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ON COMPUTER-ASSISTED PROVING THE EXISTENCE
OF PERIODIC AND BOUNDED ORBITS

Roman Srzednicki

Annual Lecture dedicated to the memory of Professor Andrzej Lasota

Abstract. We announce a new result on determining the Conley index of
the Poincaré map for a time-periodic non-autonomous ordinary differential
equation. The index is computed using some singular cycles related to an
index pair of a small-step discretization of the equation. We indicate how the
result can be applied to computer-assisted proofs of the existence of bounded
and periodic solutions. We provide also some comments on computer-assisted
proving in dynamics.

1. Remarks on the history of computer assisted proofs

1.1. Computer assistance in mathematics

The assistance of computers in developing mathematics is probably as
old as computers themselves. Computers are applied in numerical simulations
leading to formulating and testing new theorems or in rigorous proving. The
latter applications consist, in particular, in complete formalizations of proofs
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(like the system Mizar initiated by Andrzej Trybulec in 1973, c.f. [32]), in prov-
ing complicated formulas (requiring, for example, long symbolic calculations
with Maple or Mathematica packages), or in providing rigorous assessments
using interval arithmetic (c.f. [17, 24]). Relying in computers within rigorous
mathematics is sometimes contested; due to possible errors in the processor
or in the program code, one cannot be sure whether a computer performs ex-
actly the same calculations as one expects (recall the Pentium processor bug
discovered in 1994, c.f. [44]).

It seems the four-color theorem was the first famous result which was
proved with the aid of a computer (in 1976 by Kenneth Appel and Wolfgang
Haken; c.f. [1, 2]; compare also [41] for a simpler proof). Other important
results proved with the computer assistance include the solution of the Ke-
pler conjecture about dense sphere packing, announced in 1998 (c.f. [12]) and
completed only recently in [13], and the proof of the non-existence of finite
projective planes of order 10 (c.f. [21, 22]). It should be noted that sometimes
computer-assisted proofs of important results predated the ‘classical’ proofs;
that was, for example, in the case of the solution of the Robbins problem in
Boolean algebras (c.f. [27] and [26]) and of the isoperimetric problem on two
pieces of spheres separated by a flat disc (the ‘double-bubble conjecture’, c.f.
[14] and [18]).

1.2. Computer assisted proofs in dynamical systems

Perhaps the first essential result related to dynamics, proved with the
computer assistance, was the solution of the Feigenbaum conjecture given in
1982 (c.f. [23, 24]). It refers to the existence of a solution of a certain functional
equation arising in period-doubling bifurcations of iterations of unimodular
maps. A related important result obtained at that time with the computer’s
aid was given in [8]. Computer-assisted proofs of results on the Lorenz system
of equations

(1) ẋ = σ(y − x), ẏ = ρx− xz − y, ρz = xy − βz,

where σ, ρ, and β are scalar parameters, started to appear in the 90s of the
last century. The numerical evidence of a chaotic behavior of the system with
σ = 10, ρ = 28, and β = 8

3 was announced in 1963 by Edward Lorenz in
[25]. Since then, hundreds of papers devoted to explanation of the dynam-
ics of the system were published. In [15, 16], the shooting method based on
the intermediate value property was applied in order to prove results on ho-
moclinic orbits of (1). The first rigorous result which explained the chaotic
nature of (1) was announced by Konstantin Mischaikow and Marian Mrozek
in [28] in 1995 and was explained in details in the consecutive papers [29, 30].
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Proofs of all basic result related to the Lorenz system, predicted by numeri-
cal evidence, were given by Warwick Tucker at the turn of the century (c.f.
[42, 43]). The publication of papers mentioned above inspired research on the
computer-assisted proofs in dynamics. In particular, Hubbard’s and Saari’s
conjectures in mechanics were proved in, respectively, [3] and [33]. At present
several groups of mathematicians specializes in that kind of research; among
them there are cooperating teams CAPA (Computer-aided proofs in analy-
sis) at Uppsala, CAPD (Computer assisted proofs in dynamics) at Kraków,
and CHomP (Computational homology project) at Rutgers University; see
the corresponding web-pages [4, 5, 7]. The achievements of CAPD include
results on problems of celestial mechanics (e.g. [6, 19, 20, 47]), on Kuramoto-
Sivashinsky equations (e.g. [31, 40, 45, 51]), and on complicated behavior of
Hénon, Rössler, and other dynamical systems (e.g. [9, 10, 46, 48, 49, 50]).

Up to now the vast majority of proofs of essential results on the system (1)
and similar ones, are computer-assisted. The difficulty in ‘classical’ proving
qualitative results for those systems lies mainly in the lack of analytic formu-
las for solutions; the required estimates are given numerically and the errors
of these estimates grow exponentially as time goes to infinity. Usually it is
impossible to perform all such calculations ‘by hand’ and therefore an aid of
computers is necessary.

Computer assisted proofs in dynamical systems are frequently based on
topological tools being far reaching improvements of the intermediate value
property. They include the Brouwer degree (on which the method of covering
relations introduced by Piotr Zgliczyński is based, c.f. [11]), the fixed point
index, and the Conley index. The papers [35, 36] explain how the latter tool
can be applied. In the remaining part of the present text we describe a recent
research on that subject.

2. On the Conley index of Poincaré maps

2.1. Dynamical systems

We begin with a recollection of some basic definitions of the dynamical
systems theory. Let T denote either the set of real numbers R or the set of
integer numbers Z. Let X be a topological space. A continuous map φ : X ×
T→ X is called a dynamical system on X if it satisfies

∀x ∈ X : φ(x, 0) = x,(2)
∀x ∈ X, s, t ∈ T : φ(x, s+ t) = φ(φ(x, s), t).(3)



10 Roman Srzednicki

The set T represents time. We call X the phase space of φ and we denote by φt
the map x 7→ φ(x, t). For x ∈ X the set {φt(x) : t ∈ T} is called the orbit of x.
An orbit is called bounded provided its closure is compact. If an orbit consists
of exactly one point, it is called stationary. A non-stationary orbit is called
periodic if φT (x) = x for some T > 0 (such a T is called a period). Clearly,
each periodic orbit is bounded. The problem of existence of periodic orbits
belongs to the most important ones in the theory of dynamical systems. It is
frequently solved by topological methods applied to the estimates obtained by
numerical approximations, like in several computer-assisted results on chaotic
behavior of the Lorenz and Rössler systems, mentioned in Subsection 1.2. In
fact, chaotic dynamics is often indicated by the existence of an infinite set of
periodic orbits.

Let A ⊂ X. The invariant part of A (with respect to φ) is defined as

Inv(A) := {x ∈ A : φt(x) ∈ A ∀t ∈ T}.

A set A ⊂ X is called invariant provided A = Inv(A). A compact invariant
set S is called isolated if it is maximal invariant set in some its neighborhood.

In the case T = Z, φ is called a discrete-time dynamical system; the
properties (2) and (3) imply φ can be regarded as the family of iterations of
the homeomorphism φ1. On the other hand, if g : X → X is a homeomorphism
then the formula φg(x, n) := gn(x) for x ∈ X and n ∈ Z defines a discrete-time
dynamical system, i.e. φg is the family of iterations of g (hence φg1 = g). By
abuse of terminology, we frequently write g to mean the dynamical system φg.

If T = R, φ is called a continuous-time dynamical system. Usually such a
system is generated by the solutions of an autonomous ordinary differential
equation

ẋ = v(x),

where v : Rn → Rn is a smooth vector-field. Actually, not every autonomous
equation generates a dynamical system since, in general, solutions are not
defined in the whole R. That problem can be easily overcome by a suitable
modification of v, if we are interested in qualitative properties of solutions in a
bounded region of the phase space. Here we deal with bounded orbits mainly,
hence in the sequel we assume all considered equations generate dynamical
systems.

2.2. Discrete-time Conley index

Assume X is a metrizable locally compact space. Let g : X → X be a
homeomorphism and let N and L be compact subsets of X, L ⊂ N . The pair
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(N,L) is called a weak index pair (for g) if

S := Inv
(
N \ L

)
⊂ int(N \ L),(4)

g(L) ∩N ⊂ L,(5)

g(N) \N ∩N ⊂ L.(6)

It follows S is isolated invariant set; (N,L) is therefore also called a weak
index pair for S. (A more restrictive notion of index pair is not used in the
present text.) It follows by (5) and (6) the map

g(N,L) : N/L→ N/L, g(N,L)(x) :=

{
g(x), if x, g(x) ∈ N \ L,
∗, otherwise,

is continuous; it is called the index map. (Here N/L denotes (N \ L) ∪ {∗}
endowed with the quotient topology, where ∗ is a point outside of N .) Let H
denote the singular homology functor with coefficients in the field of rational
numbers Q. The index map induces a graded endomorphism

H(g(N,L)) : H(N/L, ∗)→ H(N/L, ∗).

Denote by Rφ the Leray reduction of an endomorphism φ : V → V of a vector
space V over Q. It is defined as follows. Put

KV := V
/⋃

k

kerφk,

the quotient of V by the generalized kernel of φ. Let Kφ : KV → KV be the
induced monomorphism. If V is finite dimensional, Rφ := Kφ. In the general
case put

RV :=
⋂
k

Im(Kφ)k

and define Rφ : RV → RV as the restriction of Kφ. Rφ is thus an automor-
phism of RV . In an obvious way one extends the definition of R to the graded
endomorphisms.

The Conley index of S (denoted CH(S, g)) is defined as the conjugacy
class of the graded automorphism RH(g(N,L)). It follows by [34, 37], each
isolated invariant set S has at least one week index pair (N,L) satisfying (4)
and the definition is independent of the choice of (N,L). The name of the
index commemorates Charles Conley (1933–1984), who invented an analogous
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tool for continuous-time dynamical systems in the 70s of the 20th century,
improving the retract method of Tadeusz Ważewski.

The basic property of the index is the following one: if CH(S, g) 6= 0 then
S is nonempty; in particuar there exists a bounded orbit. Moreover, if X is an
ENR (Euclidean neighborhood retract; for example Rn, a manifold, a polyhe-
dron or a cubical set) and the Lefschetz number Λ(CH(S, g)) is nonzero then g
has a fixed point. Recall that the Lefschetz number of a graded endomorphism
ψ := {ψn}n of finite dimensional spaces, such that ψn = 0 for almost all n, is
defined as

Λ(ψ) :=

∞∑
n=0

(−1)ntraceψn.

Actually, the Conley index has other properties; in particular it is additive and
multiplicative (in some sense), hence it provides an ‘algebraic’ information on
the ‘size’ of the isolated invariant set, in a slightly similar way like the fixed
point index provides an information on the number of fixed points of a map.

2.3. The Poincaré map

Roughly speaking, a Poincaré map is the first-return map to a section
of a dynamical system. Usually, after a change of variables such a map can
be reduced to the translation operator of a time-periodic non-autonomous
equation. Below we state the formal definition of that reduced case only.

Let T > 0 and let f : R × Rn → Rn be a smooth and bounded time-
dependent vector-field such that the map t 7→ f(t, x) is T -periodic for each x.
The system of equations

ṫ = 1, ẋ = f(t, x)

generates two dynamical systems:

φ on R/TZ× Rn,

ψ on R× Rn.

The Poincaré map P : Rn → Rn is defined for x ∈ Rn by the formula

ψT (0, x) = (T, P (x)).

It follows, in particular, the dynamical system φ has a T -periodic orbit if and
only if P has a fixed point.
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2.4. A theorem on the Conley index of the Poincaré map

We follow the notation from subsection 2.3. Moreover, for s ∈ R/TZ and
a set Z ⊂ R/TZ× Rn we define the s-section of Z as

Zs := {x ∈ Rn : (s, x) ∈ Z}.

Assume h > 0 and assume (N,L) is a weak index pair for φh. Let S be equal to
the invariant part of N \ L with respect to φh. One can prove that S is also an
isolated invariant set for the continuous-time system φ, and S0, the 0-section
of S, is an isolated invariant set for P . Consequently, if CH(S0, P ) 6= 0 (hence
S0 is nonempty) then φ has a bounded orbit and if Λ(CH(S0,P)) 6= 0 (hence
S0 contains a fixed point of P ) then φ has a T -periodic orbit. Therefore our
aim is to find a method of determining the Conley index of S0.

By (Ñ , L̃) we denote the lift of (N,L) to R× Rn, i.e.

Ñ := {(t, x) ∈ R× Rn : (t mod T, x) ∈ N},

L̃ := {(t, x) ∈ R× Rn : (t mod T, x) ∈ L}.

Let u and v be singular cycles on (N0, L0). (u, v) is called a pair of contiguous
cycles over [0, T ] provided there exist singular chains w on Ñ ∩ ([0, T ]× Rn)

and z on L̃ ∩ ([0, T ]× Rn) such that

∂w = 0× u− T × v + z,

where 0×u and T ×v denote the images of the cycles u and v under the chain
maps induced by the embeddings x 7→ (0, x) and, respectively, x 7→ (T, x).

By |c| we denote the support of a q-dimensional singular cycle c =
∑

i αiσi,
i.e.

|c| =
⋃
i

σ(∆q),

where ∆q is the standard q-dimensional simplex. The pair of contiguous cycles
(u, v) is called h-movable if

ψt(|w|) ⊂ Ñ , ψt(|z|) ⊂ L̃

for each t ∈ [0, h].
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Theorem 1 (compare [39, Theorem 4.7]). Assume T
h ∈ Q and both N0 and

L0 be ENRs. Let k := dimH(N0, L0), let A = [aij ] be a graded (k× k)-matrix
over Q, and let (

uj ,

k∑
i=1

aijui

)
, j = 1, . . . , k,

be h-movable pairs of contiguous cycles over [0, T ] such that the homology
classes of uj form a basis of H(N0, L0). Then the Conley index CH(S0, P ) is
equal to the conjugacy class of RA.

A proof of Theorem 1 can be found in [39]. A similar theorem, less practical
in applications, appeared already in [38]. As a consequence of Theorem 1 one
gets the following result.

Corollary 1. Under assumptions of Theorem 1, if RA 6= 0 then φ has
a bounded orbit and if Λ(A) 6= 0 then φ has a T -periodic orbit.

A simple case of Theorem 1 implies another corollary.

Corollary 2. If N0 and L0 are ENRs, H(N0, L0) is 1-dimensional and
there exists a pair of h-movable cycles (u, v) such that the homology class of
u is a generator of H(N0, L0), and

v = u or v = −u

then the equation ẋ = f(t, x) has a T -periodic solution.

2.5. On application of Theorem 1 to computer-assisted proving

As it was already pointed out, usually it is difficult (or even impossible,
due to limitations of computers) to find a satisfactory approximation of the
map φT if T is large. On the other hand, for relatively small values of h, the
h-discretization φh can be computed with a good precision and its essential
properties can be rigorously proved. Contrary to the other computer-assisted
results on Poincaré maps, Theorem 1 allows to avoid any computations related
to the values of solutions at times greater then h.

Theorem 1 requires an index pair of ENRs for φh. For a given differential
equation, such a pair consisting of cubical sets, can be found by programs
taken from the libraries of CAPD (accessible in the web-page [5]). Let (N,L)
be such a pair. For a given basis [uj ] of homology classes in H(N0, L0), one
should push forward each cycle uj in order to obtain corresponding chains
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w and z, and the cycle vj . Up to some technical details that is enough: the
homology classes [vj ] are represented in the basis by some matrix A and The-
orem 1 asserts the Conley index is equal to the conjugacy class of the Leray
reduction of A. As it was indicated in Corollary 1, the reduction provides an
information on the existence of bounded and periodic orbits. Based on Theo-
rem 1, an algorithm for computation of the index for some planar equation is
constructed in [39].
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