ON CONTINUOUS INVOLUTIONS AND HAMEL BASES

Karol Baron

Abstract

We provide the form of all continuous involutions f of a locally convex linear topological space X such that $H \cap f(H)=\emptyset$ for any basis H of the vector space X over the rationals.

1. The case of reals

By a Hamel basis of \mathbb{R} we mean (see [1, p. 82]) a basis of the vector space \mathbb{R} over the field \mathbb{Q} of rationals. Answering a (private) question of Bartłomiej Ulewicz we provide the form of all continuous involutions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
H \cap f(H)=\emptyset \quad \text { for any Hamel basis } H \text { of } \mathbb{R} \tag{1}
\end{equation*}
$$

We start with a more general theorem.
Theorem 1. If $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ is continuous, then (1) holds if and only if there are $a, b \in \mathbb{Q} \backslash\{1\}$ such that

$$
f(x)= \begin{cases}a x & \text { for } x \in(-\infty, 0) \tag{2}\\ b x & \text { for } x \in(0, \infty)\end{cases}
$$

Received: 27.01.2012.
(2010) Mathematics Subject Classification: 39B12, 39B52, 26A18, 15A03.

Key words and phrases: continuous involution, Hamel basis, locally convex linear topological space.

Proof. First we will observe that if f is not of the form (2) with $a, b \in$ $\mathbb{Q} \backslash\{1\}$, then either

$$
\begin{equation*}
\text { there is an } x_{0} \in \mathbb{R} \backslash\{0\} \text { such that } \frac{f\left(x_{0}\right)}{x_{0}} \notin \mathbb{Q} \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
f(x)=x \quad \text { for } x \in(-\infty, 0) \quad \text { or } \quad f(x)=x \quad \text { for } x \in(0, \infty) \tag{4}
\end{equation*}
$$

In fact, the negation of (3) and the continuity of f gives (2) with some rationals a, b and, consequently, $a=1$ or $b=1$.

Assume (3). Then x_{0} and $f\left(x_{0}\right)$ are linearly independent over \mathbb{Q} for an $x_{0} \in \mathbb{R} \backslash\{0\}$ and so there is a Hamel basis H of \mathbb{R} containing both x_{0} and $f\left(x_{0}\right)$. In particular $f\left(x_{0}\right) \in H \cap f(H)$ and (1) does not hold.

Clearly also (4) implies that (1) does not hold. Consequently (1) gives (2) with some $a, b \in \mathbb{Q} \backslash\{1\}$.

Assume now (2) with some $a, b \in \mathbb{Q} \backslash\{1\}$ and suppose $H \cap f(H) \neq \emptyset$ for a Hamel basis H of \mathbb{R}. Then $f(h) \in H$ for an $h \in H$, whence, according to (2), $c h \in H$ for a $c \in \mathbb{Q} \backslash\{1\}$, a contradiction.

Corollary 1. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and

$$
\begin{equation*}
f(f(x))=x \quad \text { for } x \in \mathbb{R} \tag{5}
\end{equation*}
$$

then (1) holds if and only if there is a $c \in(-\infty, 0) \cap \mathbb{Q}$ such that

$$
f(x)= \begin{cases}c x & \text { for } x \in(-\infty, 0] \\ \frac{1}{c} x & \text { for } x \in[0, \infty)\end{cases}
$$

Proof. Assume (2) with $a, b \in \mathbb{Q} \backslash\{1\}$. Since (5) implies $f(\mathbb{R})=\mathbb{R}$, we have $a b>0$. If $a>0$, then

$$
a=f(f(a))=f(b a)=b^{2} a
$$

whence $b=1$, a contradiction. If $a<0$, then

$$
a=f(f(a))=f\left(a^{2}\right)=b a^{2}
$$

and so $a b=1$.

2. The case of higher dimensions

The above results were presented at the Eleventh Katowice-Debrecen Winter Seminar on Functional Equations and Inequalities (Wisła-Malinka, Poland, February, 2-5, 2011). After the presentation Professor Lajos Molnár asked the author about a vector case. The next two results answer this question.

Theorem 2. Assume X is a real locally convex linear topological space with $\operatorname{dim} X \geq 2$. If $f: X \backslash\{0\} \rightarrow X$ is continuous, then the condition
(6) $H \cap f(H)=\emptyset \quad$ for any basis H of the vector space X over the field \mathbb{Q} holds if and only if there is a $c \in \mathbb{Q} \backslash\{1\}$ such that

$$
\begin{equation*}
f(x)=c x \quad \text { for } x \in X \backslash\{0\} \tag{7}
\end{equation*}
$$

Proof. The point is to show that if
(8) for every $x \in X \backslash\{0\}$ there is an $r \in \mathbb{Q}$ such that $f(x)=r x$, then (7) holds with a $c \in \mathbb{Q}$.

Assume (8) and let $r: X \backslash\{0\} \rightarrow \mathbb{Q}$ be the function such that

$$
\begin{equation*}
f(x)=r(x) x \quad \text { for } x \in X \backslash\{0\} \tag{9}
\end{equation*}
$$

We have to prove that r is constant.
If $x^{*} \in X^{*}$, then the set $P\left(x^{*}\right)$ given by

$$
P\left(x^{*}\right)=\left\{x \in X: x^{*} x>0\right\}
$$

is convex, and so connected, and according to (9) we have

$$
r(x)=\frac{x^{*} f(x)}{x^{*} x} \quad \text { for } x \in P\left(x^{*}\right)
$$

Consequently, for any $x^{*} \in X^{*}$ the continuous function

$$
x \rightarrow \frac{x^{*} f(x)}{x^{*} x}, \quad x \in P\left(x^{*}\right)
$$

i.e., the function $\left.r\right|_{P\left(x^{*}\right)}$, is constant:

$$
r(x)=c\left(x^{*}\right) \quad \text { for } x \in P\left(x^{*}\right)
$$

If $x_{1}, x_{2} \in X \backslash\{0\}$ are linearly independent (over the reals), then (see [2, Theorem 3.6]) there is an $x^{*} \in X^{*}$ such that $x^{*} x_{1}=x^{*} x_{2}=1$ and $r\left(x_{1}\right)=$ $c\left(x^{*}\right)=r\left(x_{2}\right)$. If $x_{1}, x_{2} \in X \backslash\{0\}$ are linearly dependent, then, since $\operatorname{dim} X \geq$ 2 , we can find an $x_{3} \in X \backslash\{0\}$ such that x_{1}, x_{3} are linearly independent, and making use of the previous part we see that $r\left(x_{1}\right)=r\left(x_{3}\right)=r\left(x_{2}\right)$. This proves that r is a constant function.

To finish the proof of the theorem it is now enough to observe that (6) implies (8).

Corollary 2. Assume X is a real locally convex linear topological space with $\operatorname{dim} X \geq 2$. If $f: X \rightarrow X$ is continuous and

$$
f(f(x))=x \quad \text { for } x \in X
$$

then (6) holds if and only if

$$
f(x)=-x \quad \text { for } x \in X
$$

REmARK 1. In the above theorems and corollaries one can replace the field \mathbb{Q} by any proper subfield of \mathbb{R}.

Acknowledgement. The research was supported by the Silesian University Mathematics Department (Iterative Functional Equations and Real Analysis program).

References

[1] Kuczma M., An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality, Second edition (edited by A. Gilányi), Birkhäuser Verlag, Basel, 2009.
[2] Rudin W., Functional analysis, McGraw-Hill Inc., New York, 1991.

Institute of Mathematics
Silesian University
Bankowa 14
40-007 Katowice
Poland
e-mail: baron@us.edu.pl

