued metric spaces etc.

Recently, Azam et al. [1] introduced the notion of complex valued metric
space, which is one of the most attractive research topics in fixed point theory
and established the result for the existence and uniqueness of a fixed point in
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complex valued metrics. Though complex valued metric spaces form a special
class of cone metric space, yet this idea is intended to define rational expres-
sions which are not meaningful in cone metric spaces and thus many results
of analysis cannot be generalized to cone metric spaces. Indeed the defini-
tion of a cone metric space banks on the underlying Banach space which is
not a division Ring. However, in complex valued metric spaces, we can study
improvements of a host of results of analysis involving divisions. Rouzkard
and Imdad [5] studied some common fixed point theorems satisfying certain
rational expressions in complex valued metric spaces which generalizes the
results of [1]. Sintunavarat and Kumam [8] established common fixed point
theorems by replacing the constant of contractive condition to some control
functions and produced results for weakly compatible mappings in the context
of complex valued metric spaces. Sitthikul and Saejung [6] continue the study
of fixed point theorems in complex valued metric spaces and obtained results
which generalizes the results of ([8], [5]). Kumar and Hussain [4] extended the
results of [6] in the context of complex valued metric spaces.

The aim of this contribution is to investigate some fixed point results using
the concept of the contractive conditions of control functions in the set up of
complex valued metric spaces. Actually the derived results generalizes the
results of ([5], [4], [6], [8]) in complex valued metric spaces.

Now, we recollect some known definitions and results from the literature
which are helpful for proving our main result.

2. Preliminaries

Definition 2.1 ([1]). Let C be the set of complex numbers and z, w ∈ C.
Define a partial order - on C as follows:

z - w if and only if Re(z) ≤ Re(w) and Im(z) ≤ Im(w).

z ≺ w if and only if Re(z) < Re(w) and Im(z) < Im(w).

Note that
i) k1, k2 ∈ (0,∞) and k1 ≤ k2 ⇒ k1z - k2z, for all z ∈ C;
ii) 0 - z � w ⇒ |z| < |w|, for all z, w ∈ C;
iii) z - w and w ≺ w∗ ⇒ z ≺ w∗, for all z, w,w∗ ∈ C.

Definition 2.2 ([1]). LetX be a nonempty set. Suppose that the mapping
d : X ×X → C satisfy the following axioms:
1) 0 - d(z1, z2), for all z1, z2 ∈ X and d(z1, z2) = 0 if and only if z1 = z2;
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2) d(z1, z2) = d(z2, z1), for all z1, z2 ∈ X;
3) d(z1, z2) - d(z1, z3) + d(z3, z2), for all z1, z2, z3 ∈ X.

Then the pair (X, d) is called a complex valued metric space.

Example 2.3. Let z1, z2 ∈ C and define the mapping d : C× C→ C by

d(z1, z2) =

{
0, if z1 = z2,
ι̇, if z1 6= z2.

Then (C, d) is a complex valued metric space.

Definition 2.4. [1] Let {zr} be a sequence in complex valued metric
(X, d) and z ∈ X. Then
i) z is called the limit of {zr} if for every w ∈ C, with 0 ≺ w there is r0 ∈ N ,

such that d(zr, z) ≺ w for all r > r0 and we write limr→∞ zr = z.
ii) {zr} is called a Cauchy sequence if for every w ∈ C with 0 ≺ w there is

r0 ∈ N , such that d(zr, zr+s) ≺ w for all r > r0.
iii) (X, d) is a complete complex valued metric space if every Cauchy sequence

is convergent in (X, d).

Lemma 2.5 ([1]). Let (X, d) be a complex valued metric space. Then a se-
quence {zr} in X converges to z if and only if |d(zr, z)| → 0 as r →∞.

Lemma 2.6 ([1]). Let (X, d) be a complex valued metric space. Then a se-
quence {zr} in X is a Cauchy sequence if and only if |d(zr, zr+s)| → 0 as
r →∞, where s ∈ N .

Definition 2.7 ([7]). Let K and L be two self-maps on a non-empty
set X. Then
i) z ∈ X is called a fixed point of L if Lz = z.
ii) z ∈ X is called a coincidence point of K and L if Kz = Lz.
iii) z ∈ X is called a common fixed point of K and L if Kz = Lz = z.

Proposition 2.8 ([6]). Let (X, d) be a complete complex valued metric
space and K,L : X → X. Let z0 ∈ X and define the sequence {zn} by

Kz2n = z2n+1 and Lz2n+1 = z2n+2, n = 0, 1, 2, . . .

Let there exists a mapping λ : X ×X → [0, 1) satisfying

λ(LKz,w) ≤ λ(z, w) and λ(z,KLw) ≤ λ(z, w) for all z, w ∈ X.
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Then

λ(z2n, w) ≤ λ(z0, w) and λ(z, z2n+1) ≤ λ(z, z1)

for all z, w ∈ X and n = 0, 1, 2, . . ..

Lemma 2.9 ([6]). Let (X, d) be a complex valued metric space and λ1, λ2 : X×
X → [0, 1). If for all z, w ∈ X, the mappings K and L satisfy the following

d(Kz,LKz) - λ1(z,Kz)d(z,Kz) + λ2(z,Kz)
d(z,Kz)d(Kz,LKz)

1 + d(z,Kz)
,

d(KLw,Lw) - λ1(Lw,w)d(Lw,w) + λ2(Lw,w)
d(Lw,KLw)d(w,Lw)

1 + d(Lw,w)
,

then

|d(Kz,LKz)| ≤ λ1(z,Kz)|d(z,Kz)|+ λ2(z,Kz)|d(Kz,LKz)|,

|d(KLw,Lw)| ≤ λ1(Lw,w)|d(Lw,w)|+ λ2(Lw,w)|d(Lw,KLw)|,

respectively.

In 2012, Sitthikul and Saejung [6] generalized the result of Rouzkard and
Imdad [5] and proved the following fixed point theorem.

Theorem 2.10 ([6]). Let (X, d) be a complete complex valued metric space
and L : X → X be self-map. Suppose that there exist mappings λ1, λ2 : X ×
X → [0, 1) such that for all x, y ∈ X
(a) λ1(Lx, y) ≤ λ1(x, y) and λ1(x, Ly) ≤ λ1(x, y),

λ2(Lx, y) ≤ λ2(x, y) and λ2(x, Ly) ≤ λ2(x, y);
(b) λ1(x, y) + λ2(x, y) < 1;

(c) d(Lx,Ly) - λ1(x, y)d(x, y) + λ2(x, y)
d(y, Ly)[1 + d(x, Lx)]

1 + d(x, y)
.

Then L has a unique fixed point in X.

In 2012, Sitthikul and Saejung [6] generalized the result of Sintunavarat
and Kumam [8] and established common fixed point result as follows:

Theorem 2.11 ([6]). Let (X, d) be a complete complex valued metric space
and K,L : X → X be two self-mappings. Suppose that there exist mappings
λ, µ, γ : X ×X → [0, 1) such that for all x, y ∈ X:
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(a) λ(LKx, y) ≤ λ(x, y) and λ(x,KLy) ≤ λ(x, y),
µ(LKx, y) ≤ µ(x, y) and µ(x,KLy) ≤ µ(x, y),
γ(LKx, y) ≤ γ(x, y) and γ(x,KLy) ≤ γ(x, y);

(b) λ(x, y) + µ(x, y) + γ(x, y) < 1;

d(Kx,Ly) - λ(x, y)d(x, y) + µ(x, y)
d(x,Kx)d(y, Ly)

1 + d(x, y)
(c)

+ γ(x, y)
d(y,Kx)d(x, Ly)

1 + d(x, y)
.

Then K and L have a unique common fixed point in X.

Kumar and Hussain [4] improved Theorem 2.12 of [6] in the following way:

Theorem 2.12 ([4]). Let (X, d) be a complete complex valued metric space
and K,L : X → X be two self-mappings. Suppose that there exist mappings
λ, µ, γ, δ : X ×X → [0, 1) such that for all x, y ∈ X:
(a) λ(LKx, y) ≤ λ(x, y) and λ(x,KLy) ≤ λ(x, y),

µ(LKx, y) ≤ µ(x, y) and µ(x,KLy) ≤ µ(x, y),
γ(LKx, y) ≤ γ(x, y) and γ(x,KLy) ≤ γ(x, y),
δ(LKx, y) ≤ δ(x, y) and δ(x,KLy) ≤ δ(x, y),
η(LKx, y) ≤ η(x, y) and η(x,KLy) ≤ η(x, y);

(b) λ(x, y) + µ(x, y) + γ(x, y) + 2[δ(x, y) + η(x, y)] < 1;

d(Kx,Ly) - λ(x, y)d(x, y) + µ(x, y)
d(x,Kx)d(y, Ly)

1 + d(x, y)
(c)

+ γ(x, y)
d(y,Kx)d(x, Ly)

1 + d(x, y)
+ δ(x, y)

d(x,Kx)d(x, Ly)

1 + d(x, y)

+ η(x, y)
d(y,Kx)d(y, Ly)

1 + d(x, y)
.

Then K and L have a unique common fixed point in X.

3. Main Results

In this section we present the main results.
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Theorem 3.1. Let (X, d) be a complete complex valued metric space and
λi : X ×X → [0, 1), i = 1, . . . , 8. Suppose that L : X → X is a self-map such
that for all z, w ∈ X the following conditions are satisfied:
(i) λi(Lz,w) ≤ λi(z, w) and λi(z, Lw) ≤ λi(z, w);

(ii) d(Lz, Lw) - λ1(z, w)d(z, w) + λ2(z, w)d(z, Lw)

+ λ3(z, w)d(w,Lz) + λ4(z, w)d(z, Lz)

+ λ5(z, w)d(w,Lw) + λ6(z, w)
d(w,Lw)[1 + d(z, Lz)]

1 + d(z, w)

+ λ7(z, w)
d(z, Lw)[1 + d(z, Lz)]

1 + d(z, w)

+ λ8(z, w)
d(z, Lw)[1 + d(w,Lz)]

1 + d(z, w)d(w,Lz)
,

where

λ1(z, w) +

6∑
i=3

λi(z, w) + 2[λ2(z, w) + λ7(z, w) + λ8(z, w)] < 1.

Then the mapping L has a unique fixed point in X.

Proof. Let z0 ∈ X and construct a sequence {zn} by the rule

(3.1) Lzn = zn+1, n = 0, 1, 2, . . . .

First we show that {zn} is a Cauchy sequence in X. For this, consider

d(zn+1, zn+2) = d(Lzn, Lzn+1),

by using condition (ii) of Theorem 3.1 with z = zn and w = zn+1, we have

d(zn+1, zn+2) - λ1(zn, zn+1)d(zn, zn+1) + λ2(zn, zn+1)d(zn, Lzn+1)

+ λ3(zn, zn+1)d(zn+1, Lzn) + λ4(zn, zn+1)d(zn, Lzn)

+ λ5(zn, zn+1)d(zn+1, Lzn+1)

+ λ6(zn, zn+1)
d(zn+1, Lzn+1)[1 + d(zn, Lzn)]

1 + d(zn, zn+1)
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+ λ7(zn, zn+1)
d(zn, Lzn+1)[1 + d(zn, Lzn)]

1 + d(zn, zn+1)

+ λ8(zn, zn+1)
d(zn, Lzn+1)[1 + d(zn+1, Lzn)]

1 + d(zn, zn+1)d(zn+1, Lzn)
,

using (3.1), we get

|d(zn+1, zn+2)| ≤ λ1(zn, zn+1)|d(zn, zn+1)|+ λ2(zn, zn+1)|d(zn, zn+2)|

+ λ3(zn, zn+1)|d(zn+1, zn+1)|+ λ4(zn, zn+1)|d(zn, zn+1)|

+ λ5(zn, zn+1)|d(zn+1, zn+2)|

+ λ6(zn, zn+1)

∣∣∣∣d(zn+1, zn+2)[1 + d(zn, zn+1)]

1 + d(zn, zn+1)

∣∣∣∣
+ λ7(zn, zn+1)

∣∣∣∣d(zn, zn+2)[1 + d(zn, zn+1)]

1 + d(zn, zn+1)

∣∣∣∣
+ λ8(zn, zn+1)

∣∣∣∣d(zn, zn+2)[1 + d(zn+1, zn+1)]

1 + d(zn, zn+1)d(zn+1, zn+1)

∣∣∣∣ ,
with the help of condition (i) of Theorem 3.1, we get

|d(zn+1, zn+2)| ≤ λ1(z0, z1)|d(zn, zn+1)|+ λ2(z0, z1)|d(zn, zn+1)|

+ λ2(z0, z1)|d(zn+1, zn+2)|+ λ4(z0, z1)|d(zn, zn+1)|

+ λ5(z0, z1)|d(zn+1, zn+2)|+ λ6(z0, z1)|d(zn+1, zn+2)|

+ λ7(z0, z1)|d(zn, zn+2)|+ λ8(z0, z1)|d(zn, zn+2)|,

which implies that

|d(zn+1, zn+2)| ≤ λ1(z0, z1)|d(zn, zn+1)|+ λ2(z0, z1)|d(zn, zn+1)|

+ λ2(z0, z1)|d(zn+1, zn+2)|+ λ4(z0, z1)|d(zn, zn+1)|

+ λ5(z0, z1)|d(zn+1, zn+2)|+ λ6(z0, z1)|d(zn+1, zn+2)|

+ λ7(z0, z1)|d(zn, zn+1)|+ λ7(z0, z1)|d(zn+1, zn+2)|

+ λ8(z0, z1)|d(zn, zn+1)|+ λ8(z0, z1)|d(zn+1, zn+2)|.
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Finally, we get

|d(zn+1, zn+2)| ≤ h|d(zn, zn+1)|,

where

h :=
λ1(z0, z1) + λ2(z0, z1) + λ4(z0, z1) + λ7(z0, z1) + λ8(z0, z1)

1− (λ2(z0, z1) + λ5(z0, z1) + λ6(z0, z1) + λ7(z0, z1) + λ8(z0, z1))
.

Similarly, we get

|d(zn, zn+1)| ≤ h|d(zn−1, zn)|.

Consequently,

|d(zn+2, zn+1)| ≤ h|d(zn+1, zn)| ≤ h2|d(zn, zn−1)| ≤ . . . ≤ hn+1|d(z1, z0)|.

Now, for m > n, we have

d(zn, zm) - d(zn, zn+1) + d(zn+1, zn+2) + . . .+ d(zm−1, zm),

|d(zn, zm)| ≤ |d(zn, zn+1)|+ |d(zn+1, zn+2)|+ . . .+ |d(zm−1, zm)|,

≤ hn|d(z1, z0)|+ hn+1|d(z1, z0)|+ . . .+ hm−1|d(z1, z0)|

≤ (hn + hn+1 + . . .+ hm−1)|d(z1, z0)|

≤ hn

1− h
|d(z1, z0)|.

Therefore limn→∞ |d(zn, zm)| = 0. Hence, {zn} is a Cauchy sequence. But X
is complete, so there exists t ∈ X such that zn → t as n→∞.

Next, we show that t is a fixed point of L. For this, assume that Lt 6= t.
Now

(3.2) d(t, Lt) - d(t, Lzn) + d(Lzn, Lt).

By applying condition (ii) of Theorem 3.1, equation (3.2) become

d(t, Lt) - d(t, Lzn) + λ1(zn, t)d(zn, t) + λ2(zn, t)d(zn, Lt)

+ λ3(zn, t)d(t, Lzn) + λ4(zn, t)d(zn, Lzn)
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+ λ5(zn, t)d(t, Lt) + λ6(zn, t)
d(t, Lt)[1 + d(zn, Lzn)]

1 + d(zn, t)

+ λ7(zn, t)
d(zn, Lt)[1 + d(zn, Lzn)]

1 + d(zn, t)

+ λ8(zn, t)
d(zn, Lt)[1 + d(t, Lzn)]

1 + d(zn, t)d(t, Lzn)
,

with the help of equation (3.1) and condition (i) of Theorem 3.1, we can write

d(t, Lt) - d(t, zn+1) + λ1(z0, t)d(zn, t) + λ2(z0, t)d(zn, Lt)

+ λ3(z0, t)d(t, zn+1) + λ4(z0, t)d(zn, zn+1)

+ λ5(z0, t)d(t, Lt) + λ6(z0, t)
d(t, Lt)[1 + d(zn, zn+1)]

1 + d(zn, t)

+ λ7(z0, t)
d(zn, Lt)[1 + d(zn, zn+1)]

1 + d(zn, t)

+ λ8(z0, t)
d(zn, Lt)[1 + d(t, zn+1)]

1 + d(zn, t)d(t, zn+1)
.

Taking limit as n→∞, we get

d(t, Lt) - λ2(z0, t)d(t, Lt) + λ5(z0, t)d(t, Lt) + λ6(z0, t)d(t, Lt)

+ λ7(z0, t)d(t, Lt) + λ8(z0, t)d(t, Lt).

Consequently,

(3.3) d(t, Lt) - [λ2(z0, t)+λ5(z0, t)+λ6(z0, t)+λ7(z0, t)+λ8(z0, t)]d(t, Lt).

The above inequality (3.3) contradicts the fact that d(t, Lt) 6= 0. Thus Lt = t.
Hence t is a fixed point of L.

Finally, we have to show that t is a unique fixed point of L. For this, let
t∗ 6= t be another fixed point of L. Then on putting z = t and w = t∗ in
condition (ii) of Theorem 3.1, we get

d(t, t∗) = d(Lt, Lt∗) - λ1(t, t
∗)d(t, t∗) + λ2(t, t

∗)d(t, Lt∗)

+ λ3(t, t
∗)d(t∗, Lt) + λ4(t, t

∗)d(t, Lt)
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+ λ5(t, t
∗)d(t∗, Lt∗) + λ6(t, t

∗)
d(t∗, Lt∗)[1 + d(t, Lt)]

1 + d(t, t∗)

+ λ7(t, t
∗)
d(t, Lt)[1 + d(t, Lt)]

1 + d(t, t∗)

+ λ8(t, t
∗)
d(t, Lt)[1 + d(t∗, Lt)]

1 + d(t, t∗)d(t∗, Lt)
.

Thus

|d(t, t∗)| ≤ λ1(t, t∗)|d(t, t∗)|+ λ2(t, t
∗)|d(t, t∗)|+ λ3(t, t

∗)|d(t∗, t)|

+ λ7(t, t
∗)

∣∣∣∣ d(t, t∗)

1 + d(t, t∗)

∣∣∣∣+ λ8(t, t
∗)

∣∣∣∣ d(t, t∗)

1 + d(t, t∗)d(t∗, t)

∣∣∣∣ ,
and consequently,

|d(t, t∗)| ≤ [λ1(t, t
∗) + λ2(t, t

∗) + λ3(t, t
∗) + λ7(t, t

∗) + λ8(t, t
∗)]|d(t, t∗)|,

which is a contradiction because λ1(t, t∗) + λ2(t, t
∗) + λ3(t, t

∗) + λ7(t, t
∗) +

λ8(t, t
∗) < 1. Hence t is a unique fixed point of L. �

From Theorem 3.1 we can easily derive the following corollaries and the
proofs of which are simple, so we omit it.

Corollary 3.2. If λ8 = 0 and all other conditions of Theorem 3.1 are
satisfied, then L has a unique fixed point in X.

Corollary 3.3. If λ7 = λ8 = 0 and all other conditions of Theorem 3.1
are satisfied, then L has a unique fixed point in X.

Corollary 3.4. If λ2 = λ3 = λ4 = λ5 = 0 and all other conditions of
Theorem 3.1 are satisfied, then L has a unique fixed point in X.

Corollary 3.5. If λ6 = λ7 = λ8 = 0 and all other conditions of Theorem
3.1 are satisfied, then L has a unique fixed point in X.

Remark 3.6.
1. In Theorem 3.1 if λi = 0 for i = 2, 3, 4, 5, 7, 8, we get Theorem 2.8 of [6].
2. In Theorem 3.1 if λi = 0 for i = 2, 3, 4, 5, 6, 7, 8, and λ1(·) = λ1, we get

complex valued metric version of Banach Theorem [2].
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Theorem 3.7. Let (X, d) be a complete complex valued metric space and
λi : X × X → [0, 1), i = 1, . . . , 9. Suppose that K,L : X → X are two self-
mappings such that for all z, w ∈ X the following conditions are satisfied:
(i) λi(LKz,w) ≤ λi(z, w) and λi(z,KLw) ≤ λi(z, w);

(ii) d(Kz,Lw) - λ1(z, w)d(z, w) + λ2(z, w)
d(z,Kz)d(w,Lw)

1 + d(z, w)

+ λ3(z, w)
d(w,Kz)d(z, Lw)

1 + d(z, w)
+ λ4(z, w)

d(z,Kz)d(z, Lw)

1 + d(z, w)

+ λ5(z, w)
d(w,Kz)d(w,Lw)

1 + d(z, w)

+ λ6(z, w)
d(w,Lw)[d(z,Kz) + d(w,Kz)]

1 + d(z, w) + d(Kz,Lw)

+ λ7(z, w)
d(z, Lw)[d(z,Kz) + d(w,Kz)]

1 + d(z, w) + d(Kz,Lw)

+ λ8(z, w)
d(z,Kz)[d(z, Lw) + d(w,Lw)]

1 + d(z, w) + d(Kz,Lw)

+ λ9(z, w)
d(w,Kz)[d(z, Lw) + d(w,Lw)]

1 + d(z, w) + d(Kz,Lw)
;

where

3∑
i=1

λi(z, w) + 2[λ4(z, w) + λ5(z, w) + λ7(z, w) + λ9(z, w)]

+ 3[λ6(z, w) + λ8(z, w)] < 1.

Then K and L have a unique common fixed point in X.

Proof. Let z0 ∈ X and construct a sequence {zn} by the rule

(3.4) Kz2n = z2n+1 and Lz2n+1 = z2n+2, n = 0, 1, 2, . . .

First we show that {zn} is a Cauchy sequence in X. For this, consider

d(z2k+1, z2k) = d(KLz2k−1, Lz2k−1).
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By using condition (ii) of Theorem 3.7 with z = Lz2k−1 and w = z2k−1, we
have

d(z2k+1, z2k) - λ1(Lz2k−1, z2k−1)d(Lz2k−1, z2k−1)

+ λ2(Lz2k−1, z2k−1)
d(Lz2k−1,KLz2k−1)d(z2k−1, Lz2k−1)

1 + d(Lz2k−1, z2k−1)

+ λ3(Lz2k−1, z2k−1)
d(z2k−1,KLz2k−1)d(Lz2k−1, Lz2k−1)

1 + d(Lz2k−1, z2k−1)

+ λ4(Lz2k−1, z2k−1)
d(Lz2k−1,KLz2k−1)d(Lz2k−1, Lz2k−1)

1 + d(Lz2k−1, z2k−1)

+ λ5(Lz2k−1, z2k−1)
d(z2k−1,KLz2k−1)d(z2k−1, Lz2k−1)

1 + d(Lz2k−1, z2k−1)

+λ6(Lz2k−1, z2k−1)
d(z2k−1,Lz2k−1)[d(Lz2k−1,KLz2k−1)+d(z2k−1,KLz2k−1)]

1 + d(Lz2k−1, z2k−1)

+λ7(Lz2k−1,z2k−1)
d(Lz2k−1,Lz2k−1)[d(Lz2k−1,KLz2k−1)+d(z2k−1,KLz2k−1)]

1 + d(Lz2k−1, z2k−1)

+λ8(Lz2k−1, z2k−1)
d(Lz2k−1,KLz2k−1)[d(Lz2k−1,Lz2k−1)+d(z2k−1,Lz2k−1)]

1 + d(Lz2k−1, z2k−1)

+λ9(Lz2k−1, z2k−1)
d(z2k−1,KLz2k−1)[d(Lz2k−1,Lz2k−1)+d(z2k−1,Lz2k−1)]

1 + d(Lz2k−1, z2k−1)
,

which implies that

|d(z2k+1, z2k)| ≤ λ1(Lz2k−1, z2k−1)|d(Lz2k−1, z2k−1)|

+ λ2(Lz2k−1, z2k−1)

∣∣∣∣d(Lz2k−1,KLz2k−1)d(z2k−1, Lz2k−1)1 + d(Lz2k−1, z2k−1)

∣∣∣∣
+ λ5(Lz2k−1, z2k−1)

∣∣∣∣d(z2k−1,KLz2k−1)d(z2k−1, Lz2k−1)1 + d(Lz2k−1, z2k−1)

∣∣∣∣
+ λ6(Lz2k−1, z2k−1)

∣∣∣∣d(z2k−1, Lz2k−1)d(Lz2k−1,KLz2k−1)1 + d(Lz2k−1, z2k−1)

∣∣∣∣
+ λ6(Lz2k−1, z2k−1)

∣∣∣∣d(z2k−1, Lz2k−1)d(z2k−1,KLz2k−1)1 + d(Lz2k−1, z2k−1)

∣∣∣∣
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+λ8(Lz2k−1, z2k−1)

∣∣∣∣d(Lz2k−1,KLz2k−1)d(z2k−1, Lz2k−1)1 + d(Lz2k−1, z2k−1)

∣∣∣∣
+λ9(Lz2k−1, z2k−1)

∣∣∣∣d(z2k−1,KLz2k−1)d(z2k−1, Lz2k−1)1 + d(Lz2k−1, z2k−1)

∣∣∣∣ .
By Lemma (2.9) and equation (3.4), we get

|d(z2k+1, z2k)| ≤ λ1(z2k, z2k−1)|d(z2k, z2k−1)|+ λ2(z2k, z2k−1) |d(z2k, z2k+1)|

+ λ5(z2k, z2k−1) |d(z2k−1, z2k+1)|

+ λ6(z2k, z2k−1) |d(z2k, z2k+1) + d(z2k−1, z2k+1)|

+ λ8(z2k, z2k−1)|d(z2k, z2k+1)|

+ λ9(z2k, z2k−1)|d(z2k−1, z2k+1)|.

From Proposition 2.8 and triangular inequality, we can write

|d(z2k+1, z2k)| ≤ λ1(z0, z1)|d(z2k, z2k−1)|+ λ2(z0, z1) |d(z2k, z2k+1)|

+ λ5(z0, z1) |d(z2k−1, z2k)|+ λ5(z0, z1) |d(z2k, z2k+1)|

+ λ6(z0, z1)|d(z2k, z2k+1)|+ λ6(z0, z1)|d(z2k−1, z2k)|

+ λ6(z0, z1)|d(z2k, z2k+1)|+ λ8(z0, z1)|d(z2k, z2k+1)|

+ λ9(z0, z1)|d(z2k−1, z2k)|+ λ9(z0, z1)|d(z2k, z2k+1)|.

Finally one can get

(3.5) |d(z2k+1, z2k)| ≤ h1|d(z2k, z2k−1)|,

where

h1 =
λ1(z0, z1) + λ5(z0, z1) + λ6(z0, z1) + λ9(z0, z1)

1− (λ2(z0, z1) + λ5(z0, z1) + 2λ6(z0, z1) + λ8(z0, z1) + λ9(z0, z1))
.

Similarly,

(3.6) |d(z2k−1, z2k−2)| ≤ h1|d(z2k−2, z2k−3)|.

On the other hand, consider

(3.7) d(z2k−1, z2k) = d(Kz2k−2, LKz2k−2).
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By applying condition (ii) of Theorem 3.7 with z = z2k−2 and w = Kz2k−2
to equation (3.7), we get

d(z2k−1, z2k) - λ1(z2k−2,Kz2k−2)d(z2k−2,Kz2k−2)

+ λ2(z2k−2,Kz2k−2)
d(z2k−2,Kz2k−2)d(Kz2k−2, LKz2k−2)

1 + d(z2k−2,Kz2k−2)

+ λ3(z2k−2,Kz2k−2)
d(Kz2k−2,Kz2k−2)d(z2k−2, LKz2k−2)

1 + d(z2k−2,Kz2k−2)

+ λ4(z2k−2,Kz2k−2)
d(z2k−2,Kz2k−2)d(z2k−2, LKz2k−2)

1 + d(z2k−2,Kz2k−2)

+ λ5(z2k−2,Kz2k−2)
d(Kz2k−2,Kz2k−2)d(Kz2k−2, LKz2k−2)

1 + d(z2k−2,Kz2k−2)

+λ6(z2k−2,Kz2k−2)
d(Kz2k−2,LKz2k−2)[d(z2k−2,Kz2k−2)+d(Kz2k−2,Kz2k−2)]

1 + d(z2k−2,Kz2k−2)

+λ7(z2k−2,Kz2k−2)
d(z2k−2,LKz2k−2)[d(z2k−2,Kz2k−2)+d(Kz2k−2,Kz2k−2)]

1 + d(z2k−2,Kz2k−2)

+λ8(z2k−2,Kz2k−2)
d(z2k−2,Kz2k−2)[d(z2k−2,LKz2k−2)+d(Kz2k−2,LKz2k−2)]

1 + d(z2k−2,Kz2k−2)

+λ9(z2k−2,Kz2k−2)
d(Kz2k−2,Kz2k−2)[d(z2k−2,LKz2k−2)+d(Kz2k−2,LKz2k−2)]

1 + d(z2k−2,Kz2k−2)
.

Using equation (3.4) and Proposition 2.8, one can get

|d(z2k−1, z2k)| ≤ λ1(z0, z1)|d(z2k−2, z2k−1)|

+ λ2(z0, z1)

∣∣∣∣d(z2k−2, z2k−1)d(z2k−1, z2k)1 + d(z2k−2, z2k−1)

∣∣∣∣
+ λ4(z0, z1)

∣∣∣∣d(z2k−2, z2k−1)d(z2k−2, z2k)1 + d(z2k−2, z2k−1)

∣∣∣∣
+ λ5(z0, z1)

∣∣∣∣d(z2k−1, z2k−1)d(z2k−1, z2k)1 + d(z2k−2, z2k−1)

∣∣∣∣
+ λ6(z0, z1)

∣∣∣∣d(z2k−1, z2k)[d(z2k−2, z2k−1)+d(z2k−1, z2k−1)]1 + d(z2k−2, z2k−1)

∣∣∣∣
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+ λ7(z0, z1)

∣∣∣∣d(z2k−2, z2k)[d(z2k−2, z2k−1) + d(z2k−1, z2k−1)]

1 + d(z2k−2, z2k−1)

∣∣∣∣
+ λ8(z0, z1)

∣∣∣∣d(z2k−2, z2k−1)[d(z2k−2, z2k) + d(z2k−1, z2k)]

1 + d(z2k−2, z2k−1)

∣∣∣∣ ,
with the help of Lemma 2.9, we can write

|d(z2k−1, z2k)| ≤ λ1(z0, z1)|d(z2k−2, z2k−1)|

+ λ2(z0, z1) |d(z2k−1, z2k)|+ λ4(z0, z1) |d(z2k−2, z2k)|

+ λ6(z0, z1) |d(z2k−1, z2k)|+ λ7(z0, z1) |d(z2k−2, z2k)|

+ λ8(z0, z1) |d(z2k−2, z2k) + d(z2k−1, z2k)| .

Hence

|d(z2k−1, z2k)| ≤ λ1(z0, z1)|d(z2k−2, z2k−1)|+ λ2(z0, z1) |d(z2k−1, z2k)|

+ λ4(z0, z1) |d(z2k−2, z2k−1)|+ λ4(z0, z1) |d(z2k−1, z2k)|

+ λ6(z0, z1) |d(z2k−1, z2k)|+ λ7(z0, z1) |d(z2k−2, z2k−1)|

+ λ7(z0, z1) |d(z2k−1, z2k)|+ λ8(z0, z1) |d(z2k−2, z2k−1)|

+ λ8(z0, z1) |d(z2k−1, z2k)|+ λ8(z0, z1) |d(z2k−1, z2k)| .

Finally, we obtain

(3.8) |d(z2k−1, z2k)| ≤ h2|d(z2k−2, z2k−1)|,

where

h2 =
λ1(z0, z1) + λ4(z0, z1) + λ7(z0, z1) + λ8(z2k, z2k+1)

1− (λ2(z0, z1) + λ4(z0, z1) + λ6(z0, z1) + λ7(z0, z1) + 2λ8(z2k, z2k+1))
.

Similarly,

(3.9) |d(z2k−3, z2k−2)| ≤ h2|d(z2k−4, z2k−3)|.

Let h = max{h1, h2}, then from equations (3.5) and (3.8), we have

|d(z2k+1, z2k)| ≤ h|d(z2k, z2k−1)| and |d(z2k−1, z2k)| ≤ h|d(z2k−2, z2k−1)|.
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Which implies that

|d(z2k+1, z2k)| ≤ h|d(z2k, z2k−1)| ≤ h2|d(z2k−1, z2k−2)|.

Consequently, we can write

|d(zn+1, zn)| ≤ h|d(zn, zn−1)| ≤ h2|d(zn−1, zn−2)| ≤ . . . ≤ hn|d(z1, z0)|.

Now, for m > n, we have

d(zn, zm) - d(zn, zn+1) + d(zn+1, zn+2) + . . .+ d(zm−1, zm),

|d(zn, zm)| ≤ |d(zn, zn+1)|+ |d(zn+1, zn+2)|+ . . .+ |d(zm−1, zm)|

≤ hn|d(z1, z0)|+ hn+1|d(z1, z0)|+ . . .+ hm−1|d(z1, z0)|

≤
{
hn + hn+1 + . . .+ hm−1

}
|d(z1, z0)|

≤ hn

1− h
|d(z1, z0)|.

Therefore limn→∞ |d(zn, zm)| = 0. Hence, {zn} is a Cauchy sequence. But X
is complete, so there exists t ∈ X such that zn → t as n→∞.

Next, to show that t is a fixed point of K. For this, consider

d(t,Kt) - d(t, Lz2n+1) + d(Lz2n+1,Kt).

Using condition (ii) of Theorem 3.7 with z = t and y = z2n+1, we have

d(t,Kt) - d(t, Lz2n+1) + λ1(t, z2n+1)d(t, z2n+1)

+ λ2(t, z2n+1)
d(t,Kt)d(z2n+1, Lz2n+1)

1 + d(t, z2n+1)

+ λ3(t, z2n+1)
d(z2n+1,Kt)d(t, Lz2n+1)

1 + d(t, z2n+1)

+ λ4(t, z2n+1)
d(t,Kt)d(t, Lz2n+1)

1 + d(t, z2n+1)

+ λ5(t, z2n+1)
d(z2n+1,Kt)d(z2n+1, Lz2n+1)

1 + d(t, z2n+1)

+ λ6(t, z2n+1)
d(z2n+1, Lz2n+1)[d(t,Kt) + d(z2n+1,Kt)]

1 + d(t, z2n+1)
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+ λ7(t, z2n+1)
d(t, Lz2n+1)[d(t,Kt) + d(z2n+1,Kt)]

1 + d(t, z2n+1)

+ λ8(t, z2n+1)
d(t,Kt)[d(t, Lz2n+1) + d(z2n+1, Lz2n+1)]

1 + d(t, z2n+1)

+ λ9(t, z2n+1)
d(z2n+1,Kt)[d(t, Lz2n+1) + d(z2n+1, Lz2n+1)]

1 + d(t, z2n+1)
.

Using equation (3.4) and Proposition 2.8, we get

d(t,Kt) - d(t, z2n+2) + λ1(t, z1)d(t, z2n+1)

+ λ2(t, z1)
d(t,Kt)d(z2n+1, z2n+2)

1 + d(t, z2n+1)

+ λ3(t, z1)
d(z2n+1,Kt)d(t, z2n+2)

1 + d(t, z2n+1)

+ λ4(t, z1)
d(t,Kt)d(t, z2n+2)

1 + d(t, z2n+1)

+ λ5(t, z1)
d(z2n+1,Kt)d(z2n+1, z2n+2)

1 + d(t, z2n+1)

+ λ6(t, z1)
d(z2n+1, z2n+2)[d(t,Kt) + d(z2n+1,Kt)]

1 + d(t, z2n+1)

+ λ7(t, z1)
d(t, z2n+2)[d(t,Kt) + d(z2n+1,Kt)]

1 + d(t, z2n+1)

+ λ8(t, z1)
d(t,Kt)[d(t, z2n+2) + d(z2n+1, z2n+2)]

1 + d(t, z2n+1)

+ λ9(t, z1)
d(z2n+1,Kt)[d(t, z2n+2) + d(z2n+1, z2n+2)]

1 + d(t, z2n+1)
.

Taking limit as n → ∞, we get d(Kt, t) - 0. Thus d(Kt, t) = 0 implies that
Kt = t. Hence t is a fixed point of K.

Analogously, using condition (ii) of Theorem 3.7 with z = z2n and w = t
one can show that t is a fixed point of L. Therefore Kt = Lt = t, that is t is
a common fixed point of K and L.

Finally, we prove that t is a unique common fixed point of K and L. For
this, suppose that t∗ 6= t be another fixed point of K and L. Then putting
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x = t and y = t∗ in condition (ii) of Theorem 3.7, we have

d(Kt,Lt∗) - λ1(t, t
∗)d(t, t∗) + λ2(t, t

∗)
d(t,Kt)d(t∗, Lt∗)

1 + d(t, t∗)

+ λ3(t, t
∗)
d(t∗,Kt)d(t, Lt∗)

1 + d(t, t∗)
+ λ4(t, t

∗)
d(t,Kt)d(t, Lt∗)

1 + d(t, t∗)

+ λ5(t, t
∗)
d(t∗,Kt)d(t∗, Lt∗)

1 + d(t, t∗)

+ λ6(t, t
∗)
d(t∗, Lt∗)[d(t,Kt) + d(t∗,Kt)]

1 + d(t, t∗)

+ λ7(t, t
∗)
d(t, Lt∗)[d(t,Kt) + d(t∗,Kt)]

1 + d(t, t∗)

+ λ8(t, t
∗)
d(t,Kt)[d(t, Lt∗) + d(t∗, Lt∗)]

1 + d(t, t∗)

+ λ9(t, t
∗)
d(t∗,Kt)[d(t, Lt∗) + d(t∗, Lt∗)]

1 + d(t, t∗)
,

which implies that

|d(t, t∗)| ≤ λ1(t, t∗)|d(t, t∗)|+ λ3(t, t
∗)

∣∣∣∣d(t∗, t)d(t, t∗)1 + d(t, t∗)

∣∣∣∣
+ λ7(t, t

∗)

∣∣∣∣d(t, t∗)d(t∗, t)1 + d(t, t∗)

∣∣∣∣+ λ9(t, t
∗)

∣∣∣∣d(t∗, t)d(t, t∗)1 + d(t, t∗)

∣∣∣∣ .
Consequently,

|d(t, t∗)| ≤ [λ1(t, t
∗) + λ3(t, t

∗) + λ7(t, t
∗) + λ9(t, t

∗)]|d(t∗, t)|.

Which is a contradiction because λ1(t, t∗)+λ3(t, t∗)+λ7(t, t∗)+λ9(t, t∗) < 1,
thus |d(t∗, t)| = 0 and hence t∗ = t. Therefore t is a unique common fixed
point of K and L. �

From Theorem 3.7 we can derive the following corollaries and the proof of
which is simple, so we omit it.

Corollary 3.8. If K = L and all other conditions of Theorem 3.7 are
satisfied, then L has a unique fixed point in X.
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Corollary 3.9. Let λ9 = 0 and K,L : X → X be two self-mappings
satisfying all other conditions of Theorem 3.7. Then K and L have a unique
common fixed point in X.

Corollary 3.10. Let λ8 = 0 and K,L : X → X be two self-mappings
satisfying all other conditions of Theorem 3.7. Then K and L have a unique
common fixed point in X.

Corollary 3.11. Let λ8 = λ9 = 0 and K,L : X → X be two self-
mappings satisfying all other conditions of Theorem 3.7. Then K and L have
a unique common fixed point in X.

Corollary 3.12. Let λ7 = 0 and K,L : X → X be two self-mappings
satisfying all other conditions of Theorem 3.7. Then K and L have a unique
common fixed point in X.

Corollary 3.13. Let λ7 = λ8 = λ9 = 0 and K,L : X → X be two self-
mappings satisfying all other conditions of Theorem 3.7. Then K and L have
a unique common fixed point in X.

Corollary 3.14. Let λ6 = 0 and K,L : X → X be two self-mappings
satisfying all other conditions of Theorem 3.7. Then K and L have a unique
common fixed point in X.

Corollary 3.15. Let λ6 = λ8 = λ9 = 0 and K,L : X → X be two self-
mappings satisfying all other conditions of Theorem 3.7. Then K and L have
a unique common fixed point in X.

Corollary 3.16. Let λ2 = λ6 = λ7 = 0 and K,L : X → X be two self-
mappings satisfying all other conditions of Theorem 3.7. Then K and L have
a unique common fixed point in X.

Corollary 3.17. Let λ2 = λ6 = λ7 = λ8 = λ9 = 0 and K,L : X → X
be two self-mappings satisfying all other conditions of Theorem 3.7. Then K
and L have a unique common fixed point in X.

Corollary 3.18. Let λ3 = λ6 = λ7 = 0 and K,L : X → X be two self-
mappings satisfying all other conditions of Theorem 3.7. Then K and L have
a unique common fixed point in X.

Corollary 3.19. Let λ3 = λ6 = λ7 = λ8 = λ9 = 0 and K,L : X → X
be two self-mappings satisfying all other conditions of Theorem 3.7. Then K
and L have a unique common fixed point in X.
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Remark 3.20. In the above Theorem 3.7:
1. If λi = 0 for i = 4, 5, 6, 7, 8, 9, we get Theorem 2.4 of [6].
2. If λi = 0 for i = 3, 4, 5, 6, 7, 8, 9, we get Corollary 2.6 of [6].
3. If λi = 0 for i = 2, 4, 5, 6, 7, 8, 9, we get Corollary 2.7 of [6].
4. If λi = 0 for i = 6, 7, 8, 9, we get Theorem 2.2 of [4].
5. If λi = 0 for i = 6, 7, 8, 9, and K = L, we get Corollary 2.3 of [4].
6. If λi = 0 for i = 6, 7, 8, 9 and λi(·) = λi, we get Theorem 10 of [3].
7. If λi = 0, for i = 6, 7, 8, 9, K = L and λi(·) = λi, we get Corollary 11 of [3].

To state the next result we need the following Lemma the proof of which
easily follows from Proposition 2.8.

Lemma 3.21. Let (X, d) be a complete complex valued metric space and
K,L : X → X. Let z0 ∈ X and define the sequence {zn} by

Kz2n = z2n+1 and Lz2n+1 = z2n+2 for n = 0, 1, 2, . . . .

Assume that there exists a mapping λ : X → [0, 1) satisfying

λ(LKz) ≤ λ(z) and λ(KLz) ≤ λ(z) for all z ∈ X.

Then

λ(z2n) ≤ λ(z0) and λ(z2n+1) ≤ λ(z1) for all n = 0, 1, 2, . . . .

Proof. The proof follows from the proof of Proposition 2.8. Let x, y ∈ X
and n = 0, 1, 2, 3, . . . Then, we have

λ(x2n) = λ(LKx2n−2) ≤ λ(x2n−2) = λ(LKx2n−4)

≤ λ(x2n−4) ≤ . . . ≤ λ(x0).

Similarly,

λ(x2n+1) = λ(LKx2n−1) ≤ λ(x2n−1) = λ(LKx2n−3)

≤ λ(x2n−3) ≤ . . . ≤ λ(x1). �

Theorem 3.22. Let (X, d) be a complete complex valued metric space and
λi : X → [0, 1), i = 1, . . . , 9. Suppose that K,L : X → X are two self-mappings
such that for all z, w ∈ X the following conditions are satisfied:
(i) λi(LKz) ≤ λi(z) and λi(KLz) ≤ λi(z);
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d(Kz,Lw) - λ1(z)d(z, w) + λ2(z)
d(z,Kz)d(w,Lw)

1 + d(z, w)
(ii)

+ λ3(z)
d(w,Kz)d(z, Lw)

1 + d(z, w)
+ λ4(z)

d(z,Kz)d(z, Lw)

1 + d(z, w)

+ λ5(z)
d(w,Kz)d(w,Lw)

1 + d(z, w)

+ λ6(z)
d(w,Lw)[d(z,Kz) + d(w,Kz)]

1 + d(z, w)

+ λ7(z)
d(z, Lw)[d(z,Kz) + d(w,Kz)]

1 + d(z, w)

+ λ8(z)
d(z,Kz)[d(z, Lw) + d(w,Lw)]

1 + d(z, w)

+ λ9(z)
d(w,Kz)[d(z, Lw) + d(w,Lw)]

1 + d(z, w)
,

where

λ1(z)+λ2(z)+λ3(z)+2[λ4(z)+λ5(z)+λ7(z)+λ9(z)]+3[λ6(z)+λ8(z)] < 1.

Then the mappings K and L have a unique common fixed point in X.

Proof. By using Lemma 3.21 and following the same steps as in Theorem
3.7 one can easily prove the theorem. �

One can deduce corollaries from Theorem 3.22 in the same way as derived
from Theorem 3.7.

Remark 3.23. In Theorem 3.22:
1. If λi = 0 for i = 4, 5, 6, 7, 8, 9, we get Corollary 3.2 of [6].
2. If λi = 0 for i = 4, 5, 6, 7, 8, 9 and λ1(·) = λ1, λ2(·) = λ2, λ3(.) = λ3, we get

Theorem 2.1 of [5].
3. If λi = 0 for i = 3, 4, 5, 6, 7, 8, 9, we get Theorem 3.1 of [8].
4. If λi = 0 for i = 3, 4, 5, 6, 7, 8, 9 and λ1(·) = λ1, λ2(·) = λ2, we get Theorem

4 of [1].
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