THE INVARIANT STRAIGHT LINES OF AN AFFINE TRANSFORMATION IN \mathbb{R}^n WITHOUT FIXED POINTS

ERWIN KASPAREK

Abstract. In this note we prove that every affine transformation in \mathbb{R}^n of the form f(x) = Ax + a without fixed points has an invariant straight line if and only if when $g(a) \in \text{Im}(g \circ g)$, where g(x) = (A - I)x.

In [1] it was proved that an affine transformation f in \mathbb{R}^n without fixed points and which fulfils the inequality $|f(x)f(y)| \leq |xy|$ for any x and y has an invariant straight line. In this note we will solve this problem for arbitrary affine transformation in \mathbb{R}^n without fixed points.

If an affine transformation f has an invariant straight line l, then the restriction of the transformation f to l is a translation by some nonzero vector v (f has no fixed points). For a given vector $v \in \mathbb{R}^n$ the set

$$H = \{x \in \mathbb{R}^n : Ax + a = x + v\}$$

is either empty or an affine subspace of the \mathbb{R}^n . If v=0 then the set H is empty because the affine transformation has no fixed points.

In this note we are going to find a nonzero vectors v such that the set H would be nonempty and invariant under the transformation f.

THEOREM 1. An affine transformation f has an invariant affine subspace H of the \mathbb{R}^n determined by some vector $v \neq 0$ if and only if when the vector a has a decomposition a = v + u, where $v \in \ker g$, $u \in \operatorname{Im} g$ and g(x) = (A - I)x.

Received: 25.01.2010. Revised: 22.11.2010.

(2010) Mathematics Subject Classification: 51N20.

Key words and phrases: affine transformation, invariant affine subspace.

36 Erwin Kasparek

Proof. Necessity. If the equation

$$(1) Ax + a = x + v$$

has a solution, with respect to x, for some vector v, then $v-a \in \operatorname{Im} g$. The general solution of the system (1) has the form $x=s_1a_1+\ldots+s_pa_p+x_0$, where the vectors a_1,\ldots,a_p form a basis of the ker g and x_0 is a particular solution of the system (1). It is easy to check that f(H)=H+v and thus f(H)=H if and only if when $v\in\ker g$. Taking into account that $v-a\in\operatorname{Im} g$ we obtain the assertion.

Sufficiency. If a = v + u, where v is a nonzero vector which belongs to $\ker g$ and u belongs to $\operatorname{Im} g$, then the linear equation (1) can be written in the equivalent form

$$(2) (A-I)x = -u.$$

Because $u \in \text{Im } g$, so $(A - I)x_1 = -u$ for some $x_1 \in \mathbb{R}^n$, thus we can rewrite the system (2) in the form

(3)
$$(A-I)(x-x_1) = 0.$$

Since the affine transformation f has no fixed points, we have $\det(A-I)=0$. Thus the system (3) has a nonzero solution. The affine subspace H determined by the vector v is invariant under the transformation f, because $v \in \ker q$. \square

Theorem 1 is equivalent to the following

THEOREM 2. An affine transformation f has an invariant affine subspace H determined by some vector v if and only if when $g(a) \in \text{Im}(g \circ g)$.

PROOF. Necessity. From Theorem 1 we have the decomposition a = v + u, where $v \in \ker g$ and $u \in \operatorname{Im} g$. Thus g(a) = g(u), i.e. $g(a) \in \operatorname{Im} (g \circ g)$.

Sufficiency. If $g(a) \in \text{Im}(g \circ g)$ then there exists some vector $w \in \mathbb{R}^n$ such that g(a) = g(g(w)). Thus g(a-g(w)) = 0. This denotes that $a-g(w) \in \ker g$. We conclude that a = v + g(w) for some vector $v \in \ker g$. The vector v is nonzero because the affine transformation f has no fixed points. \square

COROLLARY 1. If a vector a has a decomposition a = v + u, where v is nonzero vector belonging to $\ker g$ and u belongs to $\operatorname{Im} g$, then the straight line l determined by the equation $x = x_0 + vt$, where x_0 is a solution of the system (1), is invariant under the affine transformation f.

PROOF. If $x = x_0 + vt$ then $Ax + a = Ax_0 + tAv + a$. Because $v \in \ker g$, so Av = v and $Ax_0 + a = x_0 + v$. Thus we obtain the equality $Ax + a = x_0 + (t+1)v$, i.e. f(l) = l.

REMARK 1. The decomposition of the vector a in the form a = v + u, where $v \in \ker g$ and $u \in \operatorname{Im} g$, is unique.

Indeed, let us assume that $a = v_1 + u_1$ and $a = v_2 + u_2$, then from Corollary 1 it follows that the straight lines which are specified by the equations: $x = x_0 + v_1 t$ and $x = x_0 + v_2 t$ are invariant under the affine transformation f and thus the point x_0 is the fixed point of f, and this is not possible.

COROLLARY 2. If a linear transformation g of an affine transformation f without fixed points fulfils the equality

(4)
$$\ker g = \ker(g \circ g),$$

then f has an invariant straight line.

PROOF. If $\ker g = \ker(g \circ g)$ then $\mathbb{R}^n = \ker g \oplus \operatorname{Im} g$, i.e. a = v + u, where $v \in \ker g$ and $u \in \operatorname{Im} g$. The vector v is nonzero because the affine transformation f has no fixed points. From Corollary 1 we obtain our assertion. \square

REMARK 2. In particular, the equality (4) is satisfied by affine transformations given by a symmetric matrix or by affine transformations such that the number 1 is a simple characteristic number of its matrix.

Reference

Kasparek E., Remark on invariant straight lines of some affine transformations in Rⁿ without fixed points, Ann. Math. Sil. 19 (2005), 19−21.

Institute of Mathematics Silesian University Bankowa 14 40-007 Katowice Poland