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STABILITY OF THE PEXIDER FUNCTIONAL EQUATION

Roman Badora, Barbara Przebieracz, and Peter Volkmann

Abstract. A stability result for the Pexider equation will be derived from a
stability theorem published in [9] for the Cauchy functional equation. Then
we discuss the quality of some constants occuring in this context; as a model
case we consider functions defined on the multiplicative semigroup {1, 0}.

1. Introduction

In Theorem 1 below we describe the stability result for the Cauchy equa-
tion, which had been mentioned in the Abstract.

Let S be a groupoid, i.e., S is a set and for all x, y ∈ S we have a product
xy ∈ S. For x ∈ S and k = 0, 1, 2, . . . the powers x2k are recursively defined by

x20 = x1 = x, x2k+1

= x2kx2k .

Józef Tabor [8] pointed out the usefulness of the following condition for sta-
bility investigations:
(T) For x, y ∈ S there always is an entire k ≥ 1 such that

(1) (xy)2
k

= x2ky2
k

.

In the present paper, groupoids S satisfying (T) are called Tabor groupoids.
Three examples are particular cases of them; they are ordered in decreasing
generality:
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1. Groupoids S with a square-symmetric operation, i.e.,

(xy)2 = x2y2, x, y ∈ S

(cf. the joint paper with Zsolt Páles and R. Duncan Luce [6]). Then (1) is
true for all x, y ∈ S with the same k, viz. k = 1.

2. Groupoids S with a bisymmetric operation, i.e.,

(xy)(x̄ȳ) = (xx̄)(yȳ), x, y, x̄, ȳ ∈ S.

Here x̄ = x, ȳ = y leads to square-symmetry.
3. Commutative semigroups S.

Let us mention that Zbigniew Gajda and Zygfryd Kominek [1] considered
semigroups satisfying condition (T). Inspired by Józef Tabor [8], they call
them weakly commutative.

Now let E be a Banach space. A subset V of E is called ideally convex
(E. A. Lifšic [3]), if for every bounded sequence d1, d2, d3, . . . in V and for

every numerical sequence α1, α2, α3, . . . ≥ 0 such that
∞∑
k=1

αk = 1 we get
∞∑
k=1

αkdk ∈ V .

The following theorem is taken from [9]; in the case of a commutative
semigroup S it goes back to Jacek Tabor [7].

Theorem 1. Let S be a Tabor groupoid, and let V be a bounded and ideally
convex subset of the Banach space E. For f : S → E we suppose

f(xy)− f(x)− f(y) ∈ V, x, y ∈ S.

Then there exists a (unique) function F : S → E such that

F (xy) = F (x) + F (y), F (x)− f(x) ∈ V, x, y ∈ S.

2. The Pexider equation

Theorem 2. Let S be a Tabor groupoid having a neutral element n, i.e.,
n ∈ S and

nx = xn = x, x ∈ S.
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Let V be a symmetric, bounded, and ideally convex subset of a Banach space
E (the symmetry means −V = V ). For f, g, h : S → E we suppose

(2) f(xy)− g(x)− h(y) ∈ V, x, y ∈ S.

Then there are F,G,H : S → E satisfying the Pexider equation

(3) F (xy) = G(x) +H(y), x, y ∈ S,

as well as the conditions

(4) F (x)− f(x) ∈ 3V, G(x)− g(x) ∈ 4V, H(x)− h(x) ∈ 4V, x ∈ S.

Proof. With y = n and with x = n in (2) we get

f(x)− g(x)− h(n) ∈ V, f(y)− g(n)− h(y) ∈ V,(5)

hence f(x) ∈ g(x) + h(n) + V , f(y) ∈ h(y) + g(n) + V , thus

f(xy)− f(x)− f(y) + g(n) + h(n) ∈ f(xy)− g(x)− h(y) + V + V

⊆ V + V + V = 3V,

the last equality being true, since V is convex. For

f̃(x) := f(x)− g(n)− h(n), x ∈ S,(6)

this means

f̃(xy)− f̃(x)− f̃(y) ∈ 3V, x, y ∈ S,

and by Theorem 1 there is a function Φ: S → E such that

Φ(xy) = Φ(x) + Φ(y), Φ(x)− f̃(x) ∈ 3V, x, y ∈ S.

Now it is easily seen that for F (x) := Φ(x) + g(n) + h(n), G(x) := Φ(x) +
g(n), H(x) := Φ(x) + h(n), x ∈ S, we get (3) and (4):

(3) is obvious; F (x)− f(x) ∈ 3V follows from (6) and Φ(x)− f̃(x) ∈ 3V ;
the remaining formulae in (4) are consequences of (5), (6), and Φ(x)− f̃(x) ∈
3V . �
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Remark 1. Theorem 2 should be compared to other stability results for
the Pexider equation, e.g. to those of Kazimierz Nikodem [5] and Zygfryd
Kominek [2], where the target space for the functions is more general than
a Banach space.

When choosing V = {x | x ∈ E, ‖x‖ ≤ ε}, then we get from Theorem 2
the following Corollary, which had been obtained by Nikodem [5] in the case
of a commutative semigroup S.

Corollary 1. Let S be a Tabor groupoid having a neutral element, and
let E be a Banach space. For f, g, h : S → E we suppose

‖f(xy)− g(x)− h(y)‖ ≤ ε, x, y ∈ S.

Then there are F,G,H : S → E such that

F (xy) = G(x) +H(y), x, y ∈ S,

(7) ‖F (x)−f(x)‖ ≤ 3ε, ‖G(x)−g(x)‖ ≤ 4ε, ‖H(x)−h(x)‖ ≤ 4ε, x ∈ S.

Remark 2. If S is a commutative semigroup, then according to Zenon
Moszner’s survey [4], the constants 4ε in (7) can be replaced by 3ε. We do
not know, wether this also holds for arbitrary Tabor groupoids.

Remark 3. In the next paragraph we shall consider the commutative
semigroup S = {1, 0}. It will follow that 3ε in (7) cannot be replaced by
a number less than 2ε. It also will follow that, when having in (7) the better
inequality ‖F (x) − f(x)‖ ≤ 2ε, then the constants 4ε cannot be replaced by
numbers less than 3ε/2.

Remark 4. By calculations similar to those in the next paragraph, it can
be shown that for the cyclic groups S = Z2, S = Z3 of two and of three
elements, respectively, all the numbers 3ε, 4ε in (7) can be replaced by ε.

3. The semigroup S = {1, 0}

In S = {1, 0} we have 1 · 1 = 1, 1 · 0 = 0 · 1 = 0 · 0 = 0. It is easily seen
that in this case solutions of the Pexider equation (3) necessarily are constant
functions:

G(1) = G(0) = a, H(1) = H(0) = b, F (1) = F (0) = a+ b.



Stability of the Pexider functional equation 11

Theorem 3. Consider S = {1, 0}, let N be a normed space, and let
f, g, h : S → N satisfy

‖f(xy)− g(x)− h(y)‖ ≤ ε, x, y ∈ S.(8)

Then there exist a, b ∈ N such that

‖g(1)− a‖ ≤ 1

2
ε, ‖h(1)− b‖ ≤ 1

2
ε,(9)

‖g(0)− a‖ ≤ 3

2
ε, ‖h(0)− b‖ ≤ 3

2
ε,(10)

‖f(x)− a− b‖ ≤ 2ε, x = 0, 1.(11)

Proof. Indeed, (8) means

f(1)− g(1)− h(1) = r1,(12)

f(0)− g(1)− h(0) = r2,

f(0)− g(0)− h(1) = r3,

f(0)− g(0)− h(0) = r4,

where

‖rj‖ ≤ ε, j = 1, 2, 3, 4.(13)

We easily get

g(0)− g(1) = r2 − r4,(14)

h(0)− h(1) = r3 − r4,(15)

f(0)− g(1)− h(1) = r2 + r3 − r4.(16)

We define

a = g(1) +
1

2
r2, b = h(1) +

1

2
r3,

then (13) already leads to (9). From (14), (15) we now get

g(0) = g(1) + r2 − r4 = a+
1

2
r2 − r4,(17)

h(0) = h(1) + r3 − r4 = b+
1

2
r3 − r4,(18)
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and this gives (10). From (12), (16) we finally have

f(1)− a− b = r1 + g(1)− a+ h(1)− b = r1 −
1

2
r2 −

1

2
r3,

f(0)− a− b = f(0)− g(1)− 1

2
r2 − h(1)− 1

2
r3 =

1

2
r2 +

1

2
r3 − r4,

and these two lines prove (11). �

Example. The following example shows that
I) 2ε in (11) is best possible,

II) having 2ε in (11), then also 1
2ε in (9) and 3

2ε in (10) are best possible:
We define f, g, h : S → R by

f(1) = 2, f(0) = −2, g(1) = 1, g(0) = −1, h(1) = 0, h(0) = −2.

Then

f(1)− g(1)− h(1) = 2− 1− 0 = 1,

f(0)− g(1)− h(0) = −2− 1 + 2 = −1,

f(0)− g(0)− h(1) = −2 + 1− 0 = −1,

f(0)− g(0)− h(0) = −2 + 1 + 2 = 1,

hence (8) holds for

ε = 1(19)

(with absolute value in R being the norm).
Proof of I). Suppose (11) to hold for some a+b ∈ R and with 2ε replaced

by some η:

(20) |2− a− b| = |f(1)− a− b| ≤ η, | − 2− a− b| = |f(0)− a− b| ≤ η.

Then 4 ≤ |2− a− b|+ |2 + a+ b| ≤ 2η, hence (cf. (19)) 2ε = 2 ≤ η.
Proof of II). Inequality (11) with 2ε = 2 leads to (20) with η = 2, hence

to a+ b = 0, i.e., b = −a. Then (10) with η instead of 3
2ε leads to

| − 1− a| = |g(0)− a| ≤ η, | − 2 + a| = |h(0)− b| ≤ η,

which implies 3 = (2− a) + (1 + a) ≤ 2η, hence 3
2ε =

3
2 ≤ η.
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In the same way we get from (9) with 1
2ε replaced by η that

|1− a| = |g(1)− a| ≤ η, |0 + a| = |h(1)− b| ≤ η,

which implies 1 = (1− a) + (0 + a) ≤ 2η, hence 1
2ε =

1
2 ≤ η.
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