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Prace Naukowe Uniwersytetu Slaskiego nr 2617, Katowice

ON INJECTIVITY OF NATURAL HOMOMORPHISMS
OF WITT RINGS

MARZENA CIEMALA || KAZIMIERZ SZYMICZEK

Abstract. We study the homomorphism WO — W K between the Witt ring
of a domain O and the Witt ring of its field of fractions K in the case when O is
not integrally closed. We give sufficient conditions for the noninjectivity of this
homomorphism by constructing nonzero elements in the kernel. In particular,
when K is an algebraic number field and O is a nonmaximal order in K with
even conductor, then the ring homomorphism WO — W K is not injective.

1. Introduction

It is known that, for a Dedekind domain O and its field of fractions K,
the natural ring homomorphism

WO —-WK

between the Witt rings of O and K is injective. This was first proved by
M. Knebusch in 1970 ([4, Satz 11.1.1]). T.C. Craven, A. Rosenberg and
R. Ware investigated in [3] a more general situation and proved that when
O is a regular noetherian domain of an arbitrary Krull dimension, then ker ¢
is a nilideal, that is, every element belonging to the kernel is a nilpotent ele-
ment of the Witt ring W . They also gave a series of new examples where
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the kernel is actually zero and so ¢ is injective. In the opposite direction they
mentioned that for the Gaussian field K = Q(i) and the order O = Z[3i]
the homomorphism ¢ is not injective. According to [3] this is easy with no
further comments. We have tried to understand the simplicity of that state-
ment and one explanation we have found, presumably the easy one, follows
from the observation that for the unit element (1) of the ring WZ[3i] we have
©(2(1)) = 0 € WQ(7), while 2(1) # 0 in WZ][3i], since the canonical homomor-
phism Z[3i] — Z[3]/(3, 3i) = F3 induces ring homomorphism WZ[3i] — WF;
under which 2(1) goes into 2(1) # 0 € WF3. While this argument is generaliz-
able it does not offer enough freedom in constructing nonzero elements in the
kernel of the natural ring homomorphism ¢ : WO — WK for a domain O
and its field of fractions K.

In the first part of the paper (§§2,3) we study the bilinear space structure
on free modules S of rank 2 over a domain O which become hyperbolic over
the field of fractions of @. We find necessary and sufficient conditions for
metabolicity of S over O in terms of some ideals of O naturally related to the
space S.

In §4 we prove the main theorem giving a practical condition for S to be a
nonzero element in the kernel of the natural homomorphism ¢ : WO — WK.
It is expressed in terms of integrality over O of the roots of the isotropy
equation for S.

The simplest application shows that for each order Z[fi], f > 1, of the
Gaussian field Q(7), the natural ring homomorphism WZ[fi| — WQ(i) is not
injective, confirming (for f = 3) the assertion in [3].

We also prove that for each nonmaximal order O of any number field K
with even conductor the homomorphism WO — W K is not injective.

These results confirm in part the conjecture that for an algebraic num-
ber field K and its order O the natural ring homomorphism WO — WK
is injective if and only if O is the maximal order of K.

Some further results on the nature of the homomorphism are known.
In [2] we have proved that each element in the kernel of the homomorphism
WO — WK is anilpotent element in WO. In [1] it is shown that, in the case
of nonreal quadratic number fields, the homomorphism is surjective provided
the conductor of O is coprime with the discriminant of K.

We use the notation and terminology of the J. Milnor and D. Husemoller’s
book [5]. The symbol (E) denotes the element of the Witt ring WO deter-
mined by the bilinear space E over O. If P is a commutative ring and O is
a subring of P, then by the natural homomorphism induced by the inclusion
of O into P we mean the map

0: WO — WP, o(E) = (E®o P).

We also use the symbol (E)p for o(E).
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2. Free modules of rank 2

Let O be an integral domain and K its field of fractions. We assume that
char K # 2. Let (S, 3) be a nonsingular bilinear space over O with S a free
module of rank 2. Let (u,v) be a basis for S and let

A C
(2.1) sm=4

be the matrix of § in the given basis. Then A = f(u,u),B = [(v,v),
C = B(u,v) € O. Since (S,[) is nonsingular, the determinant AB — C?
is an invertible element of @. We will analyze the conditions for A, B,C
under which (S, 3) is a nonzero element in the kernel of the natural ring ho-
momorphism ¢ : WO — W K. Observe that ¢((S,)) = 0 if and only if (S)x
is a hyperbolic plane over K if and only if there is a nonzero D € K for which

AB — C? = —D?.

It is easy to show that if AB = 0 then (5, ) is metabolic. Hence we always

assume that AB # 0 and C? # D2
A nonzero element s = zu +yv € 5, z,y € O, is said to be isotropic if
B(s,s) = 0. This is equivalent to

Az? +2Cxy + By? = 0.

Since AB # 0 and = # 0 or y # 0, we conclude that 2y # 0 and so ¥ satisfies
the isotropy equation

BX? 420X + A=0.

We denote by d and d’ the roots of the isotropy equation. Hence

_-C+D_ A4 . —C-D_ 4

d: B —c-p YT 7B T ZC+D

These are elements of K. The notation introduced above will be in force
throughout the paper. In particular,

A,B,CeO, AB#0, AB-C?=-D*cU(0), DeK\{0},

where U(O) is the group of invertible elements in O.
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LEMMA 2.1. A nonzero element s = zu+yv € S, x,y € O is isotropic if
and only if y=dx or y=d'x.

PROOF. f(zu + yv,ru + yv) = 0 if and only if £ satisfies the isotropy
equation, hence

y —-C+D Yy ,
x B or x B ’
as required. O

We now proceed to the analysis of the conditions under which the space
(S, 3) is not metabolic. For this we find all totally isotropic subspaces of S
(see Lemma 2.4). Recall that the space (5, 3) is said to be metabolic if there
is a totally isotropic submodule N C S which is a direct summand for S. And
N is totally isotropic when N = N1, where N+ = {s € S : (s, N) = 0}
is the orthogonal complement of N. We write Is(S) for the set of all isotropic
elements in S,

Is(S) :=={s € S:p(s,s) =0},

and we also write

I=I(S) ={z(u+dv): 2 €0, zd € O},
I'=1(8)={z(u+d'v):2 €O, zd" € O}.

LEMMA 2.2. For submodules M and N of S,

N=Nt = NCIsS),
NCM = M"CN*,
N=N+, M=M+t NCM = N-=M.

PRrOOF. The first two properties are evident and the third follows from
the second. ]

LEMMA 2.3. I(S) and I'(S) are nonzero submodules of S and
Is(S) = I(S)uTI'(9).

Moreover, I(S)=1(S)t and I'(S)=1'(9)" .
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PRrROOF. Clearly I(S) and I'(S) are submodules of S. To show they are
nonzero submodules it suffices to point out a nonzero element x € O such
that zd € O and zd’ € O. If D = £, where c,e € O, one can take z = eB.
From Lemma 2.1 it follows that Is(S) = I(S) U I'(S).

To prove that the two submodules are totally isotropic we first show that
I(S)+ C I(S). Take a nonzero element s = au + bv € S, a,b € O, lying
in I(S)*. Then for all nonzero x € O satisfying xd € O we have

Blau + bv, z(u + dv)) = 0,
which is equivalent to
aA+bC + bdB + adC = 0.

From this it follows that a # 0 since otherwise b # 0 and C 4+ dB = 0. But
C +dB =D # 0, a contradiction. Hence we get

b__Atdc

a C+dB

It follows that s = au + adv € I(S) since b = ad belongs to O@. This shows
I(S)t C I(9).

Now let s1,s9 € I(S) be of the form s; = z(u + dv), s2 = y(u + dv) with
nonzero x,y in O and xd,yd € O. Then

zyB(s1, s2) = B(ay(u + dv), zy(u + dv)) =0,

hence (3(s1,52) = 0. This proves I(S) C I(S)*. A similar argument proves
that I’(.S) is totally isotropic. O

LEMMA 2.4. Let N be a totally isotropic submodule of S. Then
N=1I(S) or N=1TI(S).

PrOOF. From N = Nt we get N C Is(S) = I(S) U I'(S). We show that
actually

NCI(S) or NCI(S).
If this is not the case, there are nonzero s1, so € N such that

sp € I(S) and sy € I'(9).
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Let s1 = z(u+dv), sy = y(u+ d’v) with appropriate nonzero x,y € O. Since
B(s1,82) =0, we get

2y(A+ (d+d")C +dd'B) = 0.
Here d +d' = —% and dd’ = %, hence it follows that

2072
A—"2 4 A=
B ' 0,

that is, —2D? = 2(AB — C?) = 0. Since characteristic of the field K is
assumed not to be 2, this contradicts the nonsingularity of S. Thus we have
proved that N C I(S) or N C I'(S). Suppose N C I(S). Then according to
Lemmas 2.2 and 2.3 we get

NCIS)=I(S)* <Nt =N.
Hence N = I(S). If N C I’(S) a similar argument shows that N = I'(S). O

COROLLARY 2.5. I(S) and I'(S) are the only totally isotropic submodules
of S.

PrOOF. This follows from Lemma 2.3 and Lemma 2.4. O
The modules I(S), I'(S) have their counterparts in the ring O:

J=J8)={z€0:2dc 0} =0nd 0O,
T =J6)={xec0:zd cOy=0nd" 0.

J(S) and J'(S) are ideals in O and as O—modules they are isomorphic with
I(S) and I'(S), respectively. If O is a UFD, these are principal ideals, hence
invertible. In the general case we have the following lemma.

LEMMA 2.6. If the space (S, 3) is metabolic, then J or J' is an invertible
ideal in O.

Proor. If 7(S) and J'(S) are not invertible, then they are not projective
O—modules (see [6, Prop. 1.15, p. 26]). Hence none of them can be a direct
summand of the free module S. Since, by Corollary 2.5, the ideals J(S5) and
J'(S) are isomorphic with the only totally isotropic submodules of S, this
implies that (.9, ) is not metabolic. O
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LEMMA 2.7. Let O be a domain and let K be the field of fractions of O,
charK #2. Ifd € O ord' € O, then the O—space (S, 3) is metabolic.

PROOF. Suppose d € O. Then the totally isotropic subspace I(S) =
{z(u + dv) : x € O} is a free submodule of S with the basis element u + dv.
We prove that I(.S) is a direct summand of S.

Let s = zu 4+ yv € S for some z,y € O. Then

s=zu+yv=z(u+dv)+ (y — zd)v,

hence s € I(S)+ Ov. On the other hand v is not isotropic, hence I(S)NOv =
{0}. Thus we get

S =1(S)® Ov,

and since I1(S) = I(S)*, it follows that S is metabolic. If d’ € O, the proof
runs similarly. O

3. Characterization of metabolic spaces

We assume that O is a domain with field of fractions K. We also continue
to assume that d is a root of the isotropy equation

BX? 420X +A=0,

where A, B,C € O and C? — AB is a unit in O and a square in K.

We write d = g, where a,b € O. If O is noetherian, we can assume that
d is written in the lowest terms (that is, a and b do not have any common
divisors which are non-invertible in O), but we cannot expect any uniqueness
of representation of d as a ratio of two elements of O.

We have introduced earlier the ideal 7. Observe that

bT =b(ON dil(’)) =bOnN %(’)) = a0 NbO.
We also write
D :=a0 +bO

for the ideal in O generated by a, b.
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LEMMA 3.1. We have the following module isomorphism:
bJ = aONbO = 1.
PROOF. a0 NbO =1 via ay = bz — z(u+ Lv). O
ProproSITION 3.2. The following sequence is exact
(3.1) 0—-I— S % D —0,
where p(xu + yv) = ay — bx.
PRrROOF. Observe that
zu+yv ekerp <= y=dr €O <= zut+yv=x(u+dv) €l
for z,y € O. O

We give now a characterization of metabolicity of S in terms of the ideals
D and J. Recall that by Corollary 2.5, S is metabolic iff T or I’ is a direct
summand of S. So it is sufficient to characterize the situation when S is
metabolic and one of the subspaces I or I’ is a direct summand of S. If T is
a direct summand of .S we say S is I —metabolic.

THEOREM 3.3. The following statements are equivalent.
(a) S is I—metabolic.
(b) The exact sequence (3.1) splits.
(¢) D is a direct summand of S.
(d) D is an invertible ideal.
(e) DJ is a principal ideal.
(f) DI = aO.
(g) (a0 + bO)(aO N bO) = abO.

PROOF. The equivalence of (a), (b), (c¢) follows from Proposition 3.2 and
from standard properties of split exact sequences. If (c¢) holds, then D is a
direct summand of the free module S, hence it is projective, hence invertible.
Thus (c) implies (d). Conversely, if D is invertible, it is a projective module,
and so the exact sequence (3.1) splits. Thus (d) implies (b).

Clearly, (e) implies (d) and we now prove that (a), (b), (¢) and (d) im-
ply (e). From (b) we get

S=I®D and I=1I",
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the latter by Lemma 2.3. Hence (S, 3) is a metabolic space. Let
B3:5— 8% Bs)(s')=B(s,5)

be the adjoint homomorphism. It is an isomorphism and B(I ) = D*. Thus
we have the module isomorphisms

J2bT=I~B(I)=D" =D,

the latter isomorphism by (d). Hence (e) follows.
Now we show that (e) implies (f). If DJ = cO, then 1.7 is the inverse of
D, hence

17=10:D={ze€K:2DCO}={zcK:zacO and zbec O}
=10Nn10=L(aONnb0)=17.

Hence ¢cO = aQ, as required. It remains to observe that (f) and (g) are
equivalent since b7 = aO N bO. O

REMARK 3.4. We give here a proof of a less efficient result than the equiv-
alence of (a) and (e) in Theorem 3.3. Nevertheless it is of some interest. We
claim that

S is I—metabolic if and only if D*>J? is a principal ideal.

If D272 is principal, then D is invertible and so .S is metabolic. To prove the
converse observe that (a) implies (b) so that we have the split exact sequence

0—-J—-5—D-—0.
But then the following sequence is also split exact
0—-D"— S —TJ"—0,
where the homomorphisms involved are the transposes of the corresponding
homomorphisms in the first sequence. So it follows we have the following
module isomorphisms
JeD=S=2S"2g"eD"2J 'aD !,

the latter by the fact that both J and D are projective, hence invertible. Now
by Steinitz’s theorem we have the isomorphism

JD =cT ‘D!
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for some ¢ € K. It follows that D272 is a principal ideal.
PROPOSITION 3.5. If D is invertible, then J is invertible.
PROOF. This follows from the implication (d) = (e) in Theorem 3.3. [

REMARK 3.6. We do not know whether or not the converse statement to
that in Proposition 3.5 holds true. If so it would give a satisfactory NSC for
metabolicity of S: S is metabolic and [ is a direct summand of S iff J is
invertible iff I is a projective submodule of S.

4. The main theorem

For a ring R and its subring O let
f={zxecO:2RC O}

be the conductor of the ring extension @ C R. Observe that f = O <«
R = O. The conductor is the largest ideal of O which is also an ideal in R.
Indeed, if a is an ideal in O and it is also an ideal in R, then aR C a C O,
hence a C §. The following example shows that an ideal a of O contained in f
need not be an ideal of R.

EXAMPLE 4.1. Let O = Z[3i], R = Z[i]. Then f = 3R. Consider the
principal ideal a = (3 + 3i)O. Clearly a C §f. But a is not an ideal in R. For
(34 3i)(1—i) =6 ¢ a.

Now let O be a domain and K its field of fractions. For a,b € O, ab # 0,
we introduce the following notation:

d=2%, D=a0+b0, J=3(aOnboO).
We assume that d ¢ O and consider the ring
R:=0/d=04+dO0O+---+d"O+---.

Since d ¢ O we have O C R and so the conductor f is a proper ideal in O
(possibly 0). Observe that

f={xe€eO0:2d" €O forall neN}
=0nd'ond?0n---
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and hence we always have

(4.1) fcondto=7.

If d is integral over O, that is, if there is an n > 0 such that
d" € O +dO +---+d"10,

then the ring R is a finitely generated O—module and, in fact,
R=0+dO+---+d"'0.

We then say that d is integral over O of degree at most n. Observe that then

(4.2) f=0ndtOn---nd"*o.

PROPOSITION 4.2. The following statements are equivalent.
(a) R=0+dO+---+d"10.

(b) D" is an ideal in the ring R.
(c) d is integral over O of degree at most n.

PRrROOF. (a) = (b) Consider the ideal D = aO + bO and its power
D" ' =a""'0+ a0 + -+ 01O,
Observe that (a) implies a® 1R = D"~ !, hence (b) follows.
(b) = (c) If D"~ ! is an ideal in the ring R, then RD"~! C D"~! and in
particular dD"~1 C D"~ 1. It follows that
Ve gt e D =" YO +dO 4 --- +d"10O).

a

Whence d" = Z—Z €0+dO+---+d" 0.
(c) obviously implies (a). O

LEMMA 4.3. Let R be a subring of the field K. Assume that R contains
O and 0 is an ideal of O which is also an ideal in R. If O # R, then 0 is not
an invertible ideal in O.

PROOF. Suppose a is a fractional ideal in O and 0a = O. Then

O =0a = Roa = RO =R,

a contradiction. O
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Our main result in this section is the following theorem.

THEOREM 4.4. Let O be a domain and let K be the field of fractions of O,
charK # 2. Let (S, ) be a free bilinear space of rank 2 over O and let d and
d’ be the roots of the isotropy equation for S. If d and d’ are integral over O
each of degree at least 2, then the O—space (S, 3) is not metabolic. Hence the

class (S) is a nonzero element in the kernel of the natural ring homomorphism
WO — WK.

PrOOF. Consider the rings R := O[d] and R’ := O[d’]. If d is integral
over O of degree n > 2, D"~ ! is an ideal in the ring R by Prop. 4.2. Hence
by Lemma 4.3, D"~ ! is not an invertible ideal in O, and since n — 1 > 1, also
D is not invertible. Hence by Theorem 3.3 the space S is not I—metabolic.

A parallel argument shows that also the ideal D' = a’O + V'O is not
invertible and so S is not I’ —metabolic. Hence S is not metabolic. O

EXAMPLE 4.5. Let f > 1 be a positive integer and let O = Z[fi] be the
corresponding order in the field Q(7). Set

A=B=1, C=0.
Then D? = C? — AB = —1. Taking D =i we get
d=D=i, d'=-D=—i.
Here both d and d’ are integral over O of degree 2. Thus the conditions of

Theorem 4.4 are satisfied and hence S is not metabolic. It follows that (S) is
a nonzero element in the kernel of

WZ[fi] — WQ().

In other words, if O is an arbitrary non-maximal order of the field Q(4), then
the natural homomorphism WO — WQ(7) is not injective and

0+#(1,1) € ker(WO — WQ(i)).
REMARK 4.6. If d is integral over O of degree at most n, then
Dl CfC .
Indeed, by Prop. 4.2, we have a” 'R = D"~ ! so that D"~ ! is a (principal)
ideal in R, and hence is contained in the conductor f. On the other hand

f C J holds even without the assumption about integrality of d as we have
observed in (4.1).
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Recall that a subring O of a Dedekind domain Ok with the field of frac-
tions K is said to be an order in Ok when O is a one-dimensional noetherian
domain, O is the integral closure of O in K, and Og is a finitely generated
O—module.

PROPOSITION 4.7. Let K be the field of fractions of a Dedekind domain
Ok and let O be a nonmazimal order in Ok . Ford € K let § be the conductor
of the ring extension O C R = O[d]. Then § is a nonzero ideal if and only if
d is integral over O.

ProOOF. Fix z € f, x # 0. Then 2d™ € O for all n € N. Since d = g,
we have

a” | " in O forallneN.

If a | bin Ok, then d € Ok and so d is integral over O since Ok is integrally
closed. We show that a t b in Ok leads to a contradiction. So suppose a 1 b
in Ok and a” | 0"z in O for all n € N. Hence also a1 b in Ok and a” | bz in
Ok for all n € N. Since O is a Dedekind domain there exists a prime ideal
p in Ok such that

p*lla, p'[b and s>t

for some nonnegative integers s,t. Let also p” || « for some r > 0. Then
a™ | b"x implies

sn<tn-+r forallneN.

Hence s <t + ;- <t+1 for large n. It follows s < {, a contradiction.
Conversely, if d is integral over O of degree at most n, then by Remark
4.6 the nonzero ideal D"~! is contained in f, hence f # 0. (]

PROPOSITION 4.8. Let K be the field of fractions of a Dedekind domain
Ok and let O be a nonmazimal order in Ok . Ford € K let § be the conductor
of the ring extension O C R = O[d]. The following statements are equivalent.
(a) d is integral over O of degree at most n.

(b) D1 C .

PROOF. (a) = (b) has already been noticed in Remark 4.6.
(b) = (a) If D"~ C§, then a™~ 1,671 € §, that is

a"'O[d] C O and b"rO[d] C O.
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Hence a"td™,b"'d™ € O for all m € N and this is equivalent to

a™ | bt in O for all m € N.
If a | bin Ok, then as above d € Ok is integral over O. We show that a { b in
Ok leads to a contradiction. Since Ok is a Dedekind domain and a t b, there

exists a prime ideal p in O such that

p°lla, p'lb and s>t

for some nonnegative integers s,t. On the other hand a™ | b™*"~! implies
sm < t(m+n — 1), that is
t(n—1)
s<t+ e <t+1
for large m. It follows s < ¢, a contradiction. O

5. Finite extensions of QQ

We now point out a special case of Theorem 4.4.

THEOREM 5.1. Let O be a domain and let K be the field of fractions of O,
charK # 2. Let Ok be the integral closure of O in K. Suppose there exists
an element t € Ok such that

26,2t € O and t¢ O.
Then the natural ring homomorphism WO — W K is not injective.

Proor. We take a free O—module S of rank 2 and define a bilinear form
B on S with the matrix (2.1) where

A=2(t—-1)t B=2 C=2-1.

Then AB — C? = —1 = —D? with D = 1 and hence S becomes hyperbolic
over K. In order that (S5, ) be a nonsingular bilinear space over O we have
to assure that A, B, C' € O so that we require that

20t—1t,2t—1€ 0,
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and these conditions are satisfied since 2¢t,2t? € O. Further, we compute
d=—-t+1, d =—t,

and these do not belong to O but do belong to Ok by hypothesis. Hence,
according to Theorem 4.4, (S, 3) is a nonmetabolic space. O

The assumptions in Theorem 5.1 can be satisfied whenever Ok is noether-
ian. For simplicity, we switch to orders in number fields.

THEOREM 5.2. Let O be an order in an algebraic number field K and let
Ok be the mazimal order in K. Suppose the conductor §f = fo, o is even in
the sense that f C 20k . Then the natural ring homomorphism WO — WK
is not injective.

PrOOF. Take an element 2ty € f. If t; € f, we have t; = 2t5 with some
to € Ok. If again ty € f, we have to = 2t3 with some t3 € Og. Hence
110k C 20k C t3O0k. Since Ok is noetherian, this process terminates and
there exists to € Ok such that 2ty € § and g ¢ f.

Now observe that there exists u € Ok such that uty ¢ O. If not, then
for any element u € O we have uty € O, whence ty € f, a contradiction. It
follows that 2uty € f, since { is an ideal in O, and also 2(utg)? € §. Thus
t = utg satisfies the conditions of Theorem 5.1 and the result follows. [l

Let K = @(\/&), where d is a square-free integer. We set w = Vd when
d=2or 3 (mod4), and w = (1 + Vd) when d = 1 (mod 4). Then Z[w]
is the maximal order in K and each order is of the form O = Z[fw] for an
integer f > 1.

COROLLARY 5.3. Let K be an arbitrary quadratic number field with mazx-
imal order Z|w| and let O = Z[fw] be an order in K. If f is an even integer,

then the natural ring homomorphism WO — W K is not injective.

PROOF. The conductor f = fo,./0 = fOk is even, hence Theorem 5.2
applies. Actually we can take t = % fw in Theorem 5.1. ([l
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