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ORDERINGS OF HIGHER LEVEL IN MULTIFIELDS
AND MULTIRINGS

Paweł Gładki

Abstract. In this note we generalize the concept of orderings of higher level
to multifields and multirings. We show how part of the standard Artin-Schreier
theory for orderings of higher level of fields and rings extends to multifields
and multirings.

1. Introduction

The notions of multigroups, multirings, multifields, and their correspond-
ing reduced versions were introduced by Marshall in [5] and provide a conve-
nient framework to study the reduced theory of quadratic forms and spaces
of orderings. A multigroup is a quadruple (G,Π,−, 0), where G is a non-
empty set, Π is a subset of G×G×G, − : G → G is a function, and 0 ∈ G is
an element such that the following axioms are satisfied:
(G1) if (a, b, c ∈ Π), then (c,−b, a) ∈ Π, and (−a, c, b) ∈ Π;
(G2) (a, 0, b) ∈ Π if and only if a = b;
(G3) if there exists e ∈ G such that (a, b, e) ∈ Π, and (e, c, d) ∈ Π, then there

exists f ∈ G such that (b, c, f) ∈ Π, and (a, f, d) ∈ Π.
Moreover, a multigroup is called commutative, if
(G4) (a, b, c) ∈ Π if and only if (b, a, c) ∈ Π.

The set Π ⊂ G×G×G defines a multivalued addition here, and we shall
often write c ∈ a+ b to indicate that (a, b, c) ∈ Π. One checks that with this
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notation (G1) reads “if c ∈ a+ b, then a ∈ c− b, and b ∈ −a+ c”, (G2) reads
“b ∈ a + 0 iff. a = b”, (G3) reads “if ∃e ∈ G(e ∈ a + b) ∧ (d ∈ e + c) then
∃f ∈ G(f ∈ b+ c) ∧ (d ∈ a+ f)”, and (G4) reads “c ∈ a+ b iff. c ∈ b+ a”.

For subsets S, T ⊂ G it is convenient to define S + T as the set {c ∈ G :
there exist a ∈ S, b ∈ T such that c ∈ a+ b}. Likewise, ΣS denotes the union
of the sets S + . . . + S (k times, k ≥ 1). We also define S − T = S + (−T ),
for −T = {−a : a ∈ T}. Traditionally, S∗ denotes the set S \ {0}.

A multiring is a system (A,Π, ·,−, 0, 1) satisfying
(R1) (A,Π,−, 0) is a commutative multigroup;
(R2) (A, ·, 1) is a commutative monoid with 1;
(R3) a · 0 = 0 for all a ∈ A;
(R4) if c ∈ a+ b then cd ∈ ad+ bd for all d ∈ A.

A multifield is a multiring F with 1 6= 0 such that every non-zero element
has a multiplicative inverse.

By a submultiring of A we understand a subset S of A satisfying S −
S ⊂ S, SS ⊂ S, and 1 ∈ S. If, in addition, S−1 ⊂ S, we say that S is a
submultifield. Clearly, submultirings and submultifields are multirings and
multifields, respectively.

A zero divisor is a nonzero element a of A such that, for some nonzero
b ∈ A, ab = 0. A multiring that has no zero divisors will be called an integral
multidomain.

An ideal of A is a nonempty set I ⊂ A such that I + I ⊂ I and AI ⊂ I.
For elements a1, . . . , ak ∈ A, the smallest ideal of A containing a1, . . . , ak is
ΣAa1 + . . . + ΣAak. If an ideal p such that 1 /∈ p satisfies the condition
ab ∈ p ⇒ a ∈ p or b ∈ p, then we call p prime. The set of all prime ideals
of A, the prime spectrum of A, will be denoted by Spec (A).

Let I be an ideal in A. Denote by A/I the set of cosets a = a + I,
a ∈ A. We define the factor multiring (A/I,Π, ·,−, 0, 1) by setting Π =
{(a, b, c) : (a, b, c) ∈ Π}, − : A/I :→ A/I by the formula −a = −a, and the
multiplication by the formula a ·b = ab. As in the case of ordinary rings, if p is
a prime ideal in A, the factor multiring A/p becomes an integral multidomain.

If S is a multiplicative set in A, denote by S−1A the set of the elements
a
s , a ∈ A, s ∈ S, with a

s = b
t being equivalent to atu = bsu, for some u ∈ S.

We define the localization of the multiring A at S, (S−1A,S−1Π, ·,−, 0, 1),
by setting S−1Π = {(as ,

b
t ,

c
u) : (atuv, bsuv, cstv) ∈ Π for some v ∈ S}, and

a
s ·

b
t = ab

st . In the special case when A is an integral multidomain and S = A∗,
S−1A becomes a multifield that will be called the multifield of fractions of A
and denoted by (A). Moreover, for a multiring A and its prime ideal p, we
define the residue multifield at p to be (A/p), and denote it by k(p).

If A and B are multirings, then a function φ : A → B is called a multiring
homomorphism, if the following conditions are satisfied, for a, b, c ∈ A:
(H1) if c ∈ a+ b in A, then f(c) ∈ f(a) + f(b) in B;
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(H2) f(−a) = −f(a);
(H3) f(0) = 0;
(H4) f(ab) = f(a)f(b);
(H5) f(1) = 1.

As it has been suggested in [5], many of the standard results in the theory
of orderings of higher level can be easily generalized to multifields. Following
the classical presentations of [1] and [4], in Section 2 we translate the familiar
theorems in the theory to this new setup. In Section 3 we extend the theory
to multirings and prove a version of Positivstellensatz – methods used there
mimic the ones used in [3], and the results are analogous to the ones formulated
in [2] and [6].

The author would like to express his thanks for many helpful sugges-
tions he received from Murray Marshall while working on the paper, espe-
cially regarding the proof of Theorem 5. He is also indebted to Franz-Viktor
Kuhlmann for his careful reading and useful improvements that made the
presentation more comprehensible.

2. Artin-Schreier theory

Let (F,Π, ·,−, 0, 1) be a multifield. An ordering of level n is a subset
P ⊂ F such that P + P ⊂ P , P ∗ is a subgroup of F ∗, and F ∗/P ∗ is a cyclic
group with |F ∗/P ∗| | 2n. If |F ∗/P ∗| = 2m, we say that p has exact level m.

Remarks:
1. Clearly, if P has level n, then P has level n+ r, for r ≥ 0.

2. What is defined in Section 3 of [5] as ordering (that is, a subset P ⊂ F
such that P + P ⊂ P , PP ⊂ P , P ∪ −P = F , and P ∩ −P = {0}), will be
called an ordinary ordering here. Note that an ordinary ordering is an ordering
of exact level 1.

Proof. Let P be an ordinary ordering of F . By definition, P + P ⊂ P .
Since P∪−P = F and PP ⊂ P , it follows that F 2 ⊂ P . Therefore, for a ∈ P ∗,
1
a = a ·

(
1
a

)2 ∈ P ∗, and thus P ∗ is a subgroup of F ∗. Finally, for a ∈ F ∗,
either a ∈ P ∗ or a ∈ −P ∗, so that P ∗ and −P ∗ are the only two cosets in the
group F ∗/P ∗. �

Just as is the case with orderings of higher level of fields, to study orderings
of higher level of multifields it proves to be technically important to introduce
the notion of a preordering. By definition, a preordering of level n is a subset
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T ⊂ F such that T + T ⊂ T , TT ⊂ T , F 2n ⊂ T . Readily, every ordering is
a preordering.

3. T ∗ is a subgroup of F ∗.

Proof. Fix a ∈ T ∗. Since TT ⊂ T , and F 2n ⊂ T ,

1

a
=

(1
a

)2n

· a2
n−1 ∈ T ∗. �

Note that F ∗/T ∗ need no longer be cyclic. We can, however, define the
exact level of T : if F 2m ⊂ T , but F 2m−1 6⊂ T , then we say that T has exact
level m.

4. If T is a preordering of exact level m that is also an ordering (that is,
F ∗/T ∗ is cyclic), then, as an ordering, T has exact level m.

Proof. Let a ∈ F ∗ be an element such that a2
m−1

/∈ T ∗ and a2
m ∈ T ∗.

One readily checks that F ∗/T ∗ = 〈aT ∗〉, and that |F ∗/T ∗| = 2m. �

We shall now define proper preorderings. There are a few subtle issues
that we should discuss in some detail.

5. Either T = −T , or T ∩ −T = {0}.

Proof. Assume that T 6= −T . Replacing a with −a, if necessary, we may
assume that there is a ∈ T such that −a /∈ T . Fix b ∈ T ∩ −T . If b 6= 0,
then b ∈ T ∗, and −b ∈ T ∗. Consequently, 1

b ∈ T ∗, 1
−b ∈ T ∗, and −a =

(−a) · 1
−b · (−b) = a · 1

b · (−b) ∈ T , which is impossible. �

6. T = −T if and only if T is a submultifield of F .

Proof. The implication (⇒) is clear. For the other one, fix a ∈ T .
Since T − T ⊂ T , there is an element b ∈ T such that b ∈ a − a. Then
−a ∈ b− a ⊂ T − T ⊂ T . �

7. T ∩ −T = {0} if and only if −1 /∈ T .

Proof. Assume T ∩ −T = {0}. If −1 ∈ T , then, as 1 = 12
n ∈ T ,

−1 ∈ T ∩ −T – a contradiction. Conversely, if −1 /∈ T , and a ∈ T ∗ ∩ −T ∗,
then 1

a ∈ T ∗, and −1 = (−a)· 1a ∈ T ∗, which, again, yields a contradiction. �
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A preordering T will be called proper, if −1 /∈ T . Note that a proper
preordering of level n is also a proper preordering of exact level m, for some
m ≤ n.

8. A preordering P of exact level m maximal subject to the condition P
is proper is an ordering of exact level m. In particular, a proper preordering
of level n is contained in a proper ordering of level n.

Proof. It suffices to show F ∗/P ∗ is cyclic with |F ∗/P ∗| = 2m. Firstly,
we claim that, for a ∈ F ∗ such that a2 ∈ P , one has a ∈ P ∪ −P . Assume
a ∈ F ∗ with a2 ∈ P , and a /∈ P . Then P − Pa is a preordering of exact
level m with −a ∈ P − Pa, and P ⊂ P − Pa. We claim that −1 /∈ P − Pa.
For suppose −1 ∈ s− at, for s, t ∈ P . If t = 0, then −1 = s ∈ P , contrary to
the assumption P is proper. Thus t 6= 0, and at ∈ 1 + s, so a ∈ 1

t +
s
t ⊂ P

– a contradiction. Now, due to the maximality of P , P = P − Pa, and,
consequently, −a ∈ P .

Since F 2m−1 6⊂ P , we may choose ω ∈ F ∗ with ω2m−1

/∈ P ∗. We shall
show that F ∗/P ∗ = 〈ωP ∗〉, and that |F ∗/P ∗| = 2m. Since ωiP ∗ 6= ωjP ∗,
for i 6= j, i, j ∈ {0, . . . , 2m−1}, it suffices to show that, for a ∈ F ∗, a ∈ ωkP ∗,
for some k ∈ {0, . . . , 2m−1}. Clearly, a2

m ∈ P ∗, so, by our claim, a2
m−1 ∈ P ∗

or −a2
m−1 ∈ P . If the latter is the case, as ω2m ∈ P , and ω2m−1

/∈ P ∗,
we see that ω2m−1 ∈ −P ∗, and, consequently, a2

m−1

ω2m−1

= (aω)
2m−1

∈ P ∗.
Repeating the argument, we get that either a2

m−2 ∈ P ∗ or (aω`)2
m−2 ∈ P ∗,

for some ` ∈ {1, . . . , 2m − 1}. By induction, we eventually show that a ∈ P ∗

or aωk ∈ P ∗, for some k ∈ {1, . . . , 2m − 1}, which finishes the proof. �

Denote by ΣF 2n the set of all sums of 2n powers: ΣF 2n =
⋃
{a2n1 + . . .+

a2
n

k : a1, . . . , ak ∈ F, k ∈ N}. We call F formally n−real if −1 /∈ ΣF 2n . In
view of the above remarks we have the following:

Theorem 1. Let F be a multifield. The following conditions are equiva-
lent:
(1) F is formally n−real,
(2) F admits an ordering of level n,
(3) F admits a preordering of level n.

For a preordering T of F , denote by XT the set of all orderings P of level
n of F with T ⊂ P .

Theorem 2. Let F be a multifield, T ⊂ F a preordering of level n. If T
is proper, then T =

⋂
P∈XT

P .
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Proof. Fix a ∈
⋂

P∈XT
P and suppose that a /∈ T . Clearly, a 6= 0.

Replacing a with a2
n−1

, if necessary, we may assume a2 ∈ T . Then T − Ta is
a preordering in F . Observe that −1 /∈ T − Ta. Indeed, suppose a contrario
that −1 ∈ s − at, for s, t ∈ T . If t = 0, then −1 = s ∈ T , contrary to
the assumption that T is proper. Thus t 6= 0, and at ∈ 1+s, so a ∈ 1

t +
s
t ⊂ T

– a contradiction. Therefore −1 /∈ T − Ta, and we may extend T − Ta
to an ordering P maximal subject to the condition P is proper with −a ∈ P
and T ⊂ T − Ta ⊂ P . Consequently, a ∈ P , and thus −1 = −a·a

a2 ∈ P –
a contradiction. �

Corollary 3. Let F be a formally n−real multifield. Then ΣF 2 is the
intersection of all orderings of level n in F .

3. The Positivstellensatz

We now define orderings and preorderings of higher level for multirings and
prove an abstract version of the Positivstellensatz known from the classical
ring theory. Let (A,Π, ·,−, 0, 1) be a multiring. An ordering of level n is
a subset P ⊂ A such that
(O1) P + P ⊂ P , PP ⊂ P , A2n ⊂ P ;
(O2) P ∩ −P = p is a prime ideal of A;
(O3) if ab2

n ∈ P , then a ∈ P or b ∈ P ∩ −P ;
(O4) the set

P =
⋃{

a2
n

1 p1 + . . .+ a2
n

k pk : a1, . . . , ak ∈ k(p), p1, . . . , pk ∈ P, k ∈ N
}

is an ordering of level n of the multifield k(p). Recall that pi = pi + p ∈
A/p, i ∈ {1, . . . , k}.

If P is an ordering of exact level m, we say that P is of exact level m.

Remarks:
1. For a prime ideal p in A, orderings on A having the support p correspond

bijectively to orderings on k(p): let π : A → A/p → k(p) denote the canonical
homomorphism – then, if P is an ordering of level n in A, P = π−1(P ).
Conversely, if p ∈ Spec (A) and P ′ is an ordering of level n in k(p), then
P = π−1(P ′) is an ordering such that P = P ′. Thus an ordering P of level
n on A can be thought of as a pair (p, P ), where p ∈ Spec (A) and P is
an ordering of level n of the multifield k(p).
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2. If P has level n, then P has level n + r, for r ≥ 0. This follows
immediately from the fact that P is an ordering of level n+ r, for r ≥ 0.

3. What is called an ordering in Section 4 of [5], will be called an ordinary
ordering here. Note that an ordinary ordering is an ordering of level 1 –
this follows readily from the fact that the ordinary ordering P is an ordering
of level 1.

A subset T ⊂ A is called a preordering of level n if T + T ⊂ T , TT ⊂ T ,
and A2n ⊂ T . Obviously, every ordering is a preordering. If A2m ⊂ T , but
A2m−1 6⊂ T , we say T has exact level m.

4. If T is a preordering of exact level m that is also an ordering, then, as
an ordering, T has exact level m.

As in the multifield case, a preordering T will be called proper if −1 /∈ T .
Just like in the multifield case, we shall now show how proper preorderings
can be extended to orderings, and prove a theorem analogous to Theorem
1. As an application, we will prove a theorem analogous to Theorem 2 that
in the multiring case is usually called a Positivstellensatz. In doing so we
will utilize the notion of T−modules – this essentially follows the method
presented in [3], although the results in the ring case can be also found in [2]
and [6]. For a preordering T of level n, a T−module is a subset M ⊂ A such
that M +M ⊂ M , T ·M ⊂ M , and 1 ∈ M . If, in addition, −1 /∈ M , we call
M a proper T−module.

5. If I ( A is an ideal in A, and M is a T−module over a proper pre-
ordering T , denote by M/I the image of M in the factor multiring A/I via
the canonical projection A → A/I. M/I is a proper T/I−module if and only
if (1 +M) ∩ I = ∅, in which case M + I is a proper T−module.

If M is a proper T−module over a proper preordering, and I is an ideal
of A, we call I M−convex if, for m,n ∈ M , (m+n)∩ I 6= ∅ implies m,n ∈ I.
This roughly corresponds to the notion of M−compatibility in the ring case
defined in [6].

6. Let M be a proper T−module over a proper preordering, and I ( A
an ideal. Then the following conditions are equivalent:
(a) I is M−convex,
(b) M + I is a proper T−module with (M + I) ∩ −(M + I) = I,
(c) M/I is a proper T/I−module with M/I ∩ −M/I = {0}.

Proof. (b) ⇔ (c) is clear. To show (a) ⇒ (b), assume I is M−convex.
Then (1+M)∩I = ∅, for if 1+m ∈ I, for some m ∈ M , since I is M−convex,
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1 ∈ I, contrary to I ( A. Thus −1 /∈ M + I, for if −1 ∈ m + a, for m ∈ M
and a ∈ I, then −a ∈ 1 + m and −a ∈ AI ⊂ I – therefore M + I is a
proper T−module. Clearly, I ⊂ (M + I) ∩ −(M + I), and for the other
inclusion fix an a ∈ (M + I)∩−(M + I). Let a ∈ m1 + b1 and a ∈ −m2 − b2,
for m1,m2 ∈ M , b1, b2 ∈ I. Hence 0 ∈ a − a ⊂ m1 + b1 + m2 + b2, and,
consequently, m1 +m2 ∩−b1 − b2 6= ∅, and since I is M−convex, m1,m2 ∈ I,
implying a ∈ I.

Conversely, assume (b), and let (m1 + m2) ∩ I 6= ∅ with m1,m2 ∈ M .
Then, for some a ∈ I, a ∈ m1 + m2, so that −m1 ∈ m2 − a ⊂ M + I, and
−m2 ∈ m1− a ⊂ M + I. This implies m1,m2 ∈ (M + I)∩−(M + I) = I. �

7. Let M be a proper T−module over a proper preordering T such that
A = T − T , let I ⊂ A be an ideal generated by M ∩ −M . Then I ( A and I
is M−convex.

Proof. Clearly, I = ΣA(M ∩ −M). Observe that, since A = T − T ,
I ⊂ −M . In particular, since M is proper, 1 /∈ I, so I is proper itself. To
show that I is M−convex, take m,n ∈ M with (m+n)∩I 6= ∅. Consequently,
(m+n)∩−M 6= ∅, which readily implies −m,−n ∈ M , and thus m,n ∈ I. �

8. Let M be a proper T−module over a proper preordering T such that
A = T−T , let p ⊂ A an ideal maximal subject to the condition (1+M)∩p = ∅.
Then p is prime and M−convex.

Proof. Clearly, M+p is a proper T−module. Let q be the ideal generated
by (M + p) ∩ −(M + p). By 7, q is a proper (M + p)−convex ideal, so, by
6, (M + p)/q is a proper T/q−module, and, by 5, (1 + (M + p)) ∩ q = ∅,
and, consequently, (1 + M) ∩ q = ∅. Due to maximality of p, p = q, so p is
(M + p)−convex and, in particular, M−convex.

It remains to show that p is prime. Fix ab ∈ p with b /∈ p. p is maximal
subject to the condition (1+M)∩p = ∅, so, since b /∈ p, there exists c ∈ A with
c ∈ 1 +m and c ∈ a1b+ . . .+ akb+ p, for m ∈ M , a1, . . . , ak ∈ A, and p ∈ p.
Then ca2

n ∈ a1a
2n−1ab+ . . .+aka

2n−1ab+a2
n

p ⊂ p, and ca2
n ∈ a2

n

+ma2
n

,
with a2

n

,ma2
n ∈ M . In particular, (a2

n

+ ma2
n

) ∩ p 6= ∅, so a2
n ∈ p, and

it remains to show that if a2 ∈ p, then a ∈ p.
Suppose there is an a ∈ A with a2 ∈ p and a /∈ p. Replacing A by A/p,

T by (T + p)/p, and M by M/p, we may assume p = (0), and, consequently,
a2 = 0. By the definition of p, there exists d ∈ A with d ∈ 1 + m and
d ∈ b1a+ . . . bla, for m ∈ M , and b1, . . . , bl ∈ A. Let k be the smallest integer
k ≥ 1 such that m2k ∈ M . Since m2n ∈ M , the integer k is well-defined.
We claim that there exists d′ ∈ A with d′ ∈ 1 +m′ and d′ ∈ b′1a+ . . . b′l′a, for
m′ ∈ M , and b′1, . . . , b

′
l′ ∈ A such that m′2k−1 ∈ M .
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Indeed, observe that d2 ∈ 1 + m + m + m2. Let m′ = −m2. Note that
d2 ∈ Σbibja

2 = {0}, that is d2 = 0. Then m′ = −m2 ∈ 1 +m+m ⊂ M , and,
obviously, m′2k−1 ∈ M . Moreover, since m ∈ d− 1, we see that −m′ = m2 ∈
d2 − d − d + 1 = 1 − d − d. Thus there exists d′ ∈ d + d with −m′ ∈ 1 − d′,
that is d′ ∈ 1 +m′, and clearly d′ ∈ b′1a+ . . . b′l′a, for some b′1, . . . , b

′
l′ ∈ A.

By induction, we eventually show that there exists d′ ∈ A with d′ ∈ 1+m′

and d′ ∈ b′1a + . . . b′l′a, for m′ ∈ M , and b′1, . . . , b
′
l′ ∈ A such that m′2 ∈ M .

But then d′2 ∈ p, and d′2 ∈ 1 + m′ + m′ + m′2 ⊂ 1 + M , contrary to the
definition of p. �

Just as we defined the ordering P , we now define the preordering T of the
field k(p), and the T−module M :

T =
⋃

{a2
n

1 t1 + . . .+ a2
n

k tk : a1, . . . , ak ∈ k(p), t1, . . . , tk ∈ T/p, k ∈ N},

M =
⋃

{a2
n

1 m1 + . . .+ a2
n

k mk : a1, . . . , ak ∈ k(p),m1, . . . ,mk ∈ M/p, k ∈ N}.

9. Let M be a proper T−module over a proper preordering T such that
A = T − T , let p ⊂ A be a prime ideal with (1 + M) ∩ p = ∅. Then M
is proper.

Proof. Let p be as desired. Observe that T−T = k(p). Indeed, note that
2n! ∩ p = ∅, since (1 +M) ∩ p = ∅ and 2n!− 1 ⊂ M . Moreover, 2n! ⊂ k(p)∗,
and, in fact, 2n! ⊂ T

∗, so that if we fix a ∈ k(p), then 2n!a ⊂ T − T , which
implies a ∈ T − T .

M is clearly a T−module, and to show it is proper, it suffices to note that
M ∩−M is an ideal. This follows from the fact that T (M ∩−M) ⊂ M ∩−M ,
and that T − T = k(p). �

10. Let M be a proper T−module over a proper preordering T such that
A = T − T . Then there exists a M−convex p ∈ Spec (A) such that M
is proper. This follows immediately from 8 and 9, since (1 +M) ∩ (0) = ∅.

11. Let T be a proper preordering such that A = T −T . Then there exists
a p ∈ Spec (A) such that T is proper. This follows from 10 and the fact that
T is a proper T−module itself.

12. A preordering P of level n maximal subject to the condition that P
is proper and A = P − P is an ordering of level n.

Proof. By 11, there exists p ∈ Spec (A) with P proper. Now, by Theorem
1, there is an ordering P ′ in k(p) such that P ⊂ P ′. If π : A → A/p → k(p) is
the canonical homomorphism, then π−1(P ′) is an ordering with P ⊂ π−1(P ′),
and, by maximality of P , actually P = π−1(P ′). �
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By summing up what we have proven so far, we obtain a result similar to
Theorem 1. As before, we call A formally n−real if −1 /∈ ΣA2n .

Theorem 4. Let A be a multiring. The following conditions are equiva-
lent:
(1) A is formally n−real with A = ΣA2n − ΣA2n ,
(2) A admits an ordering of level n P such that A = P − P ,
(3) A admits a preordering of level n T such that A = T − T .

Just like in the multifield case, we denote by XT the set of all orderings
containing a preordering T . The following theorem, called the Positivstellen-
satz, is a result analogous to Theorem 2:

Theorem 5. Let A be a multiring, T ⊂ A a preordering of level n. If T is
proper and such that A = T−T , then the following conditions are equivalent:
(1) a ∈

⋂
P∈XT

P ,
(2) at ∈ a2

nk

+ t′, for some t, t′ ∈ T , k ∈ N.

We shall precede the proof with two lemmas.

Lemma 6. Let A be a multiring, let T be a proper preordering such that
A = T − T , and let a ∈ P , for all P ∈ XT . If M = T − aT is a proper
T−module, then there exists an M−convex p ∈ Spec (A) with a ∈ p.

Proof. Assume M = T − aT is a proper T−module. By 8, the ideal p
maximal subject to the condition (1 +M) ∩ p = ∅ is prime and M−convex,
so it suffices to show that a ∈ p. By 9, T is proper, and, by Theorem 1,
T =

⋂
P ′∈X

T
P ′. In particular, a = a + p ∈ T . Since M is a T−module, this

implies a ∈ M ∩ −M = (0), by 7. Thus a ∈ p. �

Lemma 7. Let A be a multiring, let T be a proper preordering such that
A = T − T , and let a ∈ A∗ be a unit. If a ∈

⋂
P∈XT

P , then at ∈ 1 + t′, for
some t, t′ ∈ T .

Proof. Since a ∈ A∗, a is not contained in any ideal of A, and thus, by
Lemma 6, M = T−aT is not a proper T−module, so that (1+T )∩aT 6= ∅. �

We now proceed to the proof of Theorem 5.

Proof of Theorem 5. (2) ⇒ (1) : Assume (2) and suppose a /∈ P , for
some P ∈ XT . Identify P with the pair (p, P ). Then a2

nk

+ t
′ ⊂ P

∗, hence
at ∈ P

∗, and a ∈ P , so that a ∈ P – a contradiction.
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(1) ⇒ (2) : Assume (1). Firstly, suppose a is nilpotent. Then a2
n`+1 = 0,

for some ` ∈ N. Thus, since a · a2n`

= 0 = a2
n2` ∈ a2

n2`

+ 0, and a2
n`

, 0 ∈ T ,
and we are done.

Secondly, suppose a is non-nilpotent. Let Aa denote the localization of A
with respect to the multiplicative set {1, a, a2, a3, . . .}, and let Ta = { t

a2n` : t ∈
T, ` ∈ N}. Clearly, Ta + Ta ⊂ Ta, Ta · Ta ⊂ Ta, A2n

a ⊂ Ta, and Aa = Ta − Ta.
If −1 ∈ Ta, then 0 ∈ a2

n`

+ t, for some ` ∈ N, t ∈ T . If −1 /∈ Ta, then,
by Theorem 4, the set XTa

of orderings of Aa is nonempty. For a fixed
ordering P ′ ∈ XTa

, consider the set P = {b ∈ A : b
1 ∈ P ′}. Again, readily

P+P ⊂ P , PP ⊂ P , and A2n ⊂ P . P ∩−P = p is the contraction of the ideal
P ′∩−P ′ = p′, and P = P ′ in the multifield k(p) = k(p′). Since a ∈

⋂
P∈XT

P ,
it follows that a

1 ∈
⋂

P ′∈XTa
P ′. Moreover, as a is non-nilpotent, a

1 ∈ A∗
a. By

Lemma 7, we find t, t′ ∈ Ta with a
1 t ∈ 1 + t′. Pulling this back to A finishes

the proof. �
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