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EXISTENCE OF POSITIVE PERIODIC SOLUTIONS
OF SOME DIFFERENTIAL EQUATIONS

OF ORDER n (n ≥ 2)

Jan Ligęza

Abstract. We study the existence of positive periodic solutions of the equa-
tions

x(n)(t)− p(t)x(t) + µf(t, x(t), x′(t), . . . , x(n−1)(t)) = 0,

x(n)(t) + p(t)x(t) = µf(t, x(t), x′(t), . . . , x(n−1)(t)),

where n ≥ 2, µ > 0, p : (−∞,∞) → (0,∞) is continuous and 1–periodic, f is
a continuous function and 1–periodic in the first variable and may take values
of different signs. The Krasnosielski fixed point theorem on cone is used.

1. Introduction

Nonnegative solutions of varius boundary value problems for ordinary dif-
ferential equations have been considered by several authors (see for instance in
[1]–[6], [9]–[11]). This paper deals with existence of positive periodic solutions
of the nonlinear differential equations of the form:

x(n)(t)− p(t)x(t) + µf(t, x(t), x′(t), . . . , x(n−1)(t)) = 0,(1.1)

x(n)(t) + p(t)x(t) = µf(t, x(t), x′(t), . . . , x(n−1)(t)),(1.2)
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where p : (−∞,∞) → (0,∞) is continuous, 1–periodic, µ > 0, f is a continu-
ous, 1–periodic function in t and may take values of different signs. Existence
in this paper will be established using Krasnosielski fixed point theorem in
a cone, which we state here for the convenience of the reader.

Theorem 1.1 (K. Deimling [5], D. Guo, V. Laksmikannthan [6]). Let
E = (E, ‖ · ‖) be a Banach space and let K ⊂ E be a cone in E. Assume Ω1

and Ω2 are bounded and open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2 and let
A : K ∩ (Ω2 \Ω1) → K be continuous and completely continuous. In addition
suppose either

‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2

or

‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2

hold. Then A has a fixed point in K ∩ (Ω2 \ Ω1).

2. Green’s function and its sign

In this section we consider the Green functions of the problems:

x(n)(t)− p(t)x(t) = 0, x(i)(0) = x(i)(1), i = 0, 1, . . . , n− 1;(2.1)

x(n)(t) + p(t)x(t) = 0, x(i)(0) = x(i)(1), i = 0, 1, . . . , n− 1;(2.2)

for n ≥ 2.
First we shall give some notation. We define Pm

1 (R) (m ∈ N) to be the
subspace of B(R) (bounded, continuous real functions on R) consisting of all
1–periodic mapping x such that x(m) is an 1–periodic and continuous function
on R. For x ∈ Pn−1(R) we define

‖x‖n−1 = sup
t∈[0,1]

[|x(t)|+ |x′(t)|+ . . .+ |x(n−1)(t)|].

Now we shall give conditions under which 1–periodic solution of equation
(2.1) or (2.2) is a trivial one.

Theorem 2.1. We assume that p : (−∞,∞) → (0,∞) is continuous and
1–periodic.
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(a) If n = 2k + 1 (k ∈ N), then problem (2.1) or (2.2) has only the trivial
solution.

(b) If n = 4k + 2 (k ∈ N ∪ {0}), then problem (2.1) has only the trivial
solution.

(c) If n = 4k (k ∈ N), then problem (2.2) has only the trivial solution.
(d) If

(2.3) α = sup
t∈[0,1]

p(t) < π(2π)n−1,

then problem (2.1) or (2.2) has only the trivial solution.

Theorem 2.2. We assume that p : (−∞,∞) → (0,∞) is continuous and
1–periodic. If

(2.4) α = sup
t∈[0,1]

p(t) < 2(2π)n−2

or

(2.4)′ β =

1∫
0

p(t)dt < 1,

then there exist two functions G1(t, s), G2(t, s) such that:
1o G1 is the Green function of the problem (2.1) and G1(t, s) < 0 for all

(t, s) ∈ [0, 1]× [0, 1] and
2o G2(t, s) is the Green function of the problem (2.2) and G2(t, s) > 0 for all

(t, s) ∈ [0, 1]× [0, 1].

In [7] the authors obtained the following results

Theorem 2.3. We assume that

(e) p : (−∞,∞) → (0,∞) is 1-periodic, p ∈ L1[0, 1],

(f) λn−1 =


1
2n

1·3···(n−1)
2·4···n , if n is even and n ≥ 2,

1
2n

1·3···(n−2)
2·4···(n−1) , if n is odd and n ≥ 3,

(g)
1∫

0

p(t)dt > 0, λn−1

1∫
0

p(t)dt < 1.

Then problem (2.2) has only the trivial solution.
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Theorem 2.4 ([7]). We assume that

(h) p : (−∞,∞) → (−∞,∞) is 1–periodic, p ∈ L1[0, 1],

(k)
1∫

0

p(t)dt > 0,

1∫
0

|p(t)|dt ≤ 16, p(t) 6≡ 0.

Then the problem

(2.2)′ x′′(t) + p(t)x(t) = 0, x(i)(0) = x(i)(1), i = 0, 1

has only the trivial solution.

From Corollary 2.3 in [10] it follows

Theorem 2.5. If p : (−∞,∞) → (0,∞) is continuous, 1–periodic, and
sup

t∈[0,1]

p(t) < π2, then the Green function G(t, s) of the problem (2.2)′ has the

positive sign.

Before giving the proofs of Theorems 2.1–2.2 we formulate three lemmas.

Lemma 2.6. If x ∈ C1[a, b], t0 ∈ [a, b] and x(t0) = 0, then

(2.5) 2

b∫
a

x2(t)dt ≤ (b− a)2
b∫

a

(x′)2(t)dt (see [8], p. 193).

Lemma 2.7. If x ∈ C1[a, b] and x(a) = x(b) = 0, then

(2.6) π2

b∫
a

x2(t)dt ≤ (b− a)2
b∫

a

(x′)2(t)dt (see [8], p. 192).

Lemma 2.8 (Wirtinger). If x ∈ C1[a, b], x(a) = x(b) and
b∫
a
x(t)dt = 0,

then

(2.7) (2π)2
b∫

a

x2(t)dt ≤ (b− a)2
b∫

a

(x′)2(t)dt.
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Proof of Theorem 2.1. Let x be a solution of the problem (2.1) or
(2.2). Then we have

(2.8)
1∫

0

x(n)(t)x(t)dt−
1∫

0

p(t)x2(t)dt = 0

or
1∫

0

x(n)(t)x(t)dt+

1∫
0

p(t)x2(t)dt = 0.

Let n = 2k + 1. Then integrating by parts k–times x(2k+1)(t)x(t) we get

x(t)x(2k)(t)

∣∣∣∣1
0

+ . . .+ (−1)k
(x(k))2(t)

2

∣∣∣∣1
0

−
1∫

0

p(t)x2(t)dt = 0

or

x(t)x(2k)(t)

∣∣∣∣1
0

+ . . .+ (−1)k
(x(k))2(t)

2

∣∣∣∣1
0

+

1∫
0

p(t)x2(t)dt = 0.

Hence we have
1∫

0

p(t)x2(t)dt = 0.

Consequently x ≡ 0. Notice also for n = 4k + 2 or n = 4k that

1∫
0

x(4k+2)(t)x(t)dt−
1∫

0

p(t)x2(t)dt = (−1)2k+1

1∫
0

(x(2k+1))2(t)dt

−
1∫

0

p(t)x2(t)dt = 0

or
1∫

0

x(4k)(t)x(t)dt+

1∫
0

p(t)x2(t)dt = (−1)2k
1∫

0

(x(2k))2(t)dt

+

1∫
0

p(t)x2(t)dt = 0.

This yields x ≡ 0.
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Now we will examine case (d). If x is a solution of the problem (2.1)
or (2.2) and x(t) ≥ 0 (x(t) ≤ 0) for all t ∈ [0, 1], then

0 =

1∫
0

x(n)(t)dt =

1∫
0

p(t)x(t)dt

or

0 =

1∫
0

x(n)(t)dt = −
1∫

0

p(t)x(t)dt.

The last equalities yield x ≡ 0.
Let x be a sign–changing solution of the problem (2.1) or (2.2) and let

x(t0) = 0. Then x(t0 + 1) = x(t0) = 0. By Lemmas 2.7–2.8 we get

π2

t0+1∫
t0

x2(t)dt = π2

1∫
0

x2(t)dt ≤
t0+1∫
t0

(x′)2(t)dt =

1∫
0

(x′)2(t)dt,(2.9)

(2π)2
1∫

0

(x′)2(t)dt ≤
1∫

0

(x′′)2(t)dt,(2.10)

...

(2π)2
1∫

0

(x(n−1))2(t)dt ≤
1∫

0

(x(n))2dt =

1∫
0

p2(t)x2(t)dt.(2.11)

Relations (2.9)–(2.11) imply

1∫
0

x2(t)dt ≤ 1

π2

1

(2π)2(n−1)
α2

1∫
0

x2(t)dt,

which contradicts (2.3). The proof of Theorem 2.1 is finished. �

Proof of Theorem 2.2. Case 1o. As G1 is a continuous function de-
fined on [0, 1] × [0, 1], we only have to prove that it does not vanish in
every point. Let us suppose, to derive a contradiction, that there exists
(t0, s0) ∈ [0, 1] × [0, 1] such that G1(t0, s0) = 0. First, let us assume that
(t0, s0) ∈ (0, 1) × [0, 1]. It is known that for a given s0 ∈ (0, 1), G1(t, s0) as
a function of t is a solution of (2.1) in the intervals [0, s0) and (s0, 1] such that
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(2.12)
∂iG1(0, s0)

∂ti
=
∂iG1(1, s0)

∂ti
, i = 0, 1, . . . , n− 1.

We define

(2.13) x(t) =

{
G1(t, s0), for t ∈ [s0, 1],

G1(t− 1, s0), for t ∈ [1, s0 + 1].

The function x is of the class Cn−1 and in consequence is a solution of equation
(2.1) in the whole interval [s0, s0 + 1],

(2.14) x(i)(s0) = x(i)(s0 + 1) for i = 0, 1, . . . , n− 2,

and

(2.15) x(n−1)(s0)− x(n−1)(s0 + 1) = 1.

There exists a point t ∈ [s0, s0+1] such that x(n−1)(t) = 0. From the equalities

(2.16) x(t) =

t∫
t0

x′(s)ds, x(n−1)(t) =

t∫
t

x(n)(s)ds, t ∈ [s0, s0 + 1],

and Lemma 2.6 it follows

(2.17) 2

s0+1∫
s0

x2(t)dt ≤
s0+1∫
s0

(x′)2(t)dt

and

(2.17)′ 2

s0+1∫
s0

(x(n−1))2(t)dt ≤
s0+1∫
s0

(x(n))2(t)dt.

On the other hand by Lemma 2.8 we get

(2π)2
s0+1∫
s0

(x′)2(t)dt ≤
s0+1∫
s0

(x′′)2(t)dt,(2.18)

...

(2π)2
s0+1∫
s0

(x(n−2))2(t)dt ≤
s0+1∫
s0

(x(n−1))2(t)dt.(2.19)
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Conditions (2.17)–(2.19) yield

(2.20)
s0+1∫
s0

x2(t)dt ≤ α2

22(2π)2(n−2)

s0+1∫
s0

x2(t)dt.

Thus x ≡ 0 for t ∈ [s0, s0 + 1], in contradiction with elementary properties of
Green’s function. Analogously, if t0 ∈ [0, s0), we get a contradiction.

Finally, if s0 = 0 or s0 = 1, then G1(t, s0) is a solution of (2.1) in [0, 1]
such that

∂iG1(0, s0)

∂ti
=
∂iG1(1, s0)

∂ti
, i = 0, 1, . . . , n− 2,

and the same arguments as before lead to a contradiction. Similarly we con-
clude for t0 = 0 or t0 = 1.

Now we will consider case β < 1.
From conditions (2.14) we deduce that there exist points t1, . . . , tn−1 such

that t1, . . . , tn−1 ∈ [s0, s0 + 1] and

x(t0) = x′(t1) = . . . = x(n−1)(tn−1) = 0,

where x is defined by (2.13). Hence

sup
t∈[s0,s0+1]

|x(t)| = sup
t∈[s0,s0+1]

∣∣∣ t∫
t0

x′(s)ds
∣∣∣(2.21)

≤ sup
t∈[s0,s0+1]

|x′(t)| ≤ . . . ≤ sup
t∈[s0,s0+1]

∣∣x(n−1)(t)
∣∣

= sup
t∈[s0,s0+1]

∣∣∣ t∫
tn−1

x(n)(s)ds
∣∣∣

= sup
t∈[s0,s0+1]

∣∣∣ t∫
tn−1

p(s)x(s)ds
∣∣∣

≤ sup
t∈[s0,s0+1]

|x(t)|
s0+1∫
s0

p(s)ds

≤ sup
t∈[s0,s0+1]

|x(t)|
1∫

0

p(s)ds = β sup
t∈[s0,s0+1]

|x(t)|,

which contradicts (2.4)′.
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Thus G1 has constant sign. Let us prove that this sign is negative. The
unique 1–periodic solution of the equation

(2.22) x(n)(t)− p(t)x(t) = 1

is just

(2.23) x(t) =

1∫
0

G1(t, s)ds.

On the other hand integrating (2.22) from 0 to 1 we find

−
1∫

0

p(t)x(t)dt = 1.

As by hypothesis p(t) > 0 (for all t ∈ [0, 1]), x(t) < 0 for some t and as
a consequence G1(t, s) < 0 for all (t, s) ∈ [0, 1] × [0, 1]. Proof of case 2o is
similar to that of proof of case 1o. �

Remark 2.9. Let Ln : F
n
a,b → L1[a, b] be operator defined by Ln ≡ Dn +

MI, where D = d
dt , I is the identity operator, M is a real constant different

from zero and

Fn
a,b=

{
u ∈Wn,1[a, b] : u(i)(a) = u(i)(b), i = 0, . . . , n−2, u(n−2)(a) ≥ u(n−1)(b)

}
.

We say that Ln is inverse positive in Fn
a,b if Lnu ≥ 0 implies u ≥ 0 for all

u ∈ Fn
a,b and Ln is inverse negative in Fn

a,b if Ln u ≥ 0 implies u ≤ 0 for all
u ∈ Fn

a,b.

In [4] the author obtained the following results. Let c = π/(b− a).
(A) The operator L2 is inverse positive in F 2

a,b if and only if M ∈ (0, c2].
(B) The operator L3 is inverse positive in F 3

a,b if and only if M ∈ (0, (2cM3)
3],

where M3 ≈ 0, 8832205.
(C) The operator L3 is inverse negative in F 3

a,b if and only ifM ∈ [−(2cM3)
3, 0).

(D) The operator L4 is inverse negative in F 4
a,b if and only ifM ∈ [−(2cM4)

4, 0),
where M4 ≈ 0, 7528094.



70 Jan Ligęza

Example 2.10. If p(t) ≡ k > 0, then

G̃1(t, s) = − 1

2k(ek − 1)

{
ek(1−s+t) + ek(s−t), 0 ≤ t ≤ s ≤ 1,

ek(t−s) + ek(1+s−t), 0 ≤ s ≤ t ≤ 1,

is the Green function of the problem

x′′(t)− k2x(t) = 0, x(0) = x(1), x′(0) = x′(1),

and G̃1(t, s) < 0 for all (t, s) ∈ [0, 1]× [0, 1].

Example 2.11. If p(t) ≡ k > 0 and k 6= 2lπ for all l ∈ N, then

G̃2(t, s) =
1

2k sin k/2
cos k

[
1/2− |s− t|

]
is the Green function of the problem

x′′(t) + k2x(t) = 0, x(0) = x(1), x′(0) = x′(1).

If k ∈ (0, π), then G̃2(t, s) > 0 for all (t, s) ∈ [0, 1]× [0, 1].

Example 2.12. We consider the problem

(2.24) x(4)(t)− k4x(t) = 0, x(i)(0) = x(i)(1), i = 0, 1, 2, 3,

where k > 0 and k 6= 2lπ for l ∈ N. The problem (2.24) has only the trivial
solution. To see this let

(2.25) x(t) = c1e
kt + c2e

−kt + c3 cos kt+ c4 sin kt,

where c1, c2, c3, c4 are constants. From (2.24)–(2.25) we get a system of equa-
tions

(2.26)


c1(1− ek) + c2(1− e−k) + c3(1− cos k)− c4 sin k = 0,

c1(1− ek) + c2(e
−k − 1) + c3 sin k + c4(1− cos k) = 0,

c1(1− ek) + c2(1− e−k) + c3(cos k − 1) + c4 sin k = 0,

c1(1− ek) + c2(e
−k − 1)− c3 sin k + c4(cos k − 1) = 0.

Let W denote the determinant of the matrix of system (2.26). Then

(2.27) W = −16(1− ek)(1− e−k)(1− cos k) 6= 0.
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It is not hard to verify that the Green function G∗
1 of the problem (2.24) is

given by the expression

(2.28) G∗
1(t, s) = − 1

4k3


ek(t−s+1)+ek(s−t)

ek−1
+

cos k(s−t− 1
2 )

sin k/2 , 0 ≤ t ≤ s ≤ 1,

ek(t−s)+ek(s−t+1)

ek−1
+

cos k(s−t+ 1
2 )

sin k/2 , 0 ≤ s ≤ t ≤ 1.

Now we shall introduce some notation. We denote

M i = sup
t,s∈[0,1]

|Gi(t, s)|, mi = inf
t,s∈[0,1]

|Gi(t, s)|,

M ij = sup
t,s∈[0,1]

∣∣∣∂jGi(t, s)

∂tj

∣∣∣, mij = inf
t,s∈[0,1]

∣∣∣∂jGi(t, s)

∂tj

∣∣∣,
for i = 1, 2 and j = 1, . . . , n− 1.

The properties of the Green functions Gi (i = 1, 2) needed later are de-
scribed by the following lemmas.

Lemma 2.13. We assume that p : (−∞,∞) → (0,∞) is continuous and
1–periodic and p has property (2.3) or (g). Let f : R1+n → R be continuous.
Then
(i) x ∈ Cn[a, b] is a solution of the problem (1.1) if and only if x satisfies the

integral equation

(2.29) x(t) = −µ
1∫

0

G1(t, s)f(s, x(s), x
′(s), . . . , x(n−1)(s))ds;

(ii) x ∈ Cn[a, b] is a solution of the problem (1.2) if and only if x satisfies the
equation

(2.30) x(t) = µ

1∫
0

G2(t, s)f(s, x(s), x
′(s), . . . , x(n−1)(s))ds;

where G1 is the Green function of the problem (2.1) and G2 is the Green
function of the problem (2.2).
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Lemma 2.14. Let all assumptions of Theorem 2.2 be satisfied. Then

(2.31) d0i|Gi(t, s)| −
∣∣∣∂Gi(t, s)

∂t

∣∣∣− . . .−
∣∣∣∂n−1Gi(t, s)

∂tn−1

∣∣∣
≥ |Gi(s, s)|+

∣∣∣∂Gi(s, s)

∂t

∣∣∣+ . . .+
∣∣∣∂n−1Gi(s− 0, s)

∂tn−1

∣∣∣
for s, t ∈ [0, 1] and

d0i|Gi(t, s)| −
∣∣∣∂Gi(t, s)

∂t

∣∣∣− . . .−
∣∣∣∂n−1Gi(t, s)

∂tn−1

∣∣∣
≥ |Gi(s, s)|+

∣∣∣∂Gi(s, s)

∂t

∣∣∣+ . . .+
∣∣∣∂n−1Gi(s+ 0, s)

∂tn−1

∣∣∣
for s, t ∈ [0, 1], i = 1, 2, where

∣∣∣∂n−1Gi(s−0,s)
∂tn−1

∣∣∣ (
∣∣∣∂n−1Gi(s+0,s)

∂tn−1

∣∣∣) denotes the
left–hand (the right–hand) side derivative of order n − 1 of Gi at the point
(s, s) and

d0i ≥
M i + 2M i1 + . . .+ 2M in−1

mi
,

(2.32) |Gi(s, s)|+
∣∣∣∂Gi(s, s)

∂t

∣∣∣+ . . .+
∣∣∣∂n−1Gi(s− 0, s)

∂tn−1

∣∣∣
≥M0i

(
|Gi(t, s)|+

∣∣∣∂Gi(t, s)

∂t

∣∣∣+ . . .+
∣∣∣∂n−1Gi(t, s)

∂tn−1

∣∣∣)
for s, t ∈ [0, 1], i = 1, 2, and

M0i ∈
(
0,

mi +mi1 + . . .+min−1

M i +M i1 + . . .+M in−1

)
,

|Gi(s, s)|+
∣∣∣∂Gi(s, s)

∂t

∣∣∣+ . . .+
∣∣∣∂n−1Gi(s+ 0, s)

∂tn−1

∣∣∣
≥M0i

(
|Gi(t, s)|+

∣∣∣∂Gi(t, s)

∂t

∣∣∣+ . . .+
∣∣∣∂n−1Gi(t, s)

∂tn−1

∣∣∣).
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Throughout the paper

R+
0 = [0,∞), R−

0 = (−∞, 0], R = (−∞,∞),

D0 = R+
0 × Rn−1, D = Rn+1, D̃ = R× R−

0 × Rn−1,

p : (−∞,∞) → (0,∞) is continuous and 1–periodic L > 0, µ > 0,

φi(t) = µL

1∫
0

|Gi(t, s)|ds for t ∈ [0, 1],

φi : (−∞,∞) → (−∞,∞), φi ∈ Pn
1 (R),

φi(t) = φi(t) for t ∈ [0, 1] and

mi = sup
t∈[0,1]

1∫
0

|Gi(t, s)|ds+ sup
t∈[0,1]

1∫
0

∣∣∣∂Gi(t, s)

∂t

∣∣∣ds(2.33)

+ . . .+ sup
t∈[0,1]

1∫
0

∣∣∣∂n−1Gi(t, s)

∂tn−1

∣∣∣ds for i = 1, 2.

3. Positive periodic solutions

In this section we present results on the existence of positive, 1–periodic
solutions of equations (1.1) and (1.2).

Theorem 3.1. Assume condition (2.4) or (2.4)′. Let a continuous func-
tion f : D → (−∞,∞) and a constant L > 0 be such that

f(t+ 1, v0, v1, . . . , vn−1) = f(t, v0, v1, . . . , vn−1),

f(t, v0, v1, . . . , vn−1) + L ≥ 0 for all (t, v0, v1, . . . , vn−1) ∈ D.
(3.1)

Suppose that there exists a continuous nondecreasing function ψ : [0,∞) →
[0,∞) such that ψ(u) > 0 for u > 0 and

(3.2) f(t, v0, v1, . . . , vn−1) + L ≤ ψ(v0 + |v1|+ . . .+ |vn−1|) on D,
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and that there exist C1 > 0 and r > 0 such that r ≥ µLC1d01,

1∫
0

|G1(t, s)|ds ≤M01C1, t ∈ [0, 1], and
r

ψ(r + ‖φ1‖n−1)
≥ µm1,(3.3)

where d01,M01,m1 have properties (2.31)–(2.33). Assume, additionally, that

(3.4) f(t, v0, v1, . . . , vn−1) + L ≥ τ(t)g(v0)

where τ : (−∞,∞) → [0,∞) is continuous, 1-periodic, and g : [0,∞) → [0,∞)
is continuous, nondecreasing, and g(u) > 0 for u > 0. Suppose that there
exists R > 0 such that R > r and

(3.5) d01R ≤
1∫

0

τ(s)
[
d01

∣∣∣G1

(1
2
, s
)∣∣∣

−
∣∣∣∂G1

(
1
2 , s

)
∂t

∣∣∣− . . .−
∣∣∣∂n−1G1

(
1
2 , s

)
∂tn−1

∣∣∣]g(εM01R

d01

)
ds,

where ε > 0 is any constant such that

1− µLC1d01
R

≥ ε.

Then (1.1) has a positive solution x ∈ Pn
1 (R).

Proof. The proof of Theorem 3.1 is similar to that of Theorem 2.1 in [1].
To show (1.1) has a positive 1–periodic solution we will look at

(3.6) x(t) = −µ
1∫

0

G1(t, s)f
∗
+(s, x(s)− φ1(s),

x′(s)− φ
′
1(s), . . . , x

(n−1)(s)− φ
(n−1)

(s))ds,

where

f∗+(t, v0, . . . , vn−1) =

{
f(t, v0, v1, . . . , vn−1) + L, if f(t, v0, . . . , vn−1) ∈ D0,

f(t, 0, v1, . . . , vn−1) + L, if f(t, v0, . . . , vn−1) ∈ D̃.
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We will show that there exists a solution x1 to (3.6) with x1(t) ≥ φ1(t) for
t ∈ [0, 1]. If this is true, then u(t) = x1(t)−φ1(t) is a positive solution of (3.6),
since for t ∈ [0, 1] we have

u(t) = −µ
1∫

0

G1(t, s)[f
∗
+(s, x(s)− φ1(s),

x′(s)− φ1
′
(s), . . . , x(n−1)(s)− φ1

(n−1)
(s))ds+ µL

1∫
0

G1(t, s)ds

= −µ
1∫

0

G1(t, s)f(s, u(s), u
′(s), . . . , u(n−1)(s))ds.

We concentrate our study on (3.6). Let E = (Pn−1
1 (R), ‖ · ‖n−1) and

K1 = {u ∈ Pn−1
1 (R) : min

t∈[0,1]
[d01u(t)−|u′(t)|− . . .−|u(n−1)(t)] ≥M01‖u‖n−1}.

Obviously K1 is a cone of E. Let

(3.7) Ω1 = {u ∈ Pn−1
1 (R) : ‖u‖n−1 < r}

and

(3.8) Ω2 = {u ∈ Pn−1
1 (R) : ‖u‖n−1 < R}.

Now let A1 : K1 ∩ (Ω2|Ω1) → Pn−1
1 (R) be defined by A1ϕ = xϕ, where ϕ ∈

K1 ∩ (Ω2|Ω1) and xϕ is the unique 1–periodic solution of the equation

(3.9) x(n)(t)− p(t)x(t) + µh(t, ϕ(t)− φ1(t)) = 0,

where

h(t, ϕ(t)− φ1(t)) = f∗+(t, ϕ(t)− φ1(t), . . . , ϕ
(n−1)(t)− φ

(n−1)

1 (t)).

First we show A1 : K1 ∩ (Ω2|Ω1) → K1. If ϕ ∈ K ∩ (Ω2|Ω1) and t ∈ [0, 1],
then by Lemma 2.13 we have

(3.10) (A1ϕ)(t) = −µ
∫ 1

0
G1(t, s)h(s, ϕ(s)− φ1(s))ds.
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To shorten notation, we let h(s, ϕ) stand for h(s, ϕ(s) − φ1(s)). Relations
(2.31)–(2.23) imply

d01(A1ϕ)(t)− |(A1ϕ)
′(t)| − . . .− |(A1ϕ)

(n−1)(t)|

= µd01

1∫
0

−G1(t, s)h(s, ϕ)ds− µ
∣∣∣( 1∫

0

−G1(t, s)h(s, ϕ)ds
)′∣∣∣

− . . .− µ
∣∣∣( 1∫

0

−G1(t, s)h(s, ϕ)ds
)(n−1)∣∣∣

≥ µ

t∫
0

[
d01|G1(t, s)| −

∣∣∣∂G1(t, s)

∂t

∣∣∣− . . .−
∣∣∣∂n−1G1(t, s)

∂tn−1

∣∣∣]h(s, ϕ)ds
+ µ

1∫
t

[
d01|G1(t, s)| −

∣∣∣∂G1(t, s)

∂t

∣∣∣− . . .−
∣∣∣∂n−1G1(t, s)

∂tn−1

∣∣∣]h(s, ϕ)ds
≥ µ

t∫
0

[
|G1(s, s)|+

∣∣∣∂G1(s, s)

∂t

∣∣∣+ . . .+
∣∣∣∂n−1G1(s+0, s)

∂tn−1

∣∣∣]h(s, ϕ)ds
+ µ

1∫
t

[
|G1(s, s)|+

∣∣∣∂G1(s, s)

∂t

∣∣∣+ . . .+
∣∣∣∂n−1G1(s−0, s)

∂tn−1

∣∣∣]h(s, ϕ)ds
≥ µM01

1∫
0

[
|G1(t, s)|+

∣∣∣∂G1(t, s)

∂t

∣∣∣+ . . .+
∣∣∣∂n−1G1(t, s)

∂tn−1

∣∣∣]h(s, ϕ)ds
+ µM01

t∫
1

[
|G1(t, s)|+

∣∣∣∂G1(t, s)

∂t

∣∣∣+ . . .+
∣∣∣∂n−1G1(t, s)

∂tn−1

∣∣∣]h(s, ϕ)ds
≥ µM01

1∫
0

[
|G1(t, s)|+

∣∣∣∂G1(t, s)

∂t

∣∣∣+ . . .+
∣∣∣∂n−1G1(t, s)

∂tn−1

∣∣∣]h(s, ϕ)ds
≥M01[(A1ϕ)(t) + |(A1ϕ)

′(t)|+ . . .+ |(A1ϕ)
(n−1)(t)|,

where t ∈ [0, 1]. Hence

d01(A1ϕ)(t) ≥ d01(A1ϕ)(t)− |(A1ϕ)
′(t)| − . . .− |(A1ϕ)

(n−1)(t)|(3.11)

≥M01‖A1ϕ‖n−1.

Consequently A1ϕ ∈ K1. So A1 : K1 ∩ (Ω2|Ω1) → K1.
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We now show

(3.12) ‖A1ϕ‖n−1 ≤ ‖ϕ‖n−1 for ϕ ∈ K1 ∩ ∂Ω1.

To see this let ϕ ∈ K1 ∩ ∂Ω1. Then ‖ϕ‖n−1 = r and ϕ(t) ≥ M01r
d01

for t ∈ R.
From (3.2)–(3.3) we have

(A1ϕ)(t) + |(A1ϕ)
′(t)|+ . . .+ |(A1ϕ)

(n−1)(t)|

≤ µψ(r + ‖φ1‖n−1)m1 ≤ r ≤ ‖ϕ‖n−1.

So (3.12) holds. Next we show

(3.13) ‖A1ϕ‖n−1 ≥ ‖ϕ‖n−1 for ϕ ∈ K1 ∩ ∂Ω2.

To see it let ϕ ∈ K1 ∩ ∂Ω2. Then ‖ϕ‖n−1 = R and d01ϕ(t) ≥ RM01 for t ∈ R.
Let ε be as in (3.5). From (3.3) we have

ϕ(t)− φ1(t) = ϕ(t)− µL

1∫
0

(
−G1(t, s)

)
ds

≥ ϕ(t)− µLC1M01R

R
≥ ϕ(t)

(
1− µLC1d01

R

)
≥ εϕ(t) ≥ εRM01

d01
>
εrM01

d01
> 0

(note ϕ(t)− φ1(t) > 0 for ϕ ∈ K1 ∩ (Ω2 \Ω1) and t ∈ R). This together with
(3.4)–(3.5) yields

d01‖(A1ϕ)‖n−1 ≥ d01(A1ϕ)
(1
2

)
−

∣∣∣(A1ϕ)
′
(1
2

)∣∣∣− . . .−
∣∣∣(A1ϕ)

(n−1)
(1
2

)∣∣∣
≥ µ

1∫
0

[
d01

∣∣∣G1

(1
2
, s
)∣∣∣− ∣∣∣∂G1

(
1
2 , s

)
∂t

∣∣∣
− . . .−

∣∣∣∂n−1G1

(
1
2 , s

)
∂tn−1

∣∣∣]τ(s)g(ϕ(s)− φ1(s))ds

≥ µ

1∫
0

τ(s)
[
d01

∣∣∣G1

(1
2
, s
)∣∣∣− ∣∣∣∂G1

(
1
2 , s

)
∂t

∣∣∣
− . . .−

∣∣∣∂n−1G1

(
1
2 , s

)
∂tn−1

∣∣∣]g(εM01R

d01

)
ds ≥ d01R.
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Hence we have (3.13). It is not difficult to observe that A1 is continuous.
By the Arzela–Ascoli Theorem we conclude that A1 : K1 ∩ (Ω2|Ω1) → K1 is
compact. Theorem 1.1 implies A1 has a fixed point x ∈ K1 ∩ (Ω2|Ω1), i.e.
r ≤ ‖x‖n−1 ≤ R and x(t) ≥M01r/d01, which completes the proof. �

Theorem 3.2. Assume conditions (3.1), (3.2), (3.4) and (2.4) or (2.4)′.
Suppose that there exist C2 > 0 and r > 0 such that r ≥ µLC2d02,

(3.14)
1∫

0

G2(t, s)ds ≤ C2M02, t ∈ [0, 1], and r ≥ ψ(r + ‖φ2‖n−1)µm2,

where d02, M02, and m2 have properties (2.31)–(2.33), and that there exists
R > 0 such that R > r and

(3.15) d02R ≤ µ

1∫
0

τ(s)
[
d02G2

(1
2
, s
)

−
∣∣∣∂G2

(
1
2 , s

)
∂t

∣∣∣− . . .−
∣∣∣∂n−1G2

(
1
2 , s

)
∂tn−1

∣∣∣]g(εM02R

d02

)
ds,

where ε > 0 is any constant such that

1− µLC2d02
R

≥ ε.

Then (1.2) has a positive solution x ∈ Pn
1 (R).

Proof. Let E, Ω1, and Ω2 be as in Theorem 3.1. Let

K2 = {u ∈ Pn−1
1 (R) : min

t∈[0,1]
[d02u(t)−|u′(t)|−. . .−|u(n−1)(t)|] ≥M02‖u‖n−1}.

Then K2 is a cone of E. Now, let ϕ ∈ K2 ∩ (Ω2|Ω1) and let xϕ be the unique
1–periodic solution of the problem

x(n)(t)+p(t)x(t) = µf∗+(t, ϕ(t)−φ2(t), ϕ′(t)−φ′2(t), . . . , ϕ(n−1)(t)−φ(n−1)

2 (t)),

where f∗+ is defined by (3.6). Finally let A2 : K2 ∩ (Ω2|Ω1) → Pn−1
1 (R) be

defined by A2ϕ = xϕ. It is not difficult to prove that A2 : K2 ∩ (Ω2|Ω1) →
K2, A2 is continuous and compact. Similar arguments as in Theorem 3.1
guarantee that
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‖A2ϕ‖n−1 ≤ ‖ϕ‖n−1 for ϕ ∈ K2 ∩ ∂Ω1

and

‖A2ϕ‖n−1 ≥ ‖ϕ‖n−1 for ϕ ∈ K2 ∩ ∂Ω2.

Theorem 1.1 implies that A2 has a fixed point x ∈ K2 ∩ (Ω2|Ω1), i.e. x(t) ≥
M02r/d02 for t ∈ R, which completes the proof. �

Example 3.3. We consider the problem

(3.16) x(4)(t)− x(t) + µ| sinπt|[(x(t) + |x′(t)|+ |x′′(t)|+ |x(3)(t)|)2 − 1] = 0,

x(i)(0) = x(i)(1), i = 0, 1, 2, 3.
It is not difficult to verify that the problem (3.16) has a solution x ∈ P 4

1 (R)
(for sufficiently small µ) such that x(t) > 0 for t ∈ R. To see this we apply
Theorem 3.1 with p(t) ≡ 1, L = 1, τ(t) = | sinπt|, d01 = 26, M01 = 0, 07,
µ = 0, 004, g(u) = u2 = ψ(u), φ1 = 1

2µ, C1 = 8, r = 1, α4 = 1 with
sufficiently large R (R > 1).

Corollary 3.4. Assume condition (2.4) or (2.4)′. Let

(3.17) f : D → [0,∞) be continuous

and such that

(3.18) f(t+ 1, v0, v1, . . . , vn−1) = f(t, v0, v1, . . . , vn−1)

for all (t, v0, v1, . . . , vn−1) ∈ D. Suppose that there exists a continuous non-
decreasing function ψ : [0,∞) → [0,∞) such that ψ(u) > 0 for u > 0 and

(3.19) f(t, v0, v1, . . . , vn−1) ≤ ψ(v0 + |v1|+ . . .+ |vn−1|) on D,

and that there exists r such that

(3.20) r ≥ ψ(r)µm1.

Assume, additionally, that there exist functions τ and g such that

(3.21) f(t, v0, v1, . . . , vn−1) ≥ τ(t)g(v0) for all (t, v0, v1, . . . , vn−1) ∈ D,
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where g : [0,∞) → [0,∞) is continuous, nondecreasing, and g(u) > 0 for
u > 0, and τ : (−∞,∞) → [0,∞) is continuous and 1–periodic, and that there
exists R > 0 such that R > r and

(3.22) d01R ≤ µ

1∫
0

τ(s)
[
d01

∣∣∣G1

(1
2
, s
)∣∣∣

−
∣∣∣∂G1

(
1
2 , s

)
∂t

∣∣∣− . . .−
∣∣∣∂n−1G1

(
1
2 , s

)
∂tn−1

∣∣∣]g(M01R

d01

)
ds.

Then (2.1) has a positive solution x ∈ Pn
1 (R).

Corollary 3.5. Assume conditions (3.17)–(3.19), (3.21) and (2.4) or
(2.4)′. Suppose that there exists r > 0 such that

(3.23) r ≥ ψ(r)µm2

and that there exists R > 0 such that R > r and

(3.24) d02 ≤ µ

1∫
0

τ(s)
[
d02

∣∣∣G2

(1
2
, s
)∣∣∣

−
∣∣∣∂G2

(
1
2 , s

)
∂t

∣∣∣− . . .−
∣∣∣∂n−1G2

(
1
2 , s

)
∂tn−1

∣∣∣]g(M02R

d02

)
ds.

Then (2.2) has a positive solution x ∈ Pu
1 (R).

Proof of Corollary 3.4. The proof is similar to that of Theorem 3.1.
Let E, Ω1, Ω2, and K1 be as in Theorem 3.1. Now let ϕ ∈ K1 ∩ (Ω2|Ω1) and
let xϕ be the unique 1–periodic solution of the equation

x(n)(t)− p(t)x(t) + µf(t, ϕ(t), ϕ′(t), . . . , ϕ(n−1)(t)) = 0

and let A3 : K1 ∩ (Ω2|Ω1) → Pn−1
1 (R) be defined by A3ϕ = xϕ. It is

easy to check that A3 : K1 ∩ (Ω2|Ω1) → K1, A3 is continuous and com-
pact, ‖A3ϕ‖n−1 ≤ ‖ϕ‖n−1 for ϕ ∈ K1 ∩ ∂Ω1 and ‖A3ϕ‖n−1 ≥ ‖ϕ‖n−1 for
ϕ ∈ K1 ∩ ∂Ω2. Applying Theorem 1.1 we can show that equation (2.1) has
a positive solution x ∈ Pn

1 (R). �
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