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DESCRIPTION OF MATHEMATICS.
DESCRIPTION IN MATHEMATICS.

MATHEMATICS AS A WAY OF DESCRIBING1

Andrzej Pelczar

Annual Lecture dedicated to the memory of Professor Andrzej Lasota

1. Description of mathematics

A. When asked about the nature of mathematics, probably the simplest (and,
likely, most frequent) answer we would give is that mathematics is a deductive
science. One can (or, perhaps, one should?) agree with that. But we also
ought to notice, that the development of mathematics is purely inductive.

Whenever we consider a theory, with well-founded axioms and primitive
notions, we never develop such a theory by listing all correct sentences within
this theory and then verifying whether they are correct or not (that is, we
never consider all correctly stated conjectures and check whether they are
theorems). “Candidates for theorems” are picked according to an “informal”
key (i.e. trying to generalize some already known theorems, capture analo-
gies between results from other theories, seek answers to questions posed by
physics, biology, social sciences etc. by first formulating appropriate math-
ematical models, and then – within such models – considering conceivable
theorems that would provide answers to the original questions).
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1Translated from Polish to English by Paweł Gładki.
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B. If we agree to the above, we inevitably face the “eternal” question about the
nature of mathematics in its “philosophical dimension” – namely the question,
whether this inductive development of mathematics relies more on discovery
or invention. I touch on this question with much hesitation.

The question whether mathematicians discover or invent has been in con-
sideration for a long time – “since forever”. It seems that most mathematicians
would favor the former, but it is hard to judge if that feeling has a quantitative
basis.

The author of this text dares to state his own, highly subjective, opinions.
He would like to avoid statements such as: “it is so”, because, in fact, he usually
does not know if “it is so”. However, he does not avoid sharing with the reader
his own feelings and quite often elaborates on what seems to him to be true.
He counts on the reader’s politeness to forgive him the lack of philosophical
accuracy in numerous statements as well as the negligence in citing the vast
literature on the subject, and – here deliberate – informality in mathematical
considerations. It seems that the idea behind this exposition can be presented
without much rigor.

∗ ∗ ∗
A genius sculptor (Michelangelo?) was supposed to say, while staring at

a block of marble: There is already a statue inside, I am only removing the
extraneous material and it will come out on its own.

Does it actually mean, that he discovered that the sculpture is there (that
is, discovered the statue), or rather that he discovered the possibility of “in-
venting” (by “removing the superfluous material”)?

∗
If instead of sculpting in marble, he would be using clay, so that rather

than “removing the extraneous material” he would be “adding” it (or, at least,
processing), would he also say that the statue is already inside, but needs to
be formed? Probably not. He would probably say, that he is inventing the
statue, but – other than by “removing the extraneous material” – by inventing
it “out of nothing”. The “nothing” here does not mean the clay, but the fact
that at the beginning of the process he started from “ground zero”, without
discovering (that the statue is already there, and it remains to let it come out
by “removing the extraneous material”).

∗
I shall risk to propose taking the soundness of the following constatation

under consideration: in both instances described above one can think of dis-
covering the possibility of inventing.
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∗ ∗ ∗
In the extremely interesting book Mathematics today: twelve informal es-

says edited by L. A. Steen and Allen Hammond [4] in his essay quotes an
excerpt from the discussion between Lipman Bers and Dennis Sullivan:

Lipman Bers: Do you invent or do you discover? What is your gut feeling?
Dennis Sullivan: Sometimes you come upon something sort of natural, it’s

like you’re discovering it. But sometimes you just make something up out of
thin air, so to speak; maybe force it a little bit.

Hammond himself presents his views in a broader context, along with
referring, in a highly general way, the views of – in his opinion – most math-
ematicians (or even: the vast majority of mathematicians). Here are the
excerpts from this text:

The argument among mathematicians over whether mathematical truths
are invented or discovered has been going on a long time. It is not an argu-
ment that is easily resolved but it is revealing of how mathematicians think
about their work. The two points of view are at first glance quite distinct.
One holds that mathematicians discover a piece of reality [...], a truth not
of their own making but rather an inherent part of the universe. “God made
the integers”, as one nineteenth century mathematician put it [...]. Hence the
properties of the integers encompassed in simple arithmetic and in the more
sophisticated theorems of number theory are viewed by most mathematicians
in much the same way as astronomers think of the planets – discovered ele-
ments of the heavens. This absolutist or Platonist viewpoint – mathematics
as reality revealed – extends to other areas of mathematics as well and is in
fact the dominant dogma in the mathematical community. [...]

The second point of view emphasizes the role of human creativity in invent-
ing mathematical structures. Clearly there is an element of human creativity
involved, but how much, where to draw the line? Any system of mathematics
rests ultimately on a series of axioms, for example, and there is in many in-
stances an element of choice as to which axioms to use. Euclidean geometry
was based on five supposedly basic and self-evident axioms about the nature of
space, but just how arbitrary such choices can be was shown by the discovery
(in physics, not in mathematics) that space is not Euclidean after all but rather
Riemannian - that an alternate set of axioms due to Riemann provided a ge-
ometry that corresponds more to physical reality than that of Euclid’s. Other
mathematicians have since invented and explored the properties of still other
geometries, all good mathematics, but with an element of choice. Nor is this
element of human inventiveness confined to geometry; there exist alternate,
“nonstandard” models of the real number system too. Even the laws of logic
on which all of mathematical reasoning depends are not universally regarded
as absolute. Some mathematicians have argued that there too there is an el-
ement of choice and convention. In fact many mathematicians will admit in
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private that they think they create something, a good example or a good idea.
In its most extreme form, this humanist or constructivist outlook rejects the
idea of mathematicians as passive discoverers of a remote reality and instead
asserts that mathematical phenomena are created by humans alone and do not
otherwise exist.

[...] A theorem may be discovered but its proof is usually invented. [...]
Einstein is reported to have felt that he invented the concept of relativistic

spacetime, after the fact, but that he felt he was discovering an aspect of reality
while he was doing the work. It is a feeling familiar to many mathematicians:
“we are all Platonists in the trenches”, as one put it. But the debate continues
wherever mathematicians gather. “Do you invent or do you discover?”

Let us add, that the dispute among mathematicians and philosophers that
has been on for centuries, and that is regarded with the issue of discovering
vs. inventing mathematical entities2, was recently boosted by a number of
statements published by prominent mathematicians with the Newsletters of
European Mathematical Society (see [2, 5, 6, 7]), whose differences in opinions
(quite often far from being dramatic) can be already seen in the titles of their
papers (compare, for example, [2] and [6]).

∗ ∗ ∗
Putting the crux of the matter aside, let us consider the language used to

describe the (present) mathematics. One says (or, shall we say, one writes)
quite universally3 about the construction of the real numbers, or the con-
struction of a basis of some space. While presenting proofs, one often says:
somebody gave a proof. Is the thought (perhaps subconscious?) hiding behind
these phraseological patterns that somebody actually invented the proof, or
rather found (hence – discovered) the proof? Perhaps our feeling is that – that
somebody – found (discovered) a possibility of a proof (that is – discovered
the possibility of inventing the proof)?

Probably matters are quite similar when it comes to presenting examples
or, so called, counter examples. One often says that somebody found (hence
discovered) an example or a counter example, but also that somebody invented
such an example or counter example. One also very often says that somebody
gave an example (a counter example). In this last case one may, perhaps,
admit both intuitive interpretations: found since one first discovered, or found
since invented.

These remarks apply directly to the aforementioned words by Sullivan and

2This is the term I let myself use here, fully realizing it may be taken as an abuse of
the widely accepted nomenclature, yet hoping that I shall succeed in avoiding confusion,
and philosophers among the readers shall show enough understanding.

3Perhaps one should say frequently rather than universally, or use both terms
simultaneously?



Description of mathematics 11

– according to the author’s intentions – are supposed to somewhat widen their
meaning and (implicite, at least) illustrate them.

∗ ∗ ∗
The aforementioned quotation: The God made the real numbers, is often

given in a slightly different form: The God made the integers, the whole rest
is made by mathematicians.

But perhaps: The God made the formal logic... and the whole rest is made
by mathematicians?

Would it make (more) sense to (analogously) say: The God made the
musical scale (basic sounds), and the whole rest is made by composers? Let
us note, that here we speak of composing (hence inventing) of musical pieces
(let us stress – pieces); hence in this context we clearly speak of what was
created by composers.

It seems that a similar question can be asked with regard to works of art
created by painters, or, in general, by all sorts of artists. Let us note, that the
term “creating” itself suggests that we intuitively (but, really, just intuitively?)
are convinced that here we are dealing (more) with inventing than discovering.
Or is it perhaps that both in music and painting we discover the possibility of
invention (composition!) from (already existing) sounds or colors?

Finally, is it that the creation in writing is in some sense similar to the
creation in music or plastic arts? Can we assume that a poet, who wrote a
poem, discovered the possibility of inventing a poem?

∗
I shall risk here a digression regarding theories specific for natural sciences.

Before doing so I shall remark that I intend to remain on a – primitive one,
in fact – intuitive ground, not even trying to consider whether, for example,
there is a difference, or what sort of a difference is there between the existence
of a “mathematical entity” and the existence of a “material entity”. I would
only like to share an observation (a suspicion?) regarding analogies between
the possibility of invention (discovery of such a possibility?) in mathematics
and, for example, in theoretical physics.

If we agree that a physicist discovers the structure of the matter, the
question remains how does he describe it. Most often (I think) one speaks
of this or that theory, which I – shall risk to – reduce to the construction
of a mathematical model (mathematical models). Could we then say that
a physicist discovers the possibility of inventing a model?

Quite often it happens so, that a model does not comply with our ex-
pectations (does not “reflect the reality sufficiently well”). One then either
abandons such a model, or “improves” it, hence de facto “proposes” (invents)
a new one. Is it not yet another discovery of the possibility of inventing of
a (“better”) model?
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∗
Let us conclude these pictorial analogies with one more, perhaps a bit

risky, attempt. Climbers often speak of leading first ascents of new routes
in the Tatras or in the Alps. One may think that such a route is discovered,
however those, who lead it may feel (or just feel?), that they invented it in some
way. Perhaps it makes sense then to say that they discovered the possibility of
climbing the route, hence discovered the possibility of finding the route, which,
perhaps, can be compared to discovering the possibility of inventing the route.

One might be tempted to consider continuing this “metaphor-like” way of
thinking by observing, that there exist alpine routes equipped in, other that
the bare rock, “helpers”; when they were first introduced, the routes were
scaled by means of aid climbing. Here the construction of the route is appar-
ently literal. It should not be thought of as an abuse to compare – within
the convention that we accepted – such constructions to considerations lead
by mathematicians, who “go beyond” an already known theory, “adding” new
apparatus to their concepts. As an example one may think of the theory of
distributions, which arose from generalizing the theory of functions (“going
beyond” this theory). Let us add that some problems (for example in differ-
ential equations) can not be solved by classical means on the grounds of the
theory of functions. However, if we find their solutions by using the theory
of distributions, we might “come back” to the theory of functions, as certain
solutions that a priori are distributions sometimes turn out to be functions
(to be more precise: distributions that can be identified with functions).

I feel this is a discovery of the possibility of such a construction. With
regards to the aforementioned example – the discovery of the possibility of
building the theory of distributions rather than the discovery of distributions.

∗ ∗ ∗
One of widely proposed ways of teaching “higher mathematics” is the one

that starts from the arithmetic of the integers, and then the reals. How are
they “introduced”? We start either from the integers alone, or from the natural
numbers first, and after providing their axioms we speak of the construction
of the integers as a ring with the natural numbers (with addition and multi-
plication). As a next step, we – and this is how we actually call it! – construct
the rationals, or the field of the rational numbers, to be more specific, where
we “embed” through a certain isomorphism the ring of the integers4.

4We usually proceed here with a standard reasoning, which is said to be the construc-
tion of the field of fractions of the ring of the integers. Such a reasoning (such a construction)
is possible for every ring satisfying certain conditions, that are satisfied by the ring of the
integers (to be a commutative ring with identity and with no zero divisors). We can, how-
ever, derive the rationals (discover or construct?) in more than just one way. In [3] we
find the following sections: 3.3 The construction of the rationals by equivalence classes,
3.4 The construction of the rationals without the use of the natural numbers. There is
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When we have the rationals at our disposal, we construct (and, again, this
is how we actually call it!) the reals. One can achieve this in more than one
way. For example, one can introduce the Dedekind cuts or the equivalence
relation, call it “≡”, in the set of all sequences of rational numbers:

(′){an} ≡ {bn}
(def.)⇐⇒ the sequence {an− bn} converges to zero when n→∞.

In the first case the real numbers are the Dedekind cuts, in the second one
– equivalence classes of sequences with respect to the relation (′).

Did we, using one of the aforementioned ways, discovered the reals? And,
if so, which ones? – the ones identified with the Dedekind cuts, or the ones
“described in the other way”?

Could we rather say that, by presenting the two (or even three, if counting
the method from the book [3] mentioned in the footnote 4) ways of obtain-
ing the real numbers we discovered the possibility of their construction (the
construction of the field of real numbers), and even more than that, we did it
in two (or even three) ways?

∗ ∗ ∗
Let us follow the thread sketched in what Hammond had said about dif-

ferent geometries and actually push it a bit further. Has Euclidean geometry
been discovered? Have Riemannian or hyperbolic geometries been discovered?
If one speaks of discovery here, one, perhaps, ought to refer to the fact that the
Riemannian geometry provides a pretty good model for the universe, whereas
the Euclidean model is not good enough. Does it mean, however, that the
Euclidean geometry is “good for nothing” as a mathematical theory? I do not
suppose anybody thinks that way. Regardless, if it has been discovered, it can
not be tossed away; if invented, probably neither as well. It is, we have to ad-
mit, a beautiful mathematical theory, which nota bene provides nevertheless
a good – or, in the context discussed, we shall say: practical, useful – model
of the closest to us, macroscopic “physical reality”.

∗ ∗ ∗
In an attempt to conclude I shall repeat what explicite, or – at least –

implicite I have been trying to present in the form of verbalizing my feeling:
IN MATHEMATICSWEDISCOVER THE POSSIBILITY OF INVENTING.

This should not be stated without the remark, that it is sometimes difficult
to draw the line between what is “given” (that is, what is discovered or is
being discovered), and what is invented. That is, perhaps, primarily a matter

3.5 The construction of the nonnegative reals and 3.6 The relative numbers (positive and
negative) where the reals are defined (constructed) in a way different from any of the two
described here.
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of a subjective feeling associated, among others, to the starting point of a
conceivable construction.

Towards the end of these considerations, let me remark with, perhaps, the
most risky statement (a confession about a subjective feeling, that the author
finds the strongest one and well motivated by what has been presented above):

Perhaps it is the best to say, that... there exist – in a platonic sense –
not particular theories (such as the theory of integers, or reals, or different
geometries etc. so much, but THE MATHEMATICS AS A WHOLE, and
we (within her limits) DISCOVER THE POSSIBILITY OF INVENTING
various mathematical entities (objects), as well as mathematical theories.

If one agrees to this, then – in compliance with the “metaphor-like” remarks
from the last paragraph of Section 4 – one may risk to say that mathematics
“is given” as a rock face, and that when doing mathematics we discover possi-
bilities of inventing routes (on that face). Let us add that, in fact, this face is
mostly covered in clouds, which results in us seeing just its small fragments;
consecutive constructions may lead us to see other fragments and may al-
low us (well, they usually allow) to discover possibilities of new constructions
(continuations of routes already constructed).

However, this “metaphor-like” analogy must end here, as, unlike during
even the longest of all alpine climbs, in mathematics we shall never reach
“the end” – this “mathematical face” is not bounded. Nonetheless, we know
(by Gödel’s theorems) that for every mathematical theory rich enough5 there
exist (will let us discover them or invent?) statements formulated in the lan-
guage of such a theory, that we can not determine, on the grounds of the
theory under consideration, to be neither true nor false – they are undecid-
able. Hence adding such a statement to the theory under consideration as an
additional axiom “expands” the theory significantly (here I would like to say
that in this way we discover the possibility of inventing a new – “broader” –
theory). Therefore every theory can be “expanded” in this way.

This unboundedness is truly fascinating and possibly one of the main mo-
tivation underlying the inspiration to do mathematics.

2. Description in mathematics (or – the language of mathematics)

While doing mathematics we use the rules of (binary) formal logic, and
thus we also use the language of such logic and logical symbols when describing
definitions, theorems and reasonings. One can say that we use a precise logical
language. But one shall add straight away, that this formal language also

5 containing – as we briefly say – the arithmetic of natural numbers
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includes statements that not necessarily are written using logical symbols.
To express the fact that the number g is the limit of the sequence {an} we
write – as we know it – in the logical symbolism as follows:

∀ε > 0 ∃k ∈ N ∀n ≥ k (|an − g| < ε)6,

or – equally precise! – in words as follows:
for every positive real number ε there exists a natural number
k such that, for every natural number n no less than k, the
following inequality is satisfied:

|an − g| < ε.

In the example the first statement is – in writing, in print – shorter than the
second one. This is not always the case, especially when we present proofs.
For example, the statement that is used quite frequently and actually makes
a perfect mathematical sense, namely: without the loss of generality (usually,
as we think of it – the generality of reasoning), written with the use of formal
symbolic logic is lengthy (that is, takes a lot of space in printing) and may
take a long time to read and interpret. That is all about – understood as
above – the formal language of mathematics.

At the same time, along with the formal language we use a language that
is almost common or almost literary7 (that we shall simply call the “usual
language”), avoiding an unnecessary use of formalisms and logical symbolism
(or a symbolism introduced for the sake of the needs of a particular theory).
We shall replace sequences of formal formulae with sequences expressed in the
“usual language” (common, literary), on certain occasions making a reference
to some analogies between simpler or better known situations, as well as using
– at least implicite – some metaphors and abbreviations.

6We have skipped – except for one place, where we indicated that the number k
belongs to the set of natural numbers – the ranges of variables appearing under quantifiers,
assuming that – as we believe – one knows that ε is a real number, and n a natural number
(which, actually, follows from the context). If, however, we would expect to see a fully
formal precision in the definition here, we would have to add, that these variables belong –
respectively – to the set of real numbers and to the set of natural numbers, just as we have
done in the case of k “under the existential quantifier”.

7The word “almost” was used twice not without a reason. Even though it happens
so, that we use a common language in the most popular way of understanding the word
“common” (first of all in elementary textbooks, or in popular articles), but quite often this is
the “common language” in the understanding of a given group of mathematicians-specialists
(in “advanced” texts, seminars etc.), that is, in fact, in the sense that perhaps would be
better described by the term “a slang of a given theory”, if it was not for rather pejorative
connotations associated with it.
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This interchanging between the fragments written in a formal language
and fragments expressed using the “usual language” is, in fact, a rule in math-
ematical texts. However, proportions between the fragments of the former
and the latter can vary substantially. One can consider these proportions in
a ”qualitative” sense, as well as the “quantitative” one. That means, we shall
be mostly interested in what is concerned with different ways of communicat-
ing between mathematicians (here the “quality” comes into play) and in how
much of the text can be written formally vs. how much can be written in the
“usual language” (the “qualitative” aspect).

Most importantly, we shall say when one can (or even should) limit, or
perhaps even skip the use of a formalism, and when one is not allowed to do
so. A lot (or even everything) depends on who is the addressee of a given
mathematical text, that is who is the reader of a paper, or a textbook, or who
is the listener of a lecture, or, finally, the participant of a seminar. If one can
fear, that an “easy-going” text may be read improperly, one needs to decide on
using a formalism. This relates mostly to papers presenting new results8, as
well as, to some extent, monographs. Textbooks should be written with the
use of both forms of the just stated ways of transmitting information. What
I mean here is the necessity to present new material with utmost precision
and, at the same time, with making it more “accessible” by using less formal
descriptions of certain objects, that is by, so called, geometric or physical
“interpretations”, by exhibiting analogies between objects already known, or
by employing the – already mentioned above – metaphors. Thus, for example,
the description of the fact that the number g is the limit of the sequence {an}
can be less precisely, but, perhaps, more ”suggestively” presented as follows:

the number g is the limit of the sequence {an} if 9 its elements
are located arbitrarily close to g, for n sufficiently large.

This presentation can not appear instead of a precise definition in any
elementary textbook in analysis (or calculus), but can greatly contribute to a
formal way of lecturing.

I have mentioned the use of analogies and metaphors. It occurs, for exam-
ple, when, while considering infinitely dimensional vector spaces, we lecture
on their geometry, de facto referring to our intuitions associated with the (Eu-
clidean) spaces of finite dimension, which, at the end, means imagining the dis-
cussed problems in the special case of a two-dimensional or three-dimensional
space.

Also, whenever one is faced with exchanging strictly scientific information
between specialists, one encounters such – seemingly – not very precise de-
scriptions, which, however, do not lead to misunderstandings, and, in certain
cases, shorten the text greatly. In such instances one can, perhaps, speak of

8First of all in these places where new objects are defined!
9 In fact, one thinks here: if and only if.
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a certain “quasi-coding” – of a precise mathematical text with a language far
from being formal, or even a common language10 (sometimes also with the use
of “metaphorical” expressions) – by the “sender” of the information, followed
by “decoding” by the “receiver”. This is what happens quite often in seminar
discussions.

The advantage of the “common” language over formalisms is clearly ap-
parent when we speak of mathematics in popular texts of various levels of
difficulty. Here I mean both texts presenting mathematics (or more often
– its particular achievements and applications) to a broad audience of non-
mathematicians, and also presenting – by specialists – certain branches of
mathematics to mathematicians working in different areas. The latter takes
place, for example, in the form of, so called, survey talks. Plenary lectures
given by invited speakers at big meetings are usually of that character. In
such lectures the use of informal language (which – let us remind one more
time – does not have to mean the use of a common language in the popular
understanding of this term) is almost a rule, and referring to analogies and
metaphors is quite frequent.

Let us go back to the issue of the use of formal and “common” language, and
let us consider it in a bit more exact fashion. Do we have – and, if so, when?
– a guarantee that we will be able to flawlessly understand each other and
carry on the information we want? When answering to this question, we must
distinguish between the situation when the language is used by mathemati-
cians among themselves, and the situation when it is used by mathematicians
on one side and – shall we call them by default – “non-mathematicians” on
the other one.

In the first case one can distinguish between two sub-cases. The first sub-
case is when we are considering a contact between specialists using the same
language, that contains names (objects) specific to a given branch of mathe-
matics (a mathematical theory) along with the whole formal apparatus. This
is the case when there are no problems with transferring information. The
formal language is precise, and fragments presented in the “common language”
with conceivable use of analogies and metaphors are read flawlessly. If math-
ematicians of different branches try to communicate, certain difficulties can
occur (and, usually, do occur) related to the specifics of different branches.
These are, however, not so much linguistic difficulties (since the “common”
language of mathematics is the same for all branches of mathematics, and
specific terms and expressions are always formally well defined), but rather
substantial. What has been written down can be properly read, but under-
standing what the text is actually trying to explain might be difficult without
going deep into the theory that it regards.

10See footnote 3.
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In the second case, when it comes to communication between mathemati-
cians and non-mathematicians, the language of mathematics needs to be modi-
fied accordingly, or... replaced with a language from the areas bordering both
the mathematics and the subject, whose representatives are the said “non-
mathematicians”, with whom the mathematicians need to communicate. This
“frontier language” turns out to play a key role in numerous applications of
mathematics.

Towards the end of this thread let us point to the sources of mathematical
terminology. Every branch of mathematics has a unique, often quite specific,
terminology. Basic branches already have a well-grounded and rich in tradi-
tion nomenclature, usually with well-correlated variants in different foreign
languages. A newly introduced nomenclature, along with the development of
particular theories, is primarily based on definitions – and these usually do ex-
ist – in English, quite often adapted to other languages without changes. The
vast majority of names of objects appearing in mathematics (as well as names
of structures and methods) has its roots in inspirations, that can be, without
the risk of committing a serious omission, assumed to come from a certain sort
of metaphors. We speak of open sets, closed sets, boundary sets, we define
the interior of a set, boundary of a set, condensation points of a set. These
names are well justified in the case of subsets of the set of real numbers, that is
points on the real line, or points on the plane, or in the three-dimensional real
space. The properties described by the aforementioned definitions have very
natural, to the point of being intrusively obvious, geometric interpretations.
Here, perhaps, one still can not see a deeper metaphor. But when we use
these names in regard to general topological spaces, we no longer have such
geometric interpretations at our disposal and we need to make a transition,
a leap to a different situation (“a different reality”), that would correspond
to a metaphor in the “common language”.

As a side note to our considerations regarding the relations between formal
and informal language, let me take the liberty to remark on what sort of an
informal language is most frequently used in mathematical texts and, at the
same time, risk an attempt to – at least partially – explain my reasons for
making such a choice, not another one. It is well known that the language
which is currently dominating in academical writings (at least regarding sci-
ence and technology) is English, quite often called the Modern Latin. One can
thus say, that it does not make any sense to comment on the domination of
English in mathematical publications among others. I think, however, that it
is worth noting that – regardless of how popular English is as an international
language – mathematicians like to use English due to its certain convenient
qualities, not always apparent in other languages. It is flexible as far as new
terms are concerned. The rules of creating new names, which are supposed
to contain phrases expressible, for example in Polish, by adjectives, allow to
make compositions such as: noun-noun, or a name-noun, which plays a certain
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role, especially when it comes to lengthy and complicated texts, where it is
important to catch up on all the key fragments in a possibly fastest way. For
example, when we refer to Banach fixed-point theorem, the words fixed-point
already focus on the most important aspect of the matter; we shall provide
more examples such as this below. Finally, quite often English terms are
shorter than the same terms in other languages, for example in French. Let
us have a look at a few examples. Banach space corresponds to le space de
Banach in French and first order partial differential equations corresponds to
équations différentielles aux derivées partielles du prémier ordre.

A different issue is the choice of a language for popularizing mathematics.
Here a good use of proper metaphors and references to analogies usually are
very important. We have already remarked on this before.

3. Mathematics as a way of describing
(that is: mathematics as a language of a description)

While naming this section, I thought of mathematics as a language that
is used to the world description. Apparently, this particular “phrase” – as
they say – exists in, so called, (almost) popular consciousness. I had been
hesitating to instead call it “a clump of two phrases”, but eventually have
opted out, fearing possible pejorative connotations – but, perhaps, I should
not have done so.

Is mathematics really (such a) language, and if so, is it just a language
(of world description)?

It is possible to describe the world mathematically. The world is math-
ematizable. One sometimes says, de facto expressing perhaps the same – at
least unintentionally – thought, that the reality is describable mathematically.
Yet another version of the same, or at least similar, constatation (I would not
like to try to go into detailed semantical analysis of conceivable differences,
that could be subject to nontrivial logical and philosophical considerations,
but seem negligible for what we are doing here), is stated as a theory, that
the nature of the world in mathematical, or that the world has a mathematical
structure.

If we agree to such a statement and decide that, really – using the shortest
possible term, the world is describable mathematically, or even shorter – that
the world is mathematizable, it would be difficult... not to be surprised! The
question, why it is so, why, in fact, the world is mathematizable is a deep philo-
sophical question, and for many also – at least partially – a theological one.
I do not feel in a position to even try to answer this question. This is a subject
for a separate dissertation. Such dissertations have been already written, by
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the way. Assuming that the world is mathematizable, let us think for a while
what it really means. What does it mean, that mathematics is the language
of its description? The shortest possible answer is: for physical phenomena
(in the most broad sense of this term11) it is possible to find mathematical
models. Due to natural limitations implied by the form of this presentation,
I can not even try to precisely formulate what it means, in a broad sense, to
construct models. I shall only stick to a few naive examples illustrating one
particular – but very important – element of such constructions, namely what
is commonly called “neglecting certain aspects of the phenomenon under con-
sideration”. If asked, how many kilometers of a telephone cable one needs to
join two cities assuming a “straight line” that connects them, then the model
would be – in fact – this straight line, a one-dimensional space, or more pre-
cisely: this space with a metric determined by the choice of a unit, for example
one meter. Let us repeat – in this model we deal with a one-dimensional space,
and that suffices. But if we asked, how many trucks one needs to carry this
cable, we would have to compute its mass (weight). Weighting all of it would
prove to be difficult, perhaps even impossible. We can, however, find this
weight without using a scale. But we will need a three-dimensional model.
We can, for example, find the volume of a cylinder whose base is a disc de-
termined by a cross-section of a cable, and whose height is one meter, which
would allow us to find its mass (that is the “weight of one meter of a cable”,
as we say), provided we know the density of the material used for manufac-
turing the cable, which would, in turn, allow us to find the mass of the whole
cable12. These examples are trivial and – what one feels, requires an apol-
ogy – rather naive. Still, they illustrate, especially the latter one, the most
important issue in that matter. A mathematical model not only describes a
situation, but also allows us to make some computations (and imply certain
corollaries from these computations). This scheme of action is applied in much
more complicated situations, quite often with the use of very subtle methods
and advanced nomenclatural apparatus. And one obtains descriptions, that
allow to conclude with surprisingly strong corollaries. I would wish to tell
you about one more example from the stability theory. Numerous physical,
chemical or biological processes are described by differential equations. We
say that a certain state (fixed within the question under consideration) or
a particular behaviour of the process is stable if small changes on the input
data do not result in substantial differences in the output (or deviations from
the state or its particular behaviour) in the time that is not bounded from
above, and is asymptotically stable if: firstly – it is stable, and secondly – “the
situation converges to” this fixed state or particular behaviour of the process.

11Which means, as seems to have been becoming quite apparent in the last years, for
social phenomena as well.

12Here we silently assume for simplicity, that the cable is homogeneous, without insu-
lation etc.
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What was said above is, of course, far from being formally precise, yet the
precision is not most important here; one would like to provide a “qualitative”
outline of the problem, which is very important in numerous concrete applica-
tions. Namely, it deals with, to be as brief as possible, the question whether
the process is “immune” to conceivable small errors made at the beginning
in the sense that they do not result in dramatic changes (“errors”) in the fu-
ture. It turns out that whether we are guaranteed to achieve an asymptotical
stability or not (that is the “immunity” against small errors) is decided by a
simple algebraic condition, satisfied in the beginning by functions describing
the process under consideration13. It is, indeed, intriguing that once we know
that this condition is satisfied (which, for example, in the case of the processes
described by a system of three differential equations is really easy to check)
at the beginning, we already know about the important property of behaviour
of solutions of these equations “up to infinity”, where – shall we add – we do
not need to know the formulae that describe these solutions. This certain
algebraical condition checked at the beginning of the process determines it in
the unbounded time, “up to infinity”. I have devoted a lot of time to that
particular example, since it provides – as I think – a good outlook on the
power of mathematical methods, and, most importantly, it illustrates what
we call the mathematical description of the world in the sense that it is not
only a “passive” description, but also a research tool that usually allows us to
obtain information about the future state of processes14.

This is the sense in which I understand describing the world by mathemat-
ics. Describing through models where – obviously – one has to accept formal
rules of mathematics.

Mathematics is thus the language of world description. In this context let
us repeat once more the question from the beginning of this section: is it just
a language?

I think that, if a language is only what we understand as a mathematical
formalism15, or – to say pictorially – just a “dictionary” and a “set of grammar
rules”, then the answer should be: not. Mathematics is not only a – so
understood – language.

Let us start with an obvious statement. Literature or poetry, in any lan-
guage, are, clearly, more than just a set of words and grammar rules.

13The following theorem is well-known to mathematicians: If the right hand side f of
the system of differential equations (written in vector notation) x′ = f(x) is C1, f(0) = 0,
and the Jacobian of f at zero has characteristic roots that have negative real parts, the
singleton {0} is asymptotically stable.

14The theory of differential equations gives rise to theories with numerous direct ap-
plications. Such is the control theory. Thanks to this theory we are able to, among other
things, travel into the space. Complicated mathematical models taken from this theory
provide not only the description, but also allow us to control these space flight.

15Which, as we have already remarked, applies to the respectively chosen models
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Just as, obviously, the literature (and even more so – the poetry) in any
language shall not be reduced to a mere set of words and grammar rules (con-
ceivably along with some rules or schemes of creating these or those works),
mathematics shall not be reduced to a formal language of world description.
It includes, nonetheless, elements that can not be considered forms of describ-
ing the world.

Can we consider a form of describing the world as a sentence properly
formulated in a language of a given mathematical theory, which is undecid-
able within this theory (that is, one can not – within this theory – prove its
correctness, nor show it is false)? And these statements are – shall we add
– plentiful, which follows from the well-known (belonging to mathematics)
Gödel incompleteness theorem16. Here we deal with an important “internal”
property of the structure of mathematical theories, an imminent property
of mathematics. One can thus, perhaps, say that mathematics is internally
richer than a formal language of world description.

Moreover, it follows from Gödel theorem that every – rich enough – theory
can be enriched by adding to its axioms a sentence that is (so far) undecidable.
We have already discussed this.

A “purely practical observation” is as follows: for the – understood as above
– world description one currently uses just a small part of what mathematics
has to offer. One can say it differently, that just a small part of mathemat-
ics found so far applications in physics, chemistry, science in a broad sense,
technology, or, finally, social sciences. Mathematics is being developed (one is
tempted to say: develops itself) mostly independently of applications. Mathe-
maticians are very happy whenever they find applications for the results they
obtained, quite often they respond to requests from other sciences, but at
the same time they do not give up developing mathematics for the sake of
developing it itself, without looking at potential, or (already) visible applica-
tions. One can not risk to say that a theory, or a theorem would never find an
application (so they would not serve the purpose of world description), but it
can be said about a number of branches of mathematics, that they were built
without the intent of finding any direct applications (and thus they can not
be – right now – counted as components of the language of world description).
Both in this sense and “practically” mathematics turns out to be more than
just the language of world description.

I shall add one more remark. Mathematicians sometimes say that a the-
orem or a reasoning is elegant, or sometimes they even agree to say it is
beautiful. Not being able, within the limits of this exposition, to develop this
thread, I shall, in particular, skip the discussion on the subject on conditions
that need to be satisfied in order for us to be able to elaborate on beauty in

16Kurt Gödel proved that in every theory “containing the theory of integers” (one can
say less precisely, yet more pictorially: in every theory rich enough) one can formulate
a sentence that can not be proven to be neither true nor false.
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mathematics. I shall restrict myself and say that if it is a common feeling
among those who make mathematics that it actually makes sense to speak of
the beauty, beauty in mathematics, then it is perfectly justified to stress the
– already expressed here – belief that mathematics is more than just a formal
language of world description.

Since we have been talking about beauty here, one would expect to find
attempts to elaborate on analogies between what we naturally associate with
arts, in particular with music – as possibly the most “abstract” art. That
might, however, lead the author of this exposition too far, and metaphors
that would be conceivably used in these elaborations might cause the formal
rigours and frames, apparent for a mathematician, to blow up. Thus I shall
only repeat the constatation that is important in this context and ensure
the reader, that one can really find elements of beauty in mathematics, and
finding them is one of the most important motivations for those, for whom
mathematics is a profession.
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