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ALTERING DISTANCE AND COMMON FIXED POINTS
FOR HYBRID MAPPINGS UNDER IMPLICIT RELATIONS

AND APPLICATIONS

Valeriu Popa, Alina-Mihaela Patriciu

Abstract. In this paper we prove a general fixed point theorem by altering
distance for two pairs of owc hybrid mappings generalizing the main result from
[10] and we reduce the study of fixed point of pairs of mappings satisfying a
contractive condition of integral type at the study of fixed points in metric
spaces by altering distance satisfying an implicit relation.

1. Introduction and Preliminaries

Let (X, d) be a metric space and let B(X) be the set of all nonempty
bounded subsets of X. As in [15], [16] we define the functions D(A,B) and
δ(A,B), where A,B ∈ B(X) by

D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}.

If A consists of a single point a, we write δ(A,B) = δ(a,B). If B consists
also of a single point b, we write δ(A,B) = d(a, b).
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It follows immediately from definition of δ that

δ(A,B) = δ(B,A), A,B ∈ B(X).

If δ(A,B) = 0 then A = B = {a}.

Definition 1.1. Let f : X → X and F : X → B(X).
1) A point x ∈ X is said to be a coincidence point of f and F if fx ∈ Fx.

We denote by C(f, F ) the set of all coincidence points of f and F .
2) A point x ∈ X is said to be a fixed point of F if x ∈ Fx.

Definition 1.2 ([15], [16]). Let (X, d) be a metric space. A sequence
{An} of a nonempty subset of X is said to be convergent to a set A of X if
(i) each point a ∈ A is the limit of a convergent sequence {an}, where

an ∈ An for all n ∈ N,
(ii) for arbitrary ε > 0, there exists an integer m > 0 such that An ⊂ Aε for

n > m, where Aε is the set of all points x ∈ X for which there exists a
point a ∈ X, depending on x, such that d(x, a) < ε.

A is said to be the limit of the sequence {An}.

Definition 1.3 ([18]). The mappings f : X → X and F : X → B(X) are
δ-compatible if limn→∞ δ(Ffxn, fFxn) = 0, whenever {xn} is a sequence in
X such that fFxn ∈ B(X), fxn → t, Fxn → {t} for some t ∈ X.

Definition 1.4 ([19]). The pair f : X → X and F : X → B(X) is weakly
compatible if for each x ∈ C(f, F ), fFx = Ffx.

If the pair (f, F ) is δ-compatible, then (f, F ) is weakly compatible but the
converse is not true [19].

The notions of occasionally weakly compatible single valued functions is
introduced in [8]. Some fixed points theorems for occasionally weakly compat-
ible single valued functions are proved in [20]. There exists a vast literature
of this topic.

The notion of occasionally weakly compatible hybrid mappings is first
introduced in [1].

Definition 1.5. The hybrid pair f : X → X are F : X → B(X) is
occasionally weakly compatible (owc) if there exists x ∈ C(f, F ) such that
fFx ⊂ Ffx.

Remark 1.1. Every weakly compatible pair of mappings is owc. The
converse is not true (Example 1.3 [1]).
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Theorem 1.1 ([10]). Let f, g : X → X be the maps and F,G : X → B(X)
be set valued maps such that {f, F} and {g,G} are owc. Let ϕ : R+ → R+

be a nondecreasing map such that for every t > 0, ϕ(t) < t, satisfying the
following condition:

δp(Fx,Gy) < ϕ(ad(fx, gy) + (1− a)max{αDp(fx, Fx), βDp(gy,Gy),

[D(fx, Fx) ·D(gy, Fx)]p/2, [D(gy, Fx) ·D(fx,Gy)]p/2,

1

2
[Dp(fx,Gy) +Dp(gy, Fx)]})

for all x, y ∈ X, where 0 < a ≤ 1, 0 < α, β < 1 and p ≥ 1.
Then, f, g, F and G have a unique common fixed point.

Definition 1.6. An altering distance is a mapping ψ : [0,∞) → [0,∞)
which satisfies the following conditions:
(i) ψ is increasing and continuous,
(ii) ψ(t) = 0 if and only if t = 0.

Fixed point problem involving an altering distance have been studied in
[21], [27], [29], [30] and in other papers.

In [25] a general fixed point theorem for compatible mappings satisfying an
implicit relation is proved. In [17] the results from [25] are improved relaxing
the compatibility to weak compatibility.

2. Implicit relations

Definition 2.1. Let FW be the set of all functions φ(t1, . . . , t6) : R6
+ → R

satisfying the following conditions:

(φ1): φ is nondecreasing in variable t1 and nonincreasing in variables t5 and t6,
(φ2): φ(t, t, 0, 0, t, t) ≥ 0, ∀t > 0.

Example 2.1. φ(t1, . . . , t6) = t1 − ϕmax{t2, . . . , t6}, where ϕ : R+ → R+

with ϕ(t) < t, ∀t > 0.

Example 2.2. φ(t1, . . . , t6) = tp1 −ϕ(atp2 + (1− a)max{αtp3, βtp4, (t3t6)p/2,
(t5t6)

p/2, 12(t
p
3 + tp4)}), where 0 < a < 1, 0 < α, β < 1 and p ≥ 1, ϕ : R+ → R+

with ϕ(t) < t, ∀t > 0.
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Example 2.3. φ(t1, . . . , t6) = t1 − ϕ
(
max

{
t2, t3, t4,

1
2(t5 + t6)

})
, where

ϕ : R+ → R+ with ϕ(t) < t, ∀t > 0.

Example 2.4. φ(t1, . . . , t6) = t1 − αmax {t2, t3, t4} − (1 − α)(at5 + bt6),
where 0 < α < 1, a, b ≥ 0 and a+ b < 1.

Example 2.5. φ(t1, . . . , t6) = t1−at2−b(t3+ t4)−c(t5+ t6), where a > 0,
b, c ≥ 0 and a+ 2c ≤ 1.

Example 2.6. φ(t1, . . . , t6) = t1 −max
{
t2,

1
2(t3 + t4),

1
2(t5 + t6)

}
.

Example 2.7. φ(t1, . . . , t6) = t1−max {ct2, ct3, ct4, at5 + bt6}, where 0 <
c ≤ 1, a ≥ 0, b ≥ 0 and a+ b < 1.

For other examples see [4].
In [10], the following theorem is proved.

Theorem 2.1. Let (X, d) be a symmetric space and let f, g : X → X and
F : X → B(X) be the set valued maps such that the pairs {f, F} and {g,G}
are owc. Let ϕ : R6

+ → R be a real map satisfying the following conditions:

(ϕ1): ϕ is nonincreasing in variable t1 and nonincreasing in variables t5
and t6,
(ϕ2): ϕ(t, t, 0, 0, t, t) ≥ 0, ∀t > 0.

If

ϕ(δ(Fx,Gy), d(fx, gy), D(fx, Fx), D(gy,Gy), D(fx,Gy), D(gy, Fx)) < 0

for all x, y ∈ X for which

max{d(fx, gy), D(fx, Fx), D(gy,Gy)} > 0,

then, f, g, F and G have a unique common fixed point.

The purpose of this paper is to prove a general fixed point theorem by
altering distance for two pairs of owc hybrid mappings generalizing Theorem
2.1 and to reduce the study of fixed point of pairs of mappings satisfying a
contractive condition of integral type at the study of fixed points in metric
spaces by altering distance satisfying an implicit relation.
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3. General fixed point theorem for owc hybrid mappings

Theorem 3.1. Let f, g : X → X be maps and F : X → B(X) be set-valued
maps such that the pairs {f, F} and {g,G} are owc. If

(3.1) φ(ψ(δ(Fx,Gy)), ψ(d(fx, gy)), ψ(D(fx, Fx)),

ψ(D(gy,Gy)), ψ(D(fx,Gy)), ψ(D(gy, Fx))) < 0

for all x, y ∈ X, with fx 6= gy, φ ∈ FW and ψ is an altering distance, then
f, g, F and G have a unique common fixed point.

Proof. Since the pairs {f, F} and {g,G} are owc then, there exist u, v
in X such that fu ∈ Fu, gv ∈ Gv, fFu ⊂ Ffu, gGv ⊂ Ggv. First we show
that fu = gv. Suppose that fu 6= gv. Then by (3.1) we have successively

φ(ψ(δ(Fu,Gv)), ψ(d(fu, gv)), ψ(D(fu, Fu)),

ψ(D(gv,Gv)), ψ(D(fu,Gv), ψ(D(gv, Fu))) < 0,

φ(ψ(δ(Fu,Gv)), ψ(d(fu, gv)), 0, 0, ψ(D(fu,Gv), ψ(D(gv, Fu))) < 0.

By (φ1) we have

φ(ψ(d(fu, gv)), ψ(d(fu, gv)), 0, 0, ψ(d(fu, gv), ψ(d(fu, gv))) < 0,

a contradiction of (φ2), which implies fu = gv.
Next we claim that fu = f2u. If fu 6= f2u, by (3.1) we have

φ(ψ(δ(Ffu,Gv)), ψ(d(f2u, gv)), ψ(D(f2u, Ffu)),

ψ(D(gv,Gv)), ψ(D(f2u,Gv), ψ(D(gv, Ffu))) < 0,

φ(ψ(δ(Ffu,Gv)), ψ(d(f2u, gv)), 0, 0, ψ(D(f2u,Gv), ψ(D(gv, Ffu))) < 0.

By (φ1) we have

φ(ψ(d(f2u, fu)), ψ(d(f2u, fu)), 0, 0, ψ(d(f2u, fu), ψ(d(f2u, fu))) < 0,

a contradiction of (φ2). Hence, fu = f2u. Similarly, gv = g2v. Therefore,
ffu = fu = gv = g2v = gfu. Hence fu is a common fixed point of f and
g. On the other hand we have fu = f2u ∈ fFu ⊂ Ffu. Hence fu is a fixed
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point of F . Similarly, fu = gv = g2v ∈ gGv ⊂ Ggv = Gfu and fu is a fixed
point of G. Therefore, f, g, F and G have a common fixed point w = fu.

Suppose that w′ 6= w is another common fixed point of f, g, F and G. By
(3.1) we obtain

φ(ψ(δ(Fw,Gw′)), ψ(d(fw, gw′)), ψ(D(fw, Fw)),

ψ(D(gw′, Gw′)), ψ(D(fw,Gw′), ψ(D(fw,Gw′))) < 0.

By (φ1) we obtain

φ(ψ(d(fw, gw′)), ψ(d(fw, gw′)), 0, 0, ψ(d(fw, gw′), ψ(d(gw′, fw))) < 0,

φ(ψ(d(w,w′)), ψ(d(w,w′)), 0, 0, ψ(d(w,w′), ψ(d(w′, w))) < 0,

a contradiction of (φ2). �

Remark 3.1. 1) If ψ(t) = t we obtain Theorem 2.1.
2) By Theorem 3.1, ψ(t) = t and Example 2.2 we obtain Theorem 1.1.
3) Theorem 3.1 generalizes Theorems from [2], [5], [9], [14], [15], [31] and

other papers.

Let F∗W be the set of all self functions φ(t1, . . . , t6) : R6
+ → R satisfying

condition (φ2).
If f, g, F and G are single valued functions we have

Theorem 3.2. Let f, g, F,G : X → X be self maps on a metric space
(X, d) such that {f, F} and {g,G} are owc. If

(3.2) φ(ψ(d(Fx,Gy)), ψ(d(fx, gy)), ψ(d(fx, Fx)),

ψ(d(gy,Gy)), ψ(d(fx,Gy)), ψ(d(gy, Fx))) < 0

for all x, y ∈ X, with fx 6= gy, φ ∈ F∗W and ψ is an altering distance, then,
f, g, F and G have a unique common fixed point.

Proof. The proof is similar with the proof of Theorem 3.1. �

If ψ(t) = t, then by Theorem 3.2 we obtain
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Theorem 3.3. Let f, g, F,G : X → X be self maps on a metric space
(X, d) such that {f, F} and {g,G} are owc. If

(3.3) φ(d(Fx,Gy), d(fx, gy), d(fx, Fx), d(gy,Gy), d(fx,Gy), d(gy, Fx)) < 0

for all x, y ∈ X, with fx 6= gy and φ ∈ F∗W , then, f, g, F and G have a unique
common fixed point.

Remark 3.2. By Examples 2.1–2.7 and other examples from [4] and The-
orem 3.1 we get the Theorems from [20] and several known results and new
results.

4. Altering distance and common fixed points for hybrid pairs
satisfying a contractive condition of integral type

In [11], Branciari established the following result

Theorem 4.1. Let (X, d) be a complete metric space, c ∈ (0, 1) and
f : X → X be a mapping such that

(4.1)
∫ d(fx,fy)

0

h(t)dt ≤ c
∫ d(x,y)

0

h(t)dt

where h : [0,∞)→ [0,∞) is a Lebesgue measurable mapping which is summa-
ble (i.e. with a finite integral) on each compact subset of [0,∞) such that for
ε > 0,

∫ ε
0
h(t)dt > 0. Then, f has a unique fixed point z ∈ X such that for

each x ∈ X, limn→∞ fnx = z.

Some fixed point theorems in metric and symmetric spaces for compatible,
weak compatible and occasionally weakly compatible mappings satisfying a
contractive condition of integral type are proved in [3], [22], [23], [24], [26],
[27], [28] and in other papers.

Lemma 4.1. The function ψ(x) =
∫ x
0
h(t)dt, where h(t) is as in Theorem

4.1, is an altering distance.

Proof. From the definitions of h and ψ it follows that ψ(t) is increasing
and ψ(x) = 0 if and only if x = 0. Obviously, ψ(x) is continuous. �
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Theorem 4.2. Let f and g be self maps of a metric space (X, d) and F,G
be maps of X into B(X) such that {f, F} and {g,G} are owc. If

(4.2) φ(

∫ δ(Fx,Gy)

0

h(t)dt,

∫ d(fx,gy)

0

h(t)dt,

∫ D(fx,Fx)

0

h(t)dt,

∫ D(gy,Gy)

0

h(t)dt,

∫ D(fx,Gy)

0

h(t)dt,

∫ D(gy,Fx)

0

h(t)dt) < 0

for all x, y ∈ X, with fx 6= gy, φ ∈ FW and h(t) is as in Theorem 4.1, then,
f, g, F and G have a unique common fixed point.

Proof. As in Lemma 4.1 we have

ψ(δ(Fx,Gy)) =

∫ δ(Fx,Gy)

0

h(t)dt, ψ(d(fx, gy)) =

∫ d(fx,gy)

0

h(t)dt,

ψ(D(fx, Fx)) =

∫ D(fx,Fx)

0

h(t)dt, ψ(D(gy,Gy)) =

∫ D(gy,Gy)

0

h(t)dt,

ψ(D(fx,Gy)) =

∫ D(fx,Gy)

0

h(t)dt, ψ(D(gy, Fx)) =

∫ D(gy,Fx)

0

h(t)dt.

Then by (4.2) we obtain

φ(ψ(δ(Fx,Gy)), ψ(d(fx, gy)), ψ(D(fx, Fx)),

ψ(D(gy,Gy)), ψ(D(fx,Gy)), ψ(D(gy, Fx))) < 0

for all x, y ∈ X, with fx 6= gy and φ ∈ FW , which is the inequality (3.1).
Because by Lemma 4.1, ψ(t) =

∫ t
0
h(x)dx is an altering distance, then the

conditions of Theorem 3.1 are satisfied and Theorem 4.2 follows from Theorem
3.1. �

Remark 4.1. If h(t) = 1 then by Theorem 4.2 we obtain the results from
Theorem 2.1.

If f, g, F and G are single valued functions we have
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Theorem 4.3. Let f, g, F and G be single valued self maps of a metric
space (X, d) such that {f, F} and {g,G} are owc. If

(4.3) φ(

∫ d(Fx,Gy)

0

h(t)dt,

∫ d(fx,gy)

0

h(t)dt,

∫ d(fx,Fx)

0

h(t)dt,

∫ d(gy,Gy)

0

h(t)dt,

∫ d(fx,Gy)

0

h(t)dt,

∫ d(gy,Fx)

0

h(t)dt) < 0

for all x, y ∈ X for which fx 6= gy, where φ ∈ F∗W and h(t) is as in Theorem
4.1, then, f, g, F and G have a unique common fixed point.

Proof. The proof is similar with the proof of Theorem 4.2 and follows
from Theorem 3.2. �

Remark 4.2. By Theorems 4.2, 4.3 and Examples 2.1–2.4 we get general-
izations of Theorems from [3], [7], [13], Theorem 2.1 [2], Theorems from [12]
and Theorems from [6]. New results we obtain from Examples 2.5–2.7 and
other examples from [4].
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