INFINITE PRODUCT FOR $e^{6 \zeta(3)}$

Marian Genčev

Abstract

The author uses the summation of rational series using the properties of the digamma function $\Psi(x)$ and the methods of the residue calculus to evaluate the function $H_{\alpha}(x)$ for $\alpha=1$ and $x=a^{-1}(N), N \in \mathbb{N}$ (see Theorem 1) which is called the function generating the generalized harmonic numbers of order 1 (see Definition 1). The relation between the functions $H_{1}(x), x>0$, and $\Psi(x)$ is used to find the approximations of the constant $e^{6 \zeta(3)}$ in the form of the infinite product which contains only the numbers e, π and the roots of unity, where $\zeta(3)$ is the Apéry constant.

1. Introduction

The study of the arithmetical nature of the values of the Riemann function $\zeta(s)=\sum_{n=1}^{+\infty} \frac{1}{n^{s}}$ at integers $s>1$ is one of the most attractive topics of the modern number theory. Euler's formula

$$
\zeta(s)=-\frac{(2 \pi \mathrm{i})^{s} B_{s}}{2 s!}, \quad s=2,4,6, \ldots
$$

marked the first progress in this area. Some criteria for irrationality of such kind of factorial series can be found in [4] and [5]. In 1882 F. Lindemann proved that π is transcendental, which implies that $\zeta(s)$ is transcendental if s is even. The problem of the irrationality of the values of $\zeta(s)$ at odd integers is not solved yet, except the case $s=3$, which was proved by Apéry in 1978.

[^0]There are many papers concerning the results involving the value $\zeta(3)$. In this paper we investigate the possibility to express the value $e^{6 \zeta(3)}$ using the numbers π, e and the roots of unity as the infinite product. J. Sondow and J. Guillera (see [3] and [6]) found new infinite products of many classical constants such as $\gamma, \pi / e, e^{\gamma}$ or $e^{7 \zeta(3) / 4 \pi^{2}}$ in 2003 and 2005. Certain interesting infinite product expansions were obtained by Gosper in 1996:

$$
\begin{aligned}
\prod_{n=1}^{\infty}\left(\begin{array}{cc}
\frac{(n+1)^{4}}{4096\left(n+\frac{5}{4}\right)^{2}\left(n+\frac{7}{4}\right)^{2}} & \frac{24570 n^{4}+64161 n^{3}+62152 n^{2}+26427 n+4154}{31104\left(n+\frac{1}{3}\right)\left(n+\frac{1}{2}\right)\left(n+\frac{2}{3}\right)} \\
0 & 1
\end{array}\right) \\
=\left(\begin{array}{cc}
0 & \zeta(3) \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Transcendence criteria of special infinite products are investigated by J. Hančl and P. Corvaja in [2].

2. Main result

Theorem 1. Let $N \in \mathbb{N}, \zeta_{1, N}:=-1$ for all $N \in \mathbb{N}, \zeta_{j, N}:=\varepsilon_{j, N}-1$, $j=2, \ldots, N$, where $\varepsilon_{j, N} \neq 1$ are the $(N-1)$ solutions of the equation $\varepsilon_{j, N}^{N}=1$ and

$$
Z_{n, N}:=\frac{\left(\zeta_{n, N}+1\right)^{N-1}-1}{\zeta_{n, N} \prod_{j=1, j \neq n}^{N}\left(\zeta_{n, N}-\zeta_{j, N}\right)}, \quad 1 \leq n \leq N .
$$

Then

$$
e^{6 \zeta(3)}=\lim _{N \rightarrow+\infty} \prod_{j=1}^{a(N)} \frac{e^{\pi^{2}-6 a^{2}(N)}}{\zeta_{j, a(N)}^{6 a^{3}(N) Z_{j, a(N)}}}
$$

where $a(N): \mathbb{N} \rightarrow \mathbb{N}$ is an increasing function.
For the proof of Theorem 1 it is convenient to introduce the function $H_{\alpha}(x)$ generating the generalized harmonic numbers of order 1.

Definition 1. Let $\alpha \in \mathbb{R}^{+}$and $x \in \mathbb{R}^{+}$. Then the function

$$
H_{\alpha}(x):=\int_{1-\frac{1}{\alpha}}^{1} \frac{1-(1-t)^{x}}{t} d t
$$

is called the function generating the generalized harmonic numbers of order 1.
Corollary 1. Let $N \in \mathbb{N}$. Then

$$
H_{1}(N)=\sum_{j=1}^{N} \frac{1}{j} .
$$

Lemma 1. Let $N \in \mathbb{N}, N>2$ and $a:=\frac{1}{M}, M \in \mathbb{N}, M>2$. Then

$$
0 \leq \Delta \Psi(N, a) \leq \frac{1}{\sqrt{(2(N+a)-1)(1-2 a)}}
$$

where $\Delta \Psi(N, a):=\Psi(N+a)-\Psi(N)$.
Proof. Let $N \in \mathbb{N}, N>2$ and $a:=\frac{1}{M}, M \in \mathbb{N}, M>2$. Using the formula

$$
\begin{equation*}
\Psi(z)=\int_{0}^{+\infty}\left(e^{-t}-\frac{1}{(1+t)^{z}}\right) \frac{d t}{t}, \quad \mathfrak{R e}(z)>0 \tag{1}
\end{equation*}
$$

we get

$$
\begin{aligned}
\Delta \Psi(N, a) & =\int_{0}^{+\infty}\left(e^{-t}-\frac{1}{(1+t)^{N+a}}-e^{-t}+\frac{1}{(1+t)^{N}}\right) \frac{d t}{t} \\
& =\int_{0}^{+\infty}\left(\frac{1}{(1+t)^{N}}-\frac{1}{(1+t)^{N+a}}\right) \frac{d t}{t} \\
& =\int_{0}^{+\infty} \frac{(1+t)^{a}-1}{t} \frac{d t}{(1+t)^{N+a}} \\
& \leq \sqrt{\int_{0}^{+\infty}\left(\frac{(1+t)^{a}-1}{t}\right)^{2} d t \int_{0}^{+\infty}\left(\frac{1}{(1+t)^{N+a}}\right)^{2} d t} \\
& =\sqrt{\frac{1}{2(N+a)-1} \int_{0}^{+\infty}\left(\frac{(1+t)^{a}-1}{t}\right)^{2} d t .}
\end{aligned}
$$

For the last integral we obtain the estimation

$$
\begin{aligned}
\int_{0}^{+\infty}\left(\frac{(1+t)^{a}-1}{t}\right)^{2} d t & =\int_{0}^{1}\left(\frac{1-\zeta^{-a}}{1-\zeta}\right)^{2} d \zeta=\int_{0}^{1}\left(\frac{1-\zeta^{-\frac{1}{M}}}{1-\zeta}\right)^{2} d \zeta \\
& =M \int_{0}^{1}\left(\frac{1-\frac{1}{\tau}}{1-\tau^{M}}\right)^{2} \tau^{M-1} d \tau \\
& =M \int_{0}^{1} \frac{\tau^{M-3}}{\left(\sum_{j=1}^{M} \tau^{j-1}\right)^{2}} d \tau \\
& \leq M \int_{0}^{1} \tau^{M-3} d \tau=\frac{1}{1-2 a}
\end{aligned}
$$

This implies that

$$
\Delta \Psi(N, a) \leq \frac{1}{\sqrt{(2(N+a)-1)(1-2 a)}}
$$

The inequality $0 \leq \Delta \Psi(N, a)$ follows easily from (1), which completes the proof of the lemma.

Proof of Theorem 1. Set

$$
\begin{equation*}
\phi(a):=\sum_{\substack{n=1 \\ a>0}}^{+\infty} \frac{1}{n^{3}+a n^{2}} . \tag{2}
\end{equation*}
$$

The infinite series on the right hand side of (2) represents for $a \in \mathbb{R}$ the absolute convergent infinite series and thus the value $\phi(a)$ is defined for all $a \in \mathbb{R}$. Using the definition of the Riemann ζ-function, we get the fact that $\lim _{a \rightarrow 0} \phi(a)=\zeta(3)$.

Now, for the function $\phi(a)$ we obtain $(a>0)$

$$
\begin{aligned}
\phi(a) & =\sum_{n=1}^{+\infty}\left(\frac{1}{a n^{2}}-\frac{1}{a^{2}}\left(\frac{1}{n}-\frac{1}{n+a}\right)\right) \\
& =\frac{1}{a} \sum_{n=1}^{+\infty} \frac{1}{n^{2}}-\frac{1}{a^{2}} \lim _{\substack{N \rightarrow+\infty \\
N \in \mathbb{N}}} \sum_{n=1}^{N}\left(\frac{1}{n}-\frac{1}{n+a}\right) .
\end{aligned}
$$

Using the recursion formula $\Psi(z+1)=\Psi(z)+\frac{1}{z}$, we have

$$
\sum_{n=1}^{N} \frac{1}{n}=\sum_{n=1}^{N}(\Psi(n+1)-\Psi(n))=\Psi(N+1)-\Psi(1)=\Psi(N+1)+\gamma
$$

and

$$
\sum_{\substack{n=1 \\ a>0}}^{N} \frac{1}{n+a}=\sum_{\substack{n=1 \\ a>0}}^{N}(\Psi(n+a+1)-\Psi(n+a))=\Psi(N+a+1)-\Psi(a+1) .
$$

This and Lemma 1 implies that

$$
\begin{aligned}
\lim _{\substack{N \rightarrow+\infty \\
N \in \mathbb{N}}} \sum_{\substack{n=1 \\
a>0}}^{N}\left(\frac{1}{n}-\frac{1}{n+a}\right)=- & \lim _{\substack{N \vec{N}+\infty \\
N \in \mathbb{N}}}((\Psi(N+a+1)-\Psi(N+1)) \\
& +(\Psi(a+1)-\Psi(1)))=\Psi(a+1)-\Psi(1),
\end{aligned}
$$

which yields the fact that

$$
\phi(a)=\frac{\pi^{2}}{6 a}-\frac{1}{a^{2}}(\Psi(a+1)-\Psi(1)) .
$$

Note that $-\Psi(1)=\gamma$ is the Euler-Mascheroni constant. Using the integral representation for the term $\Psi(a+1)-\Psi(1)$, we obtain the formula

$$
\begin{equation*}
\phi(a)=\frac{\pi^{2}}{6 a}-\frac{1}{a^{2}} \int_{0}^{1} \frac{1-t^{a}}{1-t} d t . \tag{3}
\end{equation*}
$$

From the fact that $\lim _{a \rightarrow 0} \phi(a)=\zeta(3)$ we have the relation

$$
\lim _{N \rightarrow+\infty} \phi\left(a^{-1}(N)\right)=\zeta(3),
$$

where $N \in \mathbb{N}$. The integral in (3) can be treated as the value of the generalized harmonic number function $H_{\alpha}(x)$ for $\alpha=1$ and $x:=a=a^{-1}(N)$.

The value $H_{1}\left(a^{-1}(N)\right)=: H\left(a^{-1}(N)\right), N \in \mathbb{N}$, can be computed as follows:

$$
\begin{aligned}
H\left(a^{-1}(N)\right) & =\int_{0}^{1} \frac{1-t^{a^{-1}(N)}}{1-t} d t=a(N) \int_{0}^{1} \frac{1-\tau}{1-\tau^{a(N)}} \tau^{a(N)-1} d \tau \\
& =a(N) \int_{0}^{1} \frac{\tau^{a(N)-1}}{\sum_{j=1}^{a(N)} \tau^{j-1}} d \tau \\
& =a(N) \int_{0}^{1} \frac{\sum_{j=1}^{a(N)} \tau^{j-1}-\sum_{j=1}^{a(N)-1} \tau^{j-1}}{\sum_{j=1}^{a(N)} \tau^{j-1}} d \tau \\
& =a(N)-a(N) \int_{0}^{1} \frac{\sum_{j=1}^{a(N)-1} \tau^{j-1}}{\sum_{j=1}^{a(N)} \tau^{j-1}} d \tau \\
& =a(N)-a(N) \int_{0}^{+\infty} \frac{\sum_{j=1}^{a(N)-1}(\zeta+1)^{1-j}}{\sum_{j=1}^{a(N)}(\zeta+1)^{1-j}} \frac{d \zeta}{(\zeta+1)^{2}} \\
& =a(N)-a(N) \int_{0}^{+\infty} \frac{\sum_{j=1}^{a(N)-1}(\zeta+1)^{j-1}}{\sum_{j=1}^{a(N)}(\zeta+1)^{j-1}} \frac{d \zeta}{\zeta+1} \\
& =a(N)-a(N) \int_{0}^{+\infty} \frac{(\zeta+1)^{a(N)-1}-1}{(\zeta+1)^{a(N)}-1} \frac{d \zeta}{\zeta+1} .
\end{aligned}
$$

Using the fact that

$$
\operatorname{deg}\left((\zeta+1) \cdot\left((\zeta+1)^{a(N)}-1\right)\right)=\operatorname{deg}\left((\zeta+1)^{a(N)-1}-1\right)+2, \quad \forall N \in \mathbb{N}
$$

we can compute the last integral for $H\left(a^{-1}(N)\right)$ with the help of the residue calculus.

For the brevity we write

$$
h_{a(N)}(\zeta)=\frac{(\zeta+1)^{a(N)-1}-1}{(\zeta+1)^{a(N)}-1} \cdot \frac{1}{\zeta+1} .
$$

Let $\zeta_{1, a(N)}=-1$ and $\zeta_{j, a(N)}=\varepsilon_{j, a(N)}-1, j=2, \ldots, a(N)$, where $\varepsilon_{j, a(N)}$ are the solutions of the equation $\varepsilon_{j, a(N)}^{a(N)}=1$, except the trivial solution 1 . Then

$$
h_{a(N)}(\zeta)=\frac{(\zeta+1)^{a(N)-1}-1}{\zeta \prod_{j=2}^{a(N)}\left(\zeta-\zeta_{j, a(N)}\right)} \cdot \frac{1}{\zeta+1}=\frac{(\zeta+1)^{a(N)-1}-1}{\zeta \prod_{j=1}^{a(N)}\left(\zeta-\zeta_{j, a(N)}\right)}, \quad \zeta \neq 0 .
$$

This implies that

$$
\begin{aligned}
\int_{0}^{+\infty} h_{a(N)}(\zeta) d \zeta & =-\sum_{n=1}^{a(N)} \operatorname{Res}_{\zeta=\zeta_{n, a(N)}} h_{a(N)}(\zeta) \ln \zeta \\
& =-\sum_{n=1}^{a(N)} \lim _{\zeta \rightarrow \zeta_{n, a(N)}}\left(\frac{(\zeta+1)^{a(N)-1}-1}{\zeta \prod_{j=1, j \neq n}^{a(N)}\left(\zeta-\zeta_{j, a(N)}\right)} \ln \zeta\right) \\
& =-\sum_{n=1}^{a(N)}\left(\frac{\left(\zeta_{n, a(N)}+1\right)^{a(N)-1}-1}{\zeta_{n, a(N)} \prod_{j=1, j \neq n}^{a(N)}\left(\zeta_{n, a(N)}-\zeta_{j, a(N)}\right)} \ln \zeta_{n, a(N)}\right) .
\end{aligned}
$$

Setting

$$
Z_{n, a(N)}:=\frac{\left(\zeta_{n, a(N)}+1\right)^{a(N)-1}-1}{\zeta_{n, a(N)} \prod_{j=1, j \neq n}^{a(N)}\left(\zeta_{n, a(N)}-\zeta_{j, a(N)}\right)}
$$

we obtain finally

$$
H\left(a^{-1}(N)\right)=a(N)-a(N) \ln \prod_{j=1}^{a(N)} \zeta_{j, a(N)}^{-Z_{j, a(N)}}
$$

Thus

$$
\phi\left(a^{-1}(N)\right)=\frac{1}{6} \ln \prod_{j=1}^{a(N)} \frac{e^{\pi^{2}-6 \cdot a^{2}(N)}}{\zeta_{j, a(N)}^{6 \cdot a^{3}(N) Z_{j, a(N)}}} .
$$

Since $\lim _{N \rightarrow+\infty} \phi\left(a^{-1}(N)\right)=\zeta(3)$, we obtain

$$
e^{6 \zeta(3)}=\lim _{N \rightarrow+\infty} \prod_{j=1}^{a(N)} \frac{e^{\pi^{2}-6 a^{2}(N)}}{\zeta_{j, a(N)}^{6 a^{3}(N) Z_{j, a(N)}}},
$$

which completes the proof of Theorem 1.
Remark 1. Note that the result in Theorem 1 must be taken in the sense that there exists a branch in the complex plain of the number

$$
A_{N}:=\prod_{j=1}^{a(N)} \frac{e^{\pi^{2}-6 a^{2}(N)}}{\zeta_{j, a(N)}^{6 a^{3}(N) Z_{j, a(N)}}}
$$

such that $A_{N} \in \mathbb{R}$ for every $N \in \mathbb{N}$.

Open problem. Is the number $e^{\zeta(3)}$ transcendental?

Acknowledgments. I would like to thank professor Mišík for the help with applications in the complex analysis and professor Hančl for language corrections.

References

[1] Ambrowitz M., Stegun I., Handbook of mathematical functions. Dover, New York 1964.
[2] Corvaja P., Hančl J., A transcendence criterion for infinite products. Preprint (2006).
[3] Guillera J., Sondow J., Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent. Available at http://arxiv.org/abs/math.NT/0506319 (2005).
[4] Hančl J., Tijdeman R., On the irrationality of Cantor series, J. Reine Angew. Math. 571 (2004), 145-158.
[5] Hančl J., Tijdeman R., On the irrationality of factorial series, Acta Arith. 118 (2005), no. 4, 383-401.
[6] Sondow J., An infinite product for e^{γ} via hypergeometric formulas for Euler's constant γ. Available at http://arXiv.org/abs/math/0306008 (2003).

Department of Mathematics
University of Ostrava
Dvořákova 7
70103 Ostrava 1
Czech Republic
e-mail: marian.gencev@osu.cz

[^0]: Received: 2.07.2007. Revised: 30.11.2007.
 (2000) Mathematics Subject Classification: 40C10, 33B15.

 Key words and phrases: summation methods, infinite series, infinite products.

