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ON INVERTIBLE PRESERVERS OF SINGULARITY
AND NONSINGULARITY OF MATRICES OVER A FIELD

Józef Kalinowski

Abstract. Invertible operators preserving singularity of matrices were studied
in [3] and [4] under assumption that operators are linear. In the present paper
the linearity of operators is not assumed: we assume only that operators are of
the form F = (fi,j), where fi,j : F −→ F and F is a field, i, j ∈ {1, 2, . . . , n}.
If n ≥ 3, then in the matrix space Mn(F) operators preserving singularity of
matrices must be as in [1]. If n ≤ 2, then operators may be nonlinear. In this
case the forms of the operators are presented.

Let R,C,N denote the set of real numbers, complex numbers or positive
integer numbers, respectively. Let Mn(F) be the set of n × n matrices over
a field F , i.e. Mn(F) = Fn×n, where n ∈ N.

First of all let us introduce

Definition 1. An operator F from Mn(F) into itself is an operator pre-
serving singularity of matrices from Mn(F) if and only if for every singular
matrix A ∈ Mn(F) the matrix F (A) is singular.

Definition 2. An operator F from Mn(F) into itself is an operator pre-
serving nonsingularity of matrices from Mn(F) if and only if for every non-
singular matrix A ∈ Mn(F) the matrix F (A) is nonsingular.

Let S, NS denote the set of singular or nonsingular matrices from Mn(F),
respectively.
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In the paper we consider the operators F from Mn(F) into itself of the
form

(1) F = (fi,j), where fi,j : F −→ F , i, j = 1, 2, . . . , n,

where the matrix F (A) := (fi,j(ai,j)) for i, j = 1, 2, . . . , n, for any matrix
A ∈ Mn(F).

Remark 1. In case of n = 1 an invertible operator F of the form (1) is
an operator preserving singularity of matrices from M1(F) if and only if for
x ∈ F the equivalence x = 0 ⇐⇒ f1,1(x) = 0 holds.

Lemma 1. If an operator F of the form (1), from Mn(F) into itself for
n ≥ 2, where F is a field, is an invertible operator, then all functions fi,j for
i, j ∈ {1, 2, . . . , n} are injective.

Proof. Let us assume that n ≥ 2. We denote the matrix whose i, j entry
is 1 and the remaining entries of which are 0 by Ei,j . Let us consider the
matrices F (xEi,j). If F is an invertible operator, then the function fi,j is
injective, which completes the proof. �

Lemma 2. If an invertible operator F of the form (1), from Mn(F) into
itself for n ≥ 2, where F is a field, preserves singularity of matrices in the
space Mn(F), then the equivalence

(2) x = 0 ⇐⇒ fi,j(x) = 0

holds for all x ∈ F , i, j ∈ {1, 2, . . . , n}.

Proof. Let us assume that n ≥ 2. Let F be an operator preserving
singularity of matrices. Let indices i, j ∈ {1, 2, . . . , n} be arbitrary and fixed.
We would like to prove that fi,j(0) = 0.

Let us consider the matrix B1 = (bk,l), k, l = 1, 2, . . . , n, such that bi,l = 0
for l = 1, 2, . . . , n. When we exchange the first row with the i-th row and next
exchange first column with the j-th column, we obtain the matrix B2 ∈ S.
Then also F (B2) ∈ S and with fi,j(0) in the left-upper corner.

Therefore without the loss of generality we may prove that f1,1(0) = 0.
Let us consider the matrix B3 with all elements in the first row being equal
to zero. Then F (B3) ∈ S. Denote yk,l := fk,l(bk,l) for k, l = 1, 2, . . . , n.

We contradictory assume that f1,1(0) 6= 0.
We build singular matrices Bk

3 and Y k obtained from the singular matrix
F (Bk

3 ), for k = 1, 2, . . . , n, by operations do not changing the determinant of
F (Bk

3 ).
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As a first step we define the matrix B1
3 := B3. We construct Y 1 with

entries y1k,l. We obtain the matrix F (B3) with y1,1 = f1,1(0) 6= 0. Multiplying
the first column of this matrix by y−1

1,1 · y1,2, y−1
1,1 · y1,3, . . . , y−1

1,1 · y1,n and
subsrtacting from the second, third, . . . , n-th column, respectively, we obtain
the first row with entries equals to y1,1, 0, . . . , 0. Next, multiplying the first
row by y1k,1 · y

−1
1,1 and substracting from the second, third, . . . , n-th row we

obtain that yk,1 = 0 for k = 2, 3 . . . , n. Then in the k-th row, k = 2, 3, . . . , n
the obtained entries are:

0, yk,2 − y1,2y
−1
1,1yk,1, yk,3 − y1,3y

−1
1,1yk,1, . . . , yk,n − y1,n(y

1
1,1)

−1yk,1.

The obtained matrix we denote by Y 1 and its entries by y1k,l.
As a second step let us consider the element y12,2 = y2,2−y−1

1,1y2,1. If y12,2 6= 0

then B2
3 := B1

2 . If y12,2 = 0 then B2
3 is the matrix obtained from B1

3 with
replaced element b12,2 by b12,2 ∈ F , b12,2 6= b12,2. Let us define y22,2 = f2,2(b12,2).
As f2,2 is an injective function, then y22,2 6= 0. Using this element we bring to
zero the elements of the second row and next the second column. We denote
the obtained matrix in this way by Y 2; it is a singular matrix. We can see
that y2k,l = y1k,l − y1k,2(y

2
2,2)

−1y12,l for k, l = 3, 4, . . . , n.
In the r-th step for r = 3, 4, . . . , n − 1 we consider the element yr−1

r,r =

yr−2
2,2 − (yr−1

1,1 )−1yr−1
2,1 . If br−1

r,r = 0 then Br
3 := Br−1

3 . If yr−1
r,r = 0, then Br

3 is
the matrix obtained from Br−1

3 with replace the element br−1
r,r by br−1

r,r ∈ F ,
br−1
r,r 6= br−1

r,r . We define yrr,r = fr,r(br−1
r,r ). As fr,r is an injective function, then

yrr,r 6= 0. Using this element we bring to zero the elements of the second row
and next the second column. The obtained matrix in this way we denote by
Y r; it is a singular matrix. We can see that yrk,l = yr−1

k,l − y1k,2(y
2
2,2)

−1yr−1
2,l for

k, l = r + 1, r + 2, . . . , n.
In the last n-th step we consider the element yn−1

n,n = yn−2
n,n −(yn−1

1,1 )−1yn−1
2,1 .

If yn−1
n,n 6= 0 then Bn

3 := Bn−1
3 and Y n := Y n−1. If yn−1

n,n = 0 then we replace
bn−1
n,n by bn−1

n,n ∈ F , bn−1
n,n 6= bn−1

n,n . Then the matrix Y n is obtained from the
matrix Y n−1 replacing the element ynn,n by ynn,n = fn,n(bn−1

n,n ).
The Y n is a diagonal matrix Y n = diag(f1,1(0), y22,2, y33,3, . . . , ynn,n), where

yrr,r 6= 0 for r = 2, 3, . . . , n.
Now, taking instead of the matrix B3 the singular matrix Bn

3 and carry-
ing out similar operations on matrices, we obtain the same singular diagonal
matrix Y n with the determinant det (Yn) = f1,1(0) · y22,2 · y33,3 · · · · · ynn,n = 0.
As yrr,r 6= 0 for r = 2, 3, . . . , n, then f1,1(0) = 0. It is contradictory with the
assumption.

By Lemma 1 fi,j is an injective function and therefore fi,j(x) 6= 0 for
x 6= 0, which completes the proof. �



30 Józef Kalinowski

An important role in determining preservers of matrices is played by the
functions satisfying simultaneously the multiplicative and additive Cauchy
functional equations. In particular cases (F = C or F = R) the following
holds true.

Remark 2 (see [6], Chapter XIV, §4, 5 and 6). In the case F = C there are
infinitely many functions g fulfilling simultaneuosly the multiplicative Cauchy
functional equation g(xy) = g(x)g(y) also the additive Cauchy functional
equation g(x + y) = g(x) + g(y). In the case F = R there are two solutions:
g = id and g ≡ 0.

We prove the main result of the paper

Theorem. (a) If n = 2, then an invertible operator F preserves the singu-
larity of matrices on Mn(F) if and only if there exist nonzero u1, u2, v1, v2 ∈ F
and an injective function g : F −→ F satisfying g(0) = 0 and g(xy) =
g(x)g(y) for all x, y ∈ F such that fi,j(x) = uivjg(x) for all x ∈ F .

(b) If n ≥ 3, then an invertible operator F preserves the singularity of matri-
ces on Mn(F) if and only if there are nonzero u1, u2, . . . , un, v1, v2, . . . , vn ∈
F and an injective function g : F −→ F satisfying g(xy) = g(x)g(y) and
g(x + y) = g(x) + g(y) for all x, y ∈ F such that fi,j(x) = uivjg(x) for all
x ∈ F .

Thus, for n ≥ 3 the singularity preserving maps F on Mn(F) may be
written in the form of F (A) = U [g(ai,j)]V , where U = diag(u1, u2, . . . , um)
and V = diag(v1, v2, . . . , vn) are invertible diagonal matrices and g is an
injective endomorphism of F . For n = 2, the additivity of g may even be
relaxed to the sole requirement that g(0) = 0. Note that the maps of part (a)
may be nonlinear: for example, one can take g(x) = x3.

Proof. Let n ≥ 2 and suppose F is an operator preserving singularity on
Mn(F). By Lemma 2 fi,j(0) = 0 and fi,j(x) 6= 0 for all i, j and all x 6= 0.
Denote ci,j = fi,j(1). Because fi,j(1) 6= 0, we obtain that ci,j 6= 0 for all i, j.
Put gi,j(x) = c−1

i,j fi,j(x). Clearly, gi,j(0) = 0 and gi,j(1) = 1 for all i, j. Let
us define the matrix C = (ci,j). By Lemma 2, the rank C ≥ 1. We prove that
rank C = 1.

In the case n = 2 the matrix whose all entries are 1 is singular, then rank
C = 1.

In the case n ≥ 3 we suppose contradictory that rank C = k > 1. Without
any loss of generality we may assume that the determinant of the upper-left
submatrix of C of the order k is not equal to zero. Let us consider the matrix
B1 =

∑k
i=1

∑k
j=1 Ei,j +

∑n
l=k+1 El,l. Note that the matrix B1 ∈ S. Then the
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matrix F (B1) =
∑k

i=1

∑k
j=1 Ei,jci,j +

∑n
l=k+1 cl,lEl,l. From the properties of

determinants det F (B1) 6= 0 and F (B1) ∈ S. Then the rank C can not be
greater than 1, it must be equal to one.

Then in cases n = 2 and n ≥ 3 the equality rank C = 1 holds. This implies
that there are ui, vj ∈ F such that fi,j(1) = uivj for all i, j.

For 1 ≤ i 6= r ≤ n and 1 ≤ k 6= l ≤ n, let B2 = Ei,k + xEi,l +Er,k + xEr,l.
Matrices B2, F (B2) ∈ S and therefore

0 = fi,k(1)fr,l(x)− fr,k(1)fi,l(x) = uivkurvlgr,l(x)− urvkuivlgi,l(x),

as gr,l(x) = gi,l(x) for all x ∈ F . Consequently, the matrix G = (gi,j) is
constant along its column. Analogously one can show that G is constant
along the rows. This implies that all gi,j are one and the same function g and
that therefore fi,j(x) = uivjg(x) for all i, j and all x. Note that g(0) = 0 and
g(1) = 1.

By Lemma 1 we obtain that g is an injective function.
To show that g(xy) = g(x)g(y), take B3 = E1,1 + xE1,2 + yE2,1 + xyE2,1.

Since B3, F (B3) ∈ S, we obtain that

0 = f1,1(1)f2,2(xy)− f1,2(x)f2,1(y) = u1v1u2v2g(xy)− u1v2u2v1g(x)g(y),

that is, we arrive at the equality g(xy) = g(x)g(y) for all x, y ∈ F .
At this point we have proved the necessary condition on F part of (a).

To obtain the necessary condition on F part of (b), we assume n ≥ 3 and
consider

B4 = xE1,1 + E1,2 + yE2,1 + E2,3 + (x+ y)E3,1 + E3,2 + E3,3.

As B4 ∈ S, we conclude that the determinant of the upper-left 3×3 submatrix
of F (B4) must be zero, which means that

0 = u1u2u3v1v2v3(−g(x)− g(y) + g(xy)).

Thus, g(x+ y) = g(x)+ g(y). The proof of the necessary condition on F part
of (b) is also complete.

We now prove the sufficient condition on the F parts (a) and (b). By
Lemma 2 F maps the zero matrix to itself. By Theorem from [5] it follows
that F is an operator preserving rank of matrices from Mn(F) in parts (a)
and (b). Then it also preserves the singularity of matrices from Mn(F), which
completes the proof. �

An analogous theorem for invertible operators of the form (1) preserving
nonsingularity of matrices is not true. Let us consider the following example.
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Example. In particular case F = R let us consider the operator H =
(hi,j) of the form (1) from Mn(R) into itself with functions

hi,j(x) =


n!

(
7

4
+

1

2π
arctan(x)

)
for i = j,

1

n!

(
3

4
+

1

2π
arctan(x)

)
for i 6= j

for x ∈ R. The functions hi,j are injective on R.
Let us consider a matrix X ∈ Mn(R) with entries xi,j . We prove that H

maps every matrix from Mn(R) to NS. We prove that the determinant of the
matrix H(X) is positive.

From the definition of the determinant

detH(X) =
n∏

i=1

hi,i(xi,i) +
n∑

i=1

∏
σ(i)

(−1)Iihi,σ(i)(xi,σ(i)),

where σ is a permutation of the set {1, 2, . . . , n}, Ii denotes the number of
inverses in the permutation σ(i).

Let us observe that 1
2n! < hi,j(xi,j) <

1
n! for i 6= j and n! < hi,i(xi,i) < 2n!.

From the above inequalities
∏n

i=1 hi,i(xi,i) > (n!)n and

∏
σ(i)

hi,σ(i)(xi,σ(i)) <
1

n!
· (2n!)n−1 = 2n−1 · (n!)n−2.

Using these inequalities we obtain

detH(X) > (n!)n +

(
n!

2
− 1

)
·
(

1

2n!

)n

−
(
n!

2

)
· (n!)n−2 · 2n−1

> (n!)n − (n!)n−1 · 2n−2 = (n!)n−1(n!− 2n−2).

As n!− 2n−2 > 0 for n ∈ N, then detH(X) > 0, i.e. H(X) ∈ NS.
The operator H is invertible and preserves the nonsingularity of matrices

from Mn(R).
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