
Annales Mathematicae Silesianae 21 (2007), 7–13

Prace Naukowe Uniwersytetu Śląskiego nr 2617, Katowice

TWO FUNCTIONAL EQUATIONS ON GROUPS

Zsolt Ádám, Károly Lajkó,
Gyula Maksa, Fruzsina Mészáros

Abstract. In this note we give the general solution of the functional equation

f (x) f (x + y) = f (y)2 f (x− y)2 g (y) , x, y ∈ G,

and all the solutions of

f (x) f (x + y) = f (y)2 f (x− y)2 g (x) , x, y ∈ G,

with the additional supposition g (x) 6= 0 for all x ∈ G. In both cases G de-
notes an arbitrary group written additively and f, g : G→ R are the unknown
functions.

1. Introduction

In his book [3] and also in [1], [2], Aczél investigated the functional equation

(1) f (x) f (x + y) = f (y)2 f (x− y)2 ay+4, x, y ∈ R,

where a is a fixed positive real number and f : R → R is the unknown function.
He proved that the nowhere zero solutions of (1) are

(2) f (x) = ax−2 and f (x) = −ax−2, x ∈ R.
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Motivated by this result and the observation that (1) has non-identically zero
solutions different from (2) too, the authors of this paper created a sequence of
problems connected with (1) for the fostering of talented students on different
level of mathematical education and published it in [4] with solutions. On the
other hand we found a possible way of the generalization that we intend to
present in this paper.

2. Main results

First we deal with an obvious and natural generalization of (1) and prove
the following

Lemma 1. Let G be a group and suppose that the functions f, g : G → R
satisfy the functional equation

(3) f (x) f (x + y) = f (y)2 f (x− y)2 g (y) , x, y ∈ G.

Then either f is identically zero, or there exists a subgroup A of G such that
g (x) 6= 0 for all x ∈ A and

(4) f (x) =

{
3
√

f(0)g(x)

g(−x)2
if x ∈ A,

0 if x ∈ G \A.

Proof. If f is not identically zero let A = {y ∈ G : f (y) 6= 0}. We prove
that A is a group and g is different from zero on A. Indeed, 0 ∈ A, otherwise,
with the substitution y = 0, equation (3) would imply that f is identically
zero. If y ∈ A then, with the substitution x = 0, (3) implies that

f (0) f (y) = f (y)2 f (−y)2 g (y) .

Thus −y ∈ A, and g does not vanish on A. Finally, if x, y ∈ A then replacing
x by x + y in (3), we have

f (x + y) f (x + 2y) = f (y)2 f (x)2 g (y) ,

which shows that f (x + y) 6= 0, that is, x + y ∈ A.
To prove (4) let x = 0 and y ∈ A in (3). Then we get

(5) f (0) = f (y) f (−y)2 g (y) , y ∈ A,
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whence, replacing y by −y

(6) f (0) = f (−y) f (y)2 g (−y) , y ∈ A,

follows. From (5) and (6) we get

f (−y) = f (y)
g (−y)
g (y)

, y ∈ A.

This and (5) imply that (4) holds (for y instead of x). �

In the following theorem we give the general solution of (3).

Theorem 1. Let G be group and f, g : G → R. Then f and g satisfy (3)
if and only if either f (x) = 0 for all x ∈ G and g is arbitrary, or there exist
a subgroup A of G, a function ϕ : A → R and real numbers α, β such that
α2β = 1, ϕ (0) = 1,

(7) ϕ (x + y) = ϕ (x) ϕ (y) , x, y ∈ A,

and
(8)

f (x) =
{

αϕ (x) if x ∈ A,
0 if x ∈ G \A,

g (x) =
{

βϕ (x) if x ∈ A,
arbitrary if x ∈ G \A.

Proof. We only prove the necessity of the conditions because the suffi-
ciency can easily be checked. We suppose also that f is not identically zero.
According to Lemma 1 there exists a subgroup A of G such that g (x) 6= 0 for
all x ∈ A and (4) holds. Therefore (3) and (4) imply that

(9)
g (x) g (x + y)

g (−x)2 g (− (x + y))2
= f (0)2

g (y)5

g (−y)4
g (x− y)2

g (− (x− y))4
, x, y ∈ A.

With the substitutions y = x and y = −x we get from (9) that

g (2x)
g (−2x)2

=
f (0)2

g (0)2
g (x)4

g (−x)2
, x ∈ A,

and (
g (2x)

g (−2x)2

)2

=
1

g (0) f (0)2
g (x)5

g (−x)7
, x ∈ A,
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respectively. By the help of these two equations the quotient g(2x)

g(−2x)2
can be

eliminated and we obtain

(10) g (−x) =
g (0)
f (0)2

1
g (x)

, x ∈ A.

Therefore (9) can be written in the following simpler form

(11) g (x) g (x + y) = 3

√√√√f (0)10

g (0)4
g (y)3 g (x− y)2 , x, y ∈ A.

Write here −y instead of y and use (10) to get

g (x) g (x− y) = 3

√√√√f (0)10

g (0)4
g (0)3

f (0)6
1

g (y)3
g (x + y)2 , x, y ∈ A.

Comparing this equation and (11) we find that

(12) 3

√√√√ g (0)2

f (0)2
g (x + y) = g (x) g (y) , x, y ∈ A.

With the substitution x = y = 0, this implies that

(13) f (0)2 g (0) = 1.

Therefore, with the definitions β = g (0) and ϕ (x) = 1
β g (x) , x ∈ A,

equation (12) implies (7) and ϕ (0) = 1. On the other hand, it follows from
(4), (10), (13), and the known form of g on A that

f (x) = 3

√√√√f (0)5

g (0)2
g (x) = 3

√
f (0)5 g (0)ϕ (x) = f (0)ϕ (x) , x ∈ A,

which, with the definition α = f (0), proves the first part of (8). α2β = 1 is
obvious because of (13). The second part of (8) now follows from the definition
of ϕ and equation (3). �
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In what follows we deal with an other equation similar to (3), namely we
consider the equation

(14) f (x) f (x + y) = f (y)2 f (x− y)2 g (x) , x, y ∈ G.

If we suppose that g is nowhere zero on G then the ideas, we used in the
previous investigations, will work and we can prove the following

Theorem 2. Let G be a group and f : G → R, g : G → R\{0} be functions.
Then f and g satisfy (14) if and only if either f (x) = 0 for all x ∈ G and g
is arbitrary nowhere zero function, or there exist a subgroup A of G and real
numbers α, β such that α2β = 1,

(15) f (x) =
{

α if x ∈ A,
0 if x ∈ G \A,

and

(16) g (x) =
{

β if x ∈ A,
arbitrary nonzero if x ∈ G \A.

Proof. We prove only the non-trivial part of the statement. Suppose that
f is not identically zero. Then f (0) 6= 0 otherwise, with y = 0, (14) would
imply that f is identically zero. Let A = {y ∈ G : f (y) 6= 0}. We show that
g is constant on A and A is group. Indeed, if x ∈ A and y = 0 in (14) then,
with the definition β = 1

f(0)2
, we have f (x)2 = f (0)2 f (x)2 g (x) whence

(17) g(x) = β, x ∈ A

follows. On the other hand, 0 ∈ A, and if y ∈ A then, with x = 0, (14) implies
that

f(0)f(y) = f(y)2f(−y)2g(0).

Thus −y ∈ A. Finally, if x, y ∈ A then, replacing x by x + y in (14), we have

f(x + y)f(x + 2y) = f(y)2f(x)2g(x + y).

Since g is nowhere zero this implies that x + y ∈ A. Thus A is group.
Let now x = 0 and y ∈ A in (14). Then we obtain

(18) f (0)3 = f (y) f (−y)2 .
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Write here −y instead of y to get

f (0)3 = f (−y) f (y)2 .

Comparing these two equations we get f (−y) = f (y) for all y ∈ A. Thus,
with the definition α = f (0), (18) implies (15). (16) and the validity of
α2β = 1 are obvious. �

3. Remarks and examples

1. A common generalization of equation (3) and (14) is

(19) f (x) f (x + y) = f (y)2 f (x− y)2 F (x, y) , x, y ∈ G,

where G is a group, f : G → R and F : G × G → R are unknown functions.
Supposing that F is nowhere zero and f is not identically zero, as in the proof
of Theorem (2), the set A = {y ∈ G : f (y) 6= 0} turns out to be a subgroup
of G. Thus

f (x) =
{

arbitrary non-zero if x ∈ A,
0 if x ∈ G \A,

(20)

F (x, y) =

{
f(x)f(x+y)

f(y)2f(x−y)2
if (x, y) ∈ A×A,

arbitrary non-zero if (x, y) ∈ (G×G) \ (A×A) .
(21)

Conversely, if A is a subgroup of G then the functions f and F defined by (20)
and (21) are solutions of (19). However, if F : A × A → R is given where A
is a group one can ask the following: What is the necessary and sufficient
condition for the equality

F (x, y) =
f (x) f (x + y)

f (y)2 f (x− y)2
, x, y ∈ A,

to hold with some function f : A → R \ {0}? This problem is still open.
2. If 0 < a ∈ R and g (y) = ay+4, y ∈ R in (3) then we get equation (1).

Furthermore, if A = R with the usual addition, ϕ (x) = ax, x ∈ R, β = a4 and
α2 = a−4 in Theorem 1 then we have the nowhere zero solutions (2) of (1).
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On the other hand, if A = Q (the set of all rational numbers) with the usual
addition in Theorem 1 then the functions f and g given by

f (x) =
{

ax−2 if x ∈ Q,
0 if x ∈ R \Q,

and g (x) =
{

ax+4 if x ∈ Q,
arbitrary if x ∈ R \Q,

are nowhere continuous solutions of (3), in general.
3. If G = R with the usual addition and A is a proper subgroup of R then

both (3) and (14) have solutions f and g of the form

f (x) =
{

1 if x ∈ A,
0 if x ∈ R \A,

and g (x) =
{

1 if x ∈ A,
2 if x ∈ R \A.

It is obvious that these functions are discontinuous at least at the points of A.
Indeed, if f or g were continuous at a point of A then A would contain an
interval of positive length thus A = R would follow.
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