THE INVARIANT STRAIGHT LINES OF AN AFFINE TRANSFORMATION IN \mathbb{R}^{n} WITHOUT FIXED POINTS

Erwin Kasparek

Abstract

In this note we prove that every affine transformation in \mathbb{R}^{n} of the form $f(x)=A x+a$ without fixed points has an invariant straight line if and only if when $g(a) \in \operatorname{Im}(g \circ g)$, where $g(x)=(A-I) x$.

In [1] it was proved that an affine transformation f in \mathbb{R}^{n} without fixed points and which fulfils the inequality $|f(x) f(y)| \leq|x y|$ for any x and y has an invariant straight line. In this note we will solve this problem for arbitrary affine transformation in \mathbb{R}^{n} without fixed points.

If an affine transformation f has an invariant straight line l, then the restriction of the transformation f to l is a translation by some nonzero vector v (f has no fixed points). For a given vector $v \in \mathbb{R}^{n}$ the set

$$
H=\left\{x \in \mathbb{R}^{n}: A x+a=x+v\right\}
$$

is either empty or an affine subspace of the \mathbb{R}^{n}. If $v=0$ then the set H is empty because the affine transformation has no fixed points.

In this note we are going to find a nonzero vectors v such that the set H would be nonempty and invariant under the transformation f.

ThEOREM 1. An affine transformation f has an invariant affine subspace H of the \mathbb{R}^{n} determined by some vector $v \neq 0$ if and only if when the vector a has a decomposition $a=v+u$, where $v \in \operatorname{ker} g, u \in \operatorname{Im} g$ and $g(x)=(A-I) x$.

Key words and phrases: affine transformation, invariant affine subspace.

Proof. Necessity. If the equation

$$
\begin{equation*}
A x+a=x+v \tag{1}
\end{equation*}
$$

has a solution, with respect to x, for some vector v, then $v-a \in \operatorname{Im} g$. The general solution of the system (1) has the form $x=s_{1} a_{1}+\ldots+s_{p} a_{p}+x_{0}$, where the vectors a_{1}, \ldots, a_{p} form a basis of the ker g and x_{0} is a particular solution of the system (1). It is easy to check that $f(H)=H+v$ and thus $f(H)=H$ if and only if when $v \in \operatorname{ker} g$. Taking into account that $v-a \in \operatorname{Im} g$ we obtain the assertion.

Sufficiency. If $a=v+u$, where v is a nonzero vector which belongs to ker g and u belongs to $\operatorname{Im} g$, then the linear equation (1) can be written in the equivalent form

$$
\begin{equation*}
(A-I) x=-u \tag{2}
\end{equation*}
$$

Because $u \in \operatorname{Im} g$, so $(A-I) x_{1}=-u$ for some $x_{1} \in \mathbb{R}^{n}$, thus we can rewrite the system (2) in the form

$$
\begin{equation*}
(A-I)\left(x-x_{1}\right)=0 \tag{3}
\end{equation*}
$$

Since the affine transformation f has no fixed points, we have $\operatorname{det}(A-I)=0$. Thus the system (3) has a nonzero solution. The affine subspace H determined by the vector v is invariant under the transformation f, because $v \in \operatorname{ker} g$.

Theorem 1 is equivalent to the following

Theorem 2. An affine transformation f has an invariant affine subspace H determined by some vector v if and only if when $g(a) \in \operatorname{Im}(g \circ g)$.

Proof. Necessity. From Theorem 1 we have the decomposition $a=v+u$, where $v \in \operatorname{ker} g$ and $u \in \operatorname{Im} g$. Thus $g(a)=g(u)$, i.e. $g(a) \in \operatorname{Im}(g \circ g)$.

Sufficiency. If $g(a) \in \operatorname{Im}(g \circ g)$ then there exists some vector $w \in \mathbb{R}^{n}$ such that $g(a)=g(g(w))$. Thus $g(a-g(w))=0$. This denotes that $a-g(w) \in \operatorname{ker} g$. We conclude that $a=v+g(w)$ for some vector $v \in \operatorname{ker} g$. The vector v is nonzero because the affine transformation f has no fixed points.

Corollary 1. If a vector a has a decomposition $a=v+u$, where v is nonzero vector belonging to $\operatorname{ker} g$ and u belongs to $\operatorname{Im} g$, then the straight line l determined by the equation $x=x_{0}+v t$, where x_{0} is a solution of the system (1), is invariant under the affine transformation f.

Proof. If $x=x_{0}+v t$ then $A x+a=A x_{0}+t A v+a$. Because $v \in \operatorname{ker} g$, so $A v=v$ and $A x_{0}+a=x_{0}+v$. Thus we obtain the equality $A x+a=$ $x_{0}+(t+1) v$, i.e. $f(l)=l$.

REMARK 1. The decomposition of the vector a in the form $a=v+u$, where $v \in \operatorname{ker} g$ and $u \in \operatorname{Im} g$, is unique.

Indeed, let us assume that $a=v_{1}+u_{1}$ and $a=v_{2}+u_{2}$, then from Corollary 1 it follows that the straight lines which are specified by the equations: $x=x_{0}+v_{1} t$ and $x=x_{0}+v_{2} t$ are invariant under the affine transformation f and thus the point x_{0} is the fixed point of f, and this is not possible.

Corollary 2. If a linear transformation g of an affine transformation f without fixed points fulfils the equality

$$
\begin{equation*}
\operatorname{ker} g=\operatorname{ker}(g \circ g) \tag{4}
\end{equation*}
$$

then f has an invariant straight line.
Proof. If ker $g=\operatorname{ker}(g \circ g)$ then $\mathbb{R}^{n}=\operatorname{ker} g \oplus \operatorname{Im} g$, i.e. $a=v+u$, where $v \in \operatorname{ker} g$ and $u \in \operatorname{Im} g$. The vector v is nonzero because the affine transformation f has no fixed points. From Corollary 1 we obtain our assertion.

REMARK 2. In particular, the equality (4) is satisfied by affine transformations given by a symmetric matrix or by affine transformations such that the number 1 is a simple characteristic number of its matrix.

Reference

[1] Kasparek E., Remark on invariant straight lines of some affine transformations in \mathbb{R}^{n} without fixed points, Ann. Math. Sil. 19 (2005), 19-21.

Institute of Mathematics
Silesian University
Bankowa 14
40-007 Katowice
Poland

