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EXISTENCE OF POSITIVE PERIODIC SOLUTIONS
OF SOME DIFFERENTIAL EQUATIONS
OF ORDER n (n > 2)

JAN LIGEZA

Abstract. We study the existence of positive periodic solutions of the equa-
tions

2 (t) = p(t)z(t) + pf(t,2(t), ' (1), ..., 2" "D (1) =0,
M (@) + pt)z(t) = pft, x(t), 2 (t),. .., 27D (t)),
where n > 2, > 0, p: (—o0,00) — (0,00) is continuous and l1-periodic, f is

a continuous function and 1—periodic in the first variable and may take values
of different signs. The Krasnosielski fixed point theorem on cone is used.

1. Introduction

Nonnegative solutions of varius boundary value problems for ordinary dif-
ferential equations have been considered by several authors (see for instance in
[1]-]6], [9]-11]). This paper deals with existence of positive periodic solutions
of the nonlinear differential equations of the form:

(1.1) M () — pt)x(t) + pf(t,z(t), 2/ (t),. .., 2" V(@) =0,
(1.2) 2™ () + pt)a(t) = pft,z(t),2'(t), ..., 2"V (1),
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where p: (—00,00) — (0, 00) is continuous, 1-periodic, u > 0, f is a continu-
ous, 1—periodic function in ¢ and may take values of different signs. Existence
in this paper will be established using Krasnosielski fixed point theorem in
a cone, which we state here for the convenience of the reader.

THEOREM 1.1 (K. Deimling [5], D. Guo, V. Laksmikannthan [6]). Let
E = (E,||-]) be a Banach space and let K C E be a cone in E. Assume §;
and Qo are bounded and open subsets of E with 0 € Q1 and Q; C Qo and let
A: KN (Q2\ Q1) = K be continuous and completely continuous. In addition
suppose either

|Au|| < [Jul| forue KNIy and |Aul > ||ul| foru e K NoQs

or

|Au|| > [Jul]| forue KNIy and |Aul < ||ul| forue K NoQs

hold. Then A has a fized point in K N (Q2\ Q1).

2. Green’s function and its sign

In this section we consider the Green functions of the problems:

(2.1) ™ @) —p)z@t) =0, zD0)=291), i=01,....,n—1;

0,
2.2) ™) +pt)zt) =0, zPD0)=2D1), i=0,1,...,n—1;
for n > 2.

First we shall give some notation. We define P{"(R) (m € N) to be the
subspace of B(R) (bounded, continuous real functions on R) consisting of all

1-periodic mapping = such that 2(™) is an 1-periodic and continuous function
on R. For x € P"~}(R) we define

[]ln—1 = Sup ()] + |2" ()] + ... + 2V @)

)

Now we shall give conditions under which 1-periodic solution of equation
(2.1) or (2.2) is a trivial one.

THEOREM 2.1. We assume that p: (—00,00) — (0,00) is continuous and
1—periodic.
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(a) If n =2k +1 (k € N), then problem (2.1) or (2.2) has only the trivial
solution.

(b) If n = 4k + 2 (k € NU {0}), then problem (2.1) has only the trivial
solution.

(¢) If n =4k (k € N), then problem (2.2) has only the trivial solution.

(d) If

(2.3) a= sup p(t) <nw(2m)" 1,
te(0,1]

then problem (2.1) or (2.2) has only the trivial solution.

THEOREM 2.2. We assume that p: (—oo,00) — (0,00) is continuous and
1—periodic. If

(2.4) a= sup p(t) <2(2m)" 2
t€[0,1]
or
1
(2.4) B=[plt)dt <1,
/

then there exist two functions G1(t,s), Ga(t, s) such that:

1° Gy is the Green function of the problem (2.1) and Gy(t,s) < 0 for all
(t,s) €[0,1] x [0,1] and

2° Ga(t, s) is the Green function of the problem (2.2) and Ga(t,s) > 0 for all
(t,s) € [0,1] x [0,1].

In [7] the authors obtained the following results

THEOREM 2.3. We assume that

(e) p: (—00,00) = (0,00) is 1-periodic, p € L*[0,1],
%W, if n is even and n > 2,
(f) )‘nfl = 1 1-3---(n—2) . .
27 24 (n=1)’ if n is odd and n > 3,
1 1
(8) /p(t)dt >0, Ap—1 /p(t)dt <1.
0 0

Then problem (2.2) has only the trivial solution.
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THEOREM 2.4 ([7]). We assume that

(h) p: (—00,00) = (—00,00) is 1-periodic, p € L*[0,1],
(9 ot >0, [1polde <16, pit) 20.
0 0

Then the problem
(2.2) " (t) + pt)z(t) =0, z@(0)=2D(1), i=0,1
has only the trivial solution.

From Corollary 2.3 in [10] it follows

THEOREM 2.5. If p: (—o0,00) — (0,00) is continuous, 1-periodic, and

sup p(t) < w2, then the Green function G(t,s) of the problem (2.2)" has the
te[0,1]
positive sign.

Before giving the proofs of Theorems 2.1-2.2 we formulate three lemmas.

LEMMA 2.6. If x € C'a,b],to € [a,b] and z(ty) = 0, then

b b
(2.5) 2 / 2()dt < (b— a)? / (@)2(t)dt  (see [$8], p. 193).

LEMMA 2.7. If x € C'a,b] and z(a) = x(b) = 0, then

b b

26) / 2()dt < (b—a)? / (@)2(t)dt (see [$8], p. 192).

a a

b
LEMMA 2.8 (Wirtinger). If x € Ct[a,b], z(a) = x(b) and [x(t)dt = 0,

then
b

b
2.7) (2)> / 2()dt < (b— a)? / (@)2(t)dt.

a
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PROOF OF THEOREM 2.1. Let x be a solution of the problem (2.1) or

(2.2). Then we have

(2.8) / ™ () (t)dt — / p(t)z?(t)dt =0

or

/ ™) ()2 (t) dt—i—/ )z (t)dt = 0.

Let n = 2k + 1. Then integrating by parts k—times z(2*+1) (#)z(t) we get

1

(D20 £+ (= 1)’@“ / —0
x(t)zP(t) 1+...+(—1) (x(k +/p =0.

Hence we have
1
/ p(D)22(t)dt = 0.
0

Consequently z = 0. Notice also for n = 4k + 2 or n = 4k that

1

/ 252 () (1) dt — / p(O)22(t)dt = (—1)2+1 / (@ D)2(1)dt

0

- / p(H)22()dt = 0

or
1 1

/ 29 (1) (t)dt + / p(H)z?(t)dt = (~1)* / (@) (t)dt

+ /p(t)xz(t)dt =0.

This yields z = 0.
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Now we will examine case (d). If z is a solution of the problem (2.1)
or (2.2) and z(t) > 0 (z(t) < 0) for all ¢t € [0,1], then

1

0= 0/ 2 () dt = 0/ p()z(t)dt

1 1
= [z =— x .
0— 0/ (t)dt 0/ p(t)z(t)dt

The last equalities yield z = 0.
Let x be a sign—changing solution of the problem (2.1) or (2.2) and let
x(top) = 0. Then z(top + 1) = 2(tp) = 0. By Lemmas 2.7-2.8 we get

to+1 1 to+1 1
29) 2 / 22(0)dt = 2 / 22(H)dt < / ()2 (t)dt = / (@)2(t)dt,
(2.10) (27)> / (@)2()dt < / ()2 (t)dt,
(2.11) 2m)% [ (P2 @)dt < [ (a™)2dt = [ p?(t)2>(t)dt.
/ [erra]

Relations (2.9)—(2.11) imply

1

1
1 1
2 2 2
0 0

which contradicts (2.3). The proof of Theorem 2.1 is finished. O

PROOF OF THEOREM 2.2. Case 1°. As (G; is a continuous function de-
fined on [0,1] x [0,1], we only have to prove that it does not vanish in
every point. Let us suppose, to derive a contradiction, that there exists
(to,s0) € [0,1] x [0,1] such that Gi(to,s0) = 0. First, let us assume that
(to,s0) € (0,1) x [0,1]. Tt is known that for a given sg € (0,1),G1(t, so) as
a function of ¢ is a solution of (2.1) in the intervals [0, s) and (s, 1] such that
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9'G1(0,50) _ 0'G1(1, s0)

2.12 - - =0,1,. -1
( ) 8tl atZ 9 07 b 7”
We define
G1(t, so), for ¢ 1],
(2.13) 2(t) = | G150 or £ € [so,1]
Gl(t— 1,80), fort € [1,80 + 1]

The function z is of the class C"~! and in consequence is a solution of equation
(2.1) in the whole interval [sq, so + 1],

(2.14) 2D (sg) =2 (sg+1) fori=0,1,...,n—2,
and
(2.15) 2V (s0) — 2" V(5o + 1) = 1.

There exists a point £ € [sg, 59-+1] such that ("~ () = 0. From the equalities

t

(2.16) x(t) = /x’(s)ds, V(1) = /x(”)(s)ds, t € [so,s0 + 1],

to

and Lemma 2.6 it follows

so+1 so+1
(2.17) 2 / z2(t)dt < /(m')2(t)dt
and
so+1 so+1
(2.17)/ 2 / (DY (1)t < / (@™)2(¢)d.

On the other hand by Lemma 2.8 we get

so+1 so+1

(2.18) (2r)? / (@)2(t)dt < / (@)2(t)dt,
so+1 so+1
(2.19) (2)> / (@ D)2(#)dt < / (@™ D)2()d.
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Conditions (2.17)—(2.19) yield

So+1 2 So+1
2 @ 2
So S0

Thus x = 0 for t € [sg, s + 1], in contradiction with elementary properties of
Green’s function. Analogously, if ¢y € [0, sg), we get a contradiction.

Finally, if s9 = 0 or so = 1, then G(t,so) is a solution of (2.1) in [0, 1]
such that

8iG1(0, So) . 6ZG1 (1, 50)
oti N oti

i=0,1,...,n—2,

and the same arguments as before lead to a contradiction. Similarly we con-
clude for to = 0 or tg = 1.

Now we will consider case 8 < 1.

From conditions (2.14) we deduce that there exist points t1,...,t,_1 such
that ¢1,...,t,—1 € [S0, S0 + 1] and

z(to) =2'(t) = ... = 2" D(t,_,) =0,

where x is defined by (2.13). Hence

t
(2.21) sup |z(t)]= sup ’/x’(s)ds‘
t€[so,80+1] t€[so,80+1] &
< sup @) <...< sup [2H(@)
tE[SU,So-‘rl] te[So,Sg-‘rl]
t
= sup ’/x(")(s)ds‘
]

tE€[s0,50+1 ¢

n—1

t

= sup ’/p(s):c(s)ds’
tE[Sg,So-‘rl]t

n—1
So+1

< sw 2] [ pe)is

t€[so,s50+1] S
0

1

< sup |:c(t)|/p(8)d8 =B sup |z(t)],

t€[s0,50+1] 0 t€[s0,50+1]

which contradicts (2.4)".
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Thus G has constant sign. Let us prove that this sign is negative. The
unique 1-periodic solution of the equation

(2.22) ™) —p)x(t) =1

is just

(2.23) xz(t) = | G1(t, s)ds.
/

On the other hand integrating (2.22) from 0 to 1 we find

_ / p(H)z(t)dt = 1.

As by hypothesis p(t) > 0 (for all ¢ € [0,1]), z(t) < 0 for some t and as
a consequence G1(t,s) < 0 for all (¢,s) € [0,1] x [0,1]. Proof of case 2° is
similar to that of proof of case 1°. ([l

REMARK 2.9. Let L,: F', — L'[a,b] be operator defined by L,, = D" +

M1, where D = %, 1 is the identity operator, M is a real constant different
from zero and

vy ={ue€Wma,b: ua) = u(b),i=0,...,n—2,u""H(a) > u""V(b)}.

We say that L, is inverse positive in F7'y if Lyu > 0 implies u > 0 for all
u € Fgfb and L,, is inverse negative in Fgfb if L, u > 0 implies u < 0 for all
u € Fpy.

In [4] the author obtained the following results. Let ¢ = /(b — a).

(A) The operator Ly is inverse positive in F,, if and only if M € (0, ¢*].

(B) The operator Lg is inverse positive in F}, , if and only if M € (0, (2cM3)?],
where M3 =~ 0, 8832205.

(C) The operator Ls is inverse negative in F> , if and only if M € [—(2cM3)30).

(D) The operator Ly is inverse negative in F; , if and only if M € [—(2¢M4)30),
where My =~ 0, 7528094.
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EXAMPLE 2.10. If p(t) = k > 0, then

s B 1 ek=stt) L ek(s=t) (<t <5 <1,
1(t,s) = —m eht=s) 4 ek(ts—t) < s<t<1

— — 9

is the Green function of the problem
2'(t) — k*z(t) =0, z(0) ==x(1), 2/(0)=2'(1),
and G (t,s) < 0 for all (¢,s) € [0,1] x [0,1].

EXAMPLE 2.11. If p(t) = k > 0 and k # 2Ix for all [ € N, then

~ 1
=~ coskl[1/2 —|s—
Gs(t, s) s /2 cosk[1/2 — |s —t|]

is the Green function of the problem
() + K*x(t) =0, x(0)==z(1), 2/(0)=2'(1).
If k € (0,7), then Go(t,s) > 0 for all (¢,s) € [0,1] x [0,1].
EXAMPLE 2.12. We consider the problem
(2.24) e@(t) — E*z@t) =0, zD0)=291), i=0,1,2,3,

where k > 0 and k # 2lm for [ € N. The problem (2.24) has only the trivial
solution. To see this let

(2.25) z(t) = 1€ + coe ™ 4 c3 cos kt 4 cysin kt,

where ¢y, ¢o, 3, ¢4 are constants. From (2.24)—(2.25) we get a system of equa-
tions

1( ) (1 —e %) +c3(1 —cosk) —egsink =0,

(2.26) c1(1—eF) +ca(e™ —1) +cgsink 4 c4(1 — cos k) = 0,
c1(1—eF) +ca(1 —e )+ cz(cosk — 1) + ¢y sink = 0,

c1(1—ekF) +co(e ™ —1) — cgsink + ca(cosk — 1) = 0.

Let W denote the determinant of the matrix of system (2.26). Then

(2.27) W =—16(1 — e")(1 — e *)(1 — cosk) # 0.
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It is not hard to verify that the Green function G7 of the problem (2.24) is
given by the expression

k(t—s+1) 4 k(s—t) cos k(s—t—12)
1 ]° e - 2=, 0<t<s<1,
(2.28) Gf(t, 3) = k3 {ek(t—s)e_;kl(s—tﬂ) Coszlzlsli/jr%)
ek—1 sink/2 ’ OS St< L.
Now we shall introduce some notation. We denote
M;= sup |Gi(t,s)|, m;= inf |Gt s)],
t,s€[0,1] t,s€[0,1]
— 9IG;(t, s I1G;(t, s
M;; = sup ‘ﬁ, m;; = inf ‘ﬁ,
t,5€[0,1] otJ t,s€[0,1] otJ

fori=1,2and j=1,...,n— 1.

The properties of the Green functions G; (i = 1,2) needed later are de-
scribed by the following lemmas.

LEMMA 2.13. We assume that p: (—oo0,00) — (0,00) is continuous and
1-periodic and p has property (2.3) or (g). Let f: R™™ — R be continuous.
Then

(i) = € C™|a,b] is a solution of the problem (1.1) if and only if x satisfies the
integral equation

(2.29) z(t) = fu/Gl(t, $)f(s,x(s),2'(s),...," "V (s))ds

(ii) = € C™|a,b] is a solution of the problem (1.2) if and only if x satisfies the
equation

(2.30) x(t) = u/Gg(t, $)f(s,z(s),2'(s), ..., 2"V (s))ds;
0

where G is the Green function of the problem (2.1) and Go is the Green
function of the problem (2.2).
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LEMMA 2.14. Let all assumptions of Theorem 2.2 be satisfied. Then

R e R
> (Gi(s, )+ |20y PG 2 0.9)
for s,t €[0,1] and
oGt )] — |200)| (PG
> (Gi(a, o) + [ 280 PG 00)

n—1 n—1
or s,t € [0,1], i = 1,2, where |Z—Gis=0) | 407 Gils40.9) ) gepotes the
at at

left=hand (the right-hand) side derivative of order n — 1 of G; at the point
(s,s) and

M;+2M;1 + ...+ 2M;p 4

do; > -
m;
(2.32) |Gi(s,s)| + ‘758)’ i ’8”1%;;(151— O,s)‘

0G,(t, s)‘ 8"’1Gi(t, S)D

> Mo¢(|Gz‘( )+ ‘ apn—1

for s,t €10,1],i = 1,2, and

Mo O 57 R )
Gt + |2 TG 0)
>M01<\G (tS,JF’ tS)’+ ’WD
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Throughout the paper

Ry =[0,00), Ry =(—00,0], R = (—00,00),
Dy =R xR" ! D=R"" D=RxR; xR" !,

p: (—o00,00) — (0,00) is continuous and 1-periodic L > 0, u > 0,

1

6:(0) :uL/]Gi(t,s)yds for ¢ € [0, 1),
0

51'5 (—O0,00) — (—O0,00), 51 € Pln(R)a

¢, (t) = ¢;(t) for t € [0,1] and

te[0,1] te[0,1

1 1
(2.33) mi = sup /| i(t,s)|ds + sup /’8(}'1 ‘ds
]
0

nl

.+ sup ‘ O Giltss)) e pori=1.2,
tnl

te[01]

3. Positive periodic solutions

In this section we present results on the existence of positive, 1-periodic
solutions of equations (1.1) and (1.2).

THEOREM 3.1. Assume condition (2.4) or (2.4)". Let a continuous func-
tion f: D — (—00,00) and a constant L > 0 be such that

f(t + 1,v9,v1, ... ,’Unfl) = f(t,vo,vl, - ,Un,1),

3.1
(3-1) flt,vo,v1,...,00-1)+ L >0 forall (t,vo,v1,...,0p-1) € D.

Suppose that there exists a continuous nondecreasing function ¢ : [0,00) —
[0,00) such that ¥(u) > 0 for uw >0 and

(3.2) f(t,vo,v1, ..., op—1) + L <(vg + |v1| + ... + |vn-1]) on D,
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and that there exist C1 > 0 and r > 0 such that r > pLC1dp1,

1
(3.3) / Gt 8)|ds < Moy, te[0,1], and
0

Z Hma,

”
P(r + (61 1ln-1)
where do1, Moy, m1 have properties (2.31)—(2.33). Assume, additionally, that

(3.4) f(t,vo,v1,...,vn—1) + L > 7(t)g(vo)

where T: (—00,00) — [0,00) is continuous, 1-periodic, and g: [0,00) — [0, 00)
is continuous, nondecreasing, and g(u) > 0 for u > 0. Suppose that there
exists R > 0 such that R > r and

(3.5) d01R§/T(s) [dm)Gl(%,s)\

oG l, or—1l@ l, Moy R
S|P | (M,

where € > 0 is any constant such that

,uLOldgl
1—-——>
7 =€
Then (1.1) has a positive solution = € Pj*(R).

PRrROOF. The proof of Theorem 3.1 is similar to that of Theorem 2.1 in [1].
To show (1.1) has a positive 1-periodic solution we will look at

1

(36) al(t)=—p [ Gi(t.5)f(s.5(5) ~ 1 ()

2(s) = By (s).. .. 2 V() — 5"V (9)ds,
where
" f(t,vo,vl,...,vn,l)—i—l}, if f(t,’l}o,...,’l)nfl) EDQ,
er(taUOa 7Un—1) = . ~
f(t,O,vl,...,vn_l)—i—L, if f(t,vo,...,vn_l) eD.
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We will show that there exists a solution z; to (3.6) with z1(t) > &,(t) for
t € [0,1]. If this is true, then u(t) = x1(t) — ¢1(¢) is a positive solution of (3.6),
since for ¢ € [0, 1] we have

1

u(t) = = [ Gr(t )17 (5. 2(5) ~ 31 (5,
—(n—1)

2(s) = b1 (5), ..., 2"V (s) = by
1

= —,u/Gl(t, $)f(s,u(s),u'(s),...,u" "V (s))ds.

0

(s))ds + pLL / G (t, s)ds
0

We concentrate our study on (3.6). Let E = (P *(R), || - |l,_1) and

Ky ={ue P (R): in [doru(t) - o/ ()] = . = "D ()] = Mot Julln-1}-

Obviously K is a cone of E. Let

(3.7) O ={ueP'R): ||lul|p_1 <7}
and
(3.8) Q= {uec P 'R): |[ulln_1 < R}.

Now let A;: K1 N (Q2]Q1) — P '(R) be defined by A;¢ = x,, where ¢ €
K1N(92/) and z,, is the unique 1-periodic solution of the equation

(3.9) 2™ (t) = p(t)a(t) + ph(t, o(t) — (1) =0,
where

—(n—1)

h(t, o(t) = 61(t) = fLltsp(t) = &1(t), -, " V() = 61 (1))

First we show A12 Kl N (§2|Ql) — Kl. If p e KnN (§2|Ql) and t € [O,l],
then by Lemma 2.13 we have

(3.10) (Arg)(t) = —u / Gi (¢, 5)h(s, p(s) — By (5))ds.
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To shorten notation, we let h(s, ) stand for h(s,p(s) — ¢;(s)). Relations
(2.31)~(2.23) imply

do1 (A1) (1) = (A1) ()] — .. = [(Arp) "~V ()]

= pudoy [ ~Ga(t,5)h(s. s — | [ ~Galt.s)h(s. o)ds)
0 0

— =) (/ ~Gi(t,5)h(s,)ds) (nil)‘

‘ —
ZMO/[d01|G1(t,s)| - )‘3@57(?5)‘ o ‘Wﬂh(s,w)ds

1

/[d01|G1t5|_‘8Glts)’ ‘a (;gl(lt s)H

t
#/[ (s S)|+’8G1 s, s)‘+m+‘an 12;;”5?0 S)H
0

v [ it o)+ |20 | TG0 1 s

din—1
> uM01/1[|G1 (i s)| + ’aGl(t S)‘—F... ‘wuh(s,ap)ds
{
I N P CC KT L CL YN
1
> /1 161 s)|+’aG1(t ® ‘+ ‘wuh(s,ap)ds
0

> Mor[(A10) () + [(A10) @) + ... + (A1) "D (D)),

where ¢ € [0,1]. Hence

(3.11)  dor(A1p)(t) > do1(A1) () — [(A1p) (B)] — ... — [(A1) "V (D))
> Mo || Aro|n—1-

Consequently A;p € Ky. So Ar: K1 N (Q2]Q) — K.
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‘We now show
(312) ||A1(p||n_1 < ||90||n—1 for (NS Kl N 891

To see this let ¢ € K1 N9Qy. Then ||p|n,—1 = r and ¢(t) > % for t € R.
From (3.2)—(3.3) we have

(A1) () + [(Arp) ()] + -+ |(Arp) "V ()]
< pp(r+ [ dylln-1)ma <7 < Jl@lln-1-
So (3.12) holds. Next we show
(3.13) [A1plln—1 = [l@lln—1  for ¢ € K1 N 0Qs.

To see it let ¢ € K1 N0OQ,. Then ||pll,—1 = R and dop1p(t) > RMoy; for t € R.
Let ¢ be as in (3.5). From (3.3) we have

Plt) = 1(t) = o(0) — L [ (~Ga(t.)ds

uLClMolR MLCId01
> p(t) — R > 90(75)(1 - T)
RM, M,
> ep(t) > S0 5 EET0L
do1 do1

(note p(t) — ¢, (t) > 0 for ¢ € K1 N (Q2\ 1) and ¢ € R). This together with
(3.4)—(3.5) yields

dor (A1) s > doa(Ai9) (3) — (i) ()] — -~ ()0 (3))

el (5] - | 2252

‘WHT(S)Q(@(S) — ¢1(s))ds

/ Gy (L, s
0/ i (.9 - 2elz)

o

ot

B o~ 1G1(2,S)H <6M01R>

81’:”_1 ds Z dolR.

01
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Hence we have (3.13). It is not difficult to observe that A; is continuous.
By the Arzela—Ascoli Theorem we conclude that A;: K; N (Q2]Q) — K is
compact. Theorem 1.1 implies A; has a fixed point x € K; N (Q2]Q1), i.e.
r < ||z|ln—1 < R and z(t) > Mop17/do1, which completes the proof. O

THEOREM 3.2. Assume conditions (3.1), (3.2), (3.4) and (2.4) or (2.4)".
Suppose that there exist Co > 0 and r > 0 such that r > uLCsdgs,

1
(3.14) /Gg(t, s)ds < CoMga, t€[0,1], and r > (r+||Pglln1)pums,
0

where doz, Moz, and mo have properties (2.31)—(2.33), and that there exists
R > 0 such that R > r and

1

(3.15) dp2R < ,u/T(s) [d02G2<%,s>

3 ‘8G2(;,3)’_'

. O 1Ga(3,9) H (EMOQR)ds,

8tn71

where € > 0 is any constant such that

. pnLCodg2 > ¢

1
R 2

Then (1.2) has a positive solution x € P[*(R).

PROOF. Let E, €1, and 25 be as in Theorem 3.1. Let

Ky ={ue P\ (R): tg[lti)f;][d02U(t)—\U’(t)!—- = [T (O] 2 Moafulln—1}-

Then K is a cone of E. Now, let ¢ € K5 N (£3]Q;) and let x,, be the unique
1-periodic solution of the problem

() +p(t)a(t) = uf 7 (1 o (0) = Ba(1). &' (1) = By(1), ... "D (1) =G5 (1)),

where f7 is defined by (3.6). Finally let As: Ko N (Q2]) — P (R) be
defined by Asp = z,. It is not difficult to prove that As: Ko N (Q2)Q) —
K,, As is continuous and compact. Similar arguments as in Theorem 3.1
guarantee that
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|A2¢|ln—1 < [|@lln—1 for ¢ € Ko N O
and

[A2¢|ln—1 = [[@lln—1 for ¢ € KoM OQy.

Theorem 1.1 implies that Ay has a fixed point x € Ko N (Q2]Q1), i.e. x(t) >
Moar/dos for t € R, which completes the proof. O

ExAMPLE 3.3. We consider the problem
(3.16) (1) —a(t) + pl sinwt|[(2(t) + | (t)| + 2" ()] + [«D (1)])* = 1] = 0,
z(0) = 2@(1),i=0,1,2,3.

It is not difficult to verify that the problem (3.16) has a solution z € P (R)

(for sufficiently small ) such that z(¢) > 0 for t € R. To see this we apply
Theorem 3.1 with p(t) = 1,L = 1, 7(t) = |sinnt|, do1 = 26, My; = 0,07,

p = 0,004, g(u) = u? = P(u), ¢, = %,u, C, =8, r =1, a4 = 1 with
sufficiently large R (R > 1).

COROLLARY 3.4. Assume condition (2.4) or (2.4)". Let
(3.17) f: D —[0,00) be continuous
and such that
(3.18) ft+ 100,01, 0n-1) = f(t, 00,01, ., Un_1)

for all (t,vo,v1,...,vp—1) € D. Suppose that there exists a continuous non-
decreasing function 1: [0,00) — [0, 00) such that ¥ (u) > 0 for u > 0 and

(3.19) flt,vo,v1, ..., 0n-1) < WY(vg + |v1]| + ...+ |vp—1]) on D,
and that there exists r such that

(3.20) r > (r)ums.

Assume, additionally, that there exist functions T and g such that

(3.21)  f(t,vo,v1,...,0n—1) > 7(t)g(vo) for all (t,vp,v1,...,0n_1) € D,
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where g: [0,00) — [0,00) is continuous, nondecreasing, and g(u) > 0 for
u >0, and 7: (—00,00) = [0,00) is continuous and 1-periodic, and that there
exists R > 0 such that R > r and

(3.22) dnR< ,u/T(S) [dm‘Gl (%,s)’

Then (2.1) has a positive solution x € P{*(R).

COROLLARY 3.5. Assume conditions (3.17)—(3.19), (3.21) and (2.4) or
(2.4)". Suppose that there exists r > 0 such that

(3.23) r > P(r)ums

and that there exists R > 0 such that R > r and

(3.24) dp2 < M/T(s) [dgg’Gg (%,s)’
0

9Gs (3, " 1Ga(3,
R K T L

Then (2.2) has a positive solution z € P{*(R).

PROOF OF COROLLARY 3.4. The proof is similar to that of Theorem 3.1.
Let E, 4, Q9, and K7 be as in Theorem 3.1. Now let ¢ € K7 N (£22]€21) and
let z, be the unique 1-periodic solution of the equation

2™ (1) = p(t)a(t) + uf (t, (1), ¢ (1), ..., oV (t) = 0

and let Az: Ky N (Q2)Q1) — P '(R) be defined by Azp = x,. It is
easy to check that Az: Ki N (Q2]Q1) — K1, Az is continuous and com-
pact, [|Azplln—1 < [|@lln-1 for ¢ € K1 N and [[Azplln—1 > [l@[ln-1 for
v € K1 N0Qy. Applying Theorem 1.1 we can show that equation (2.1) has
a positive solution =z € P*(R). O
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