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ON LUCAS NUMBERS, LUCAS PSEUDOPRIMES
AND A NUMBERTHEORETICAL SERIES INVOLVING
LUCAS PSEUDOPRIMES AND CARMICHAEL NUMBERS

ANDRZEJ ROTKIEWICZ

Abstract. The following theorems are proved:
(1) Ifa and B # « are roots of the polynomial z2— Pz+Q, where ged(P, Q) =
1, P = a+ @ is an odd positive integer, then (a + 3)"t!|a® 4 5% if and
only if x = (21 + 1)(av + B)™, where I = 0,1, 2, ... and then

- ala+B®)™ 4 glats)™
(a4 B+t

, oz+ﬁ) =1.

(2) Given integers P,Q with D = P2 —4Q # 0, —-Q, —2Q, —3Q and ¢ = +1,
every arithmetic progression ax + b, where gcd(a, b) = 1 contains an odd

o0
integer no such that (D|ng) = . The series Y 1/log Pl where P{*

n=1
is the n-th strong Lucas pseudoprime with parameters P and @ of the
form ax + b, where gecd(a,b) = 1 such that (D|P7(La)) = g, is divergent.
(3) Let C, denote the n-th Carmichael number. From the conjecture of
P. Erdés that C(x) > z'~¢ for every € > 0 and = > z0(¢), where C(x)
denotes the number of Carmichael numbers not exceeding x it follows

oo
that the series E 1/0711_5 is divergent for every € > 0.

n=1

Let P, be non-zero integers. Then the polynomial 22 — Px + Q, has the

roots o, 3 = PiQ‘m, where D = P? — 4Q).
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For each n > 0, define u,, = u, (P, Q) and v,, = v,(P, Q) by:

up =0, ug =1, up, = Pup—1 — Qup—o (for n > 2),
vg =2, v1 = P, v, = Pv,_1 — Qu,_2 (for n > 2).

The sequences u, (P, Q) and v, (P, Q) are called the first and second Lucas
sequences with parameters P and Q. If n = «/( is a root of unity then the
sequences u, (P, Q), v, (P, Q) are said to be degenerate.

If ged(P,Q) = 1, then for degenerate sequence we have (P, Q) = (1,1),
(—=1,1),(2,1) or (=2, 1). If the sequence is degenerate, then D = 0 or D = —3.
For D # 0 by Binet’s formulas:

an_ﬁn
UnIT_Ba

un (=P, Q) = (—=1)" un(P,Q), va(=P,Q) = (—=1)"vn(P, Q).

vn = a" + G,

1. Historical remarks

In the book [2], which contains every extant work by E. Galois (1811-1832)
on page 301 it is written:

8, 27, 64, 125, 343, 512, 729, 1000

3453 43455 28473 53478
28 7 33 33 7 33

(in the denominator of last number, instead 3% should be 32 - 22).

The above passage of Galois manuscript suggests that m(a + b)|a™ + b™
if 24 m and every prime factor of m divides a + b.

We note here that E.E. Kummer [11] (see L.E. Dickson [5], p. 737) showed
that if an n is odd prime we have

n 7
aa i Z =(axb)" ¥ (a+b)" 3ab+ W(a +b0)"Pa? ...

and if the above number and a + b have a common factor, it divides the last
term :I:n(ab)(”_l)/z, and is equal n if a and b are relatively prime with n.

Since the coefficients n, n(n — 3)/2,... are divisible by n, the exponent
of the highest power of n dividing a™ 4+ b" exceeds by unity that in a =+ b.
T. Boncler (see W. Sierpinski [24], p. 67) proved that for every odd n and
coprime integers a and b we have (a + b)?|a™ + b" if and only if (a + b)|n.
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The author proved [17] that if (a,b) = 1 and a+ b is a positive odd integer
then (a+b)""!a” 4+ b® if and only if x = (20 +1)(a+b)", where [ =0, 1,2, ...

and
(a+b)" (a+b)"
a +b
gcd( (At bt ,a+b>:1.

Here we shall prove the following generalization of the above theorem.

THEOREM 1. If o and 3 # o are roots of the polynomial x> — Px+Q, where
ged(P,Q) =1, P = a+ 3 is an odd positive integer, then (o + 3)"*ta® + 5%
if and only if v = (2L + 1)(a+ )", where l =0,1,2,... and then

[ g gk
° (a+ B

, a—l—ﬂ) =1.

PROOF. By the so-called law of repetition [26, p. 87| we have:

Let p¢ (with e > 1) be the exact power of p dividing u,,. We shall write
p°l|lun, when p¢luy,, p°t! t w,. Let f > 1, pt k. Then, p°™/ divides w,,s.
Moreover, if p{ @, p® # 2 then p*+/ is the exact power of p dividing Upfopf -

For the sequence v,, we have:

If p is an odd prime, A > 0 and p*||vy,, then p**#||v,npe, where p f n, n
is odd, and p > 0.

Let v1 = a+ 8 = pi"py? ... py*, where p1,pa, ..., pr are odd primes. We
have (o + B)"F1 = p{rTrarpgetnes 0 tn% and by law of repetition for
v, We have
(a+8)" T a®+6% if and only if z = (21+1)py 1 p5 2 ... pp™* = (21+1)(a+3)",

where [ = 0,1,2,... and since by law of repetition: p?‘#na"vav_mi for i =
1,2,...,k thus
ap;ualp;(XQ'npzak + ﬁp?alpgazn'pzak
R e e
and
(at+p)" (a4+pB)"
Q@ + 3
C , a4+ = 1. O
& ( (a+g)r+ ﬁ)
EXAMPLES

)P=a+B=3,Q=a-p=-1, D= P?—4Q = 13; the characteristic
polynomial is 22 — 3z — 1; v9g =2, v1 = 3, v, = 3V,_1 + Vy_o (n > 2),
Vo= 2,01 = 3;v9 = 11, v3 = 36 = 22.32, vy = 119 = 7-17, v5 = 393 = 3-131,
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v = 1298 = 21159, v; = 4287 = 3 - 1429, vg = 14159, vg = 46764 =
22.33. 433, (a =+ 6)3 — 33|a(a+,3)2 + ﬁ(a+ﬁ)2 and

(a+8)? (a+8)? 2.33.
o +4 22.33. 443
gcd( CEE ) a—l—ﬁ) = gecd (33, 3) =1.

2) P=3,Q =1 we have a, f = 3i2‘/5,v0:2,v1:3,a,52&2\/5,
Up = 30p—1 — Up—2 (n > 2)
1}0:2,1)1:3, U2:7,1}3:18,1}4:47,1}5:123:3'41,U6:322:2'7~23,
vy = 843 = 3- 281, vg = 2207, vg = 5778 =2 - 3% - 107

(a+8)* 4 glatp)? .33.
o + 2-3°-107
33”@9’ ng ( (a i 5)3 , (& + 6) = ng (33, 3) =1.

2. Landau’s and Jarden’s results

Let P=1,Q=—-1,s0 D =5.

The Lambert series is L(z) = Z 2 =z +2x* 4 22° + ... in which the
coefficient of ™ is d(n) — the number of the divisors of n. The Lambert series
is convergent for 0 < x < 1. Let F,, denote the n-th Fibonacci number.

o]
E. Landau [12] had evaluated Z 1/F, in terms of the sum of Lambert’s

series and Z 1/F5,,+1 in relation to theta Jacobi series which are defined as

=0
follows, for 0 <|g| <1and ze€C:

01(z,q) =i Z (_1)nq(n—%)2€(2n—1)wiz7

n=-—oo

oo

2 .
92(2’,(]) = Z q(n-ﬁ-é) e(2n—1)71'7,z7

n=—oo
)
Z qn262n7riz
3
n=—oo
) 5 '
b= 3 (A7t

n=-—0oo
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In particular, we have

01(0,9) =0,

02(0, q) =2¢"* 4+ 2¢°* 4 247/ 4 .,
03(0,q) = 1+ 2q +2¢* +2¢° + ...,
04(0,q) =1 —2q+2¢* —2¢° +....

Landau’s result (see E. Landau [12] and P. Ribenboim [16, pp. 51-61]) are

THEOREM Ly:

1P = V5 [L(355) -1 (5E)] = V5L ()L (Y], 5 = 155,

THEOREM Los:
S 1/Fopp1 = —V5 (14284 + 236 + 2836 + )
n=0

(B4 59+ 6% +...) = =5 [05(0, 8) — 02(0, 34)] 62(0, B4).

In 1948 D.R. Jarden [10] gave the following generalization of Landau’s
theorem.

Let ug =0, uy = 1, up, = Pup—1 + up—2 (n = 2,3,4,...; P, an arbitrary
positive real number) and D = P? + 4. Let a = # ans b = % =-1

be the roots of the equation 22 — Pz — 1 = 0.
Jarden’s results are the following;:

o0
THEOREM Ji: The series . % converges and

n=1 "
> " 1/uzn = VD (L (a®) — L (a*)).
n=1
THEOREM Jo: The series Y 1/ugn41 converges and

Zl/u2n+1 :—\/5(1—1—2@4—1—2&16—}—2@36—1—...) (a+a9+a25—i—...).
n=0
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3. Lucas pseudoprimes

Let a, b be relatively prime integers with |a| > |b| > 0. For any n > 0, let
¢n(a,b) denote the n-th homogeneous cyclotomic polynomial, defined by

(n/d)
bnla,b) = H (ad _ bd>” n |
d|n
where p is the Mobius function.

DEFINITION 1. A composite n is called a pseudoprime if n|2™ — 2.

DEFINITION 2. If 1 < d; < ds < ... < dj, are integers, we shall call the
n
number n = [] ¢q4,(2,1) a cyclotomic number and if n is a pseudoprime we
i=1
shall call it a cyclotomic pseudoprime.

The above definition was introduced in 1982 by C. Pomerance (see [15]).
In the paper [22] it was proved the following:

THEOREM Pi: Ifn > 3 is a prime or an odd pseudoprime then the number
(2" — 1)ppan_2(2) is a cyclotomic pseudoprime.

EXAMPLES

The least cyclotomic pseudoprime of the form (27 — 1)¢an_o(2) is (2° —
1)¢30(2) = 31331 = 10261. For pseudoprime 341 we get the cyclotomic
pseudoprime (2341 — 1)¢g311_5(2).

DEFINITION 3. A composite number n is called a Lucas pseudoprime with
parameters P and @ if (n,2DQ) = 1 and

(1) Un—(D\n) =0 (mOd n)?
where (D|n) is the Jacobi symbol.

Instead of ¢, (c, 3), where o and 3 are roots of the polynomial 2% — Pz +Q
we shall write ¢,,.
DEFINITION 4. If 1 < dy < dy < ... < di are integers, we shall call the
k
number n = [] ¢4, a cyclotomic Lucas number and if n is a pseudoprime we

=1
shall call it Lucas cyclotomic pseudoprime.
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In the paper [22] the author proved the following:

THEOREM Po: If p>5, P=a+>1,Q=af8=—-1,p{ P2 +4=D,
then the number uydy, —(Dlu,) i a cyclotomic Lucas pseudoprime.

EXAMPLES
1) For P =1, @ = —1 we get Fibonacci sequence 0,1,1,2,3,5,8,13,21,
34,55, 89,144, ... and companion Fibonacci sequence

vn(1,—1):2,1,3,4,7,11,18,29,47, 76,123,199, 322, . . ..

The least Fibonacci cyclotomic pseudoprime (that is cyclotomic Lucas pseudo-
prime for P =1, Q = —1) we get for p = 7. For p = 7 we have u,¢,, _(5|u,) =
U7 - P14 = w7 - v7 = 13- 29 = 377.

2) For P = 2, Q = —1 the numbers u,, = u,(2,—1) and v, = v,(2,—1)
are the Pell numbers and the companion Pell numbers. We have

un(2,-1):0,1,2,5,12,29,70,169, .. .,
vn(2,—1):2,2,6,14,34,82,198,478, . . ..

The smallest Pell cyclotomic pseudoprime of the form u,¢,,—(gu,) We get for
p = 3. We have U3¢u3,(8|u3) = 5¢57(8\5) = 5(/)5+1 = 5¢6 =5-7=35.

PrROBLEM 1. Let P, be non-zero rational integers P > 1, @) # —1. Does
there exist a natural number ng such that for every prime number p > ng the

number u,®,, _(pjy,) s a cyclotomic Lucas pseudoprime with parameters P

and Q7
3.1. Number theoretical series involving Lucas pseudoprimes and
Carmichael numbers

Let P(x) denote the number of pseudoprimes < z. In 1949 P. Erdés stated
that

(2) Cylogz < P(z) < cox/(logz)®, for every k and x > xo(k).

K. Szymiczek [25] proved, using the following result of P. Erdds [6]

1
(3) P(z) < 2zexp {—3(logm)1/4} if x > xo
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that 1/P, < 2/n(logn)*/3. Therefore ioj 1/P, < %OI 2/(logn)*/? and since
n=1 n=1

o0
the last series is convergent > 1/P, is also convergent.

n=1

The author asked [18, Problem 47] whether the series »_1/log P, is con-

vergent. A. Makowski [13] proved that the series Y 1/log P, is divergent,
where P,, denotes the n-th pseudoprime with respect to ¢ (n is a pseudoprime
to the base c if n is composite and n|c" — ¢). He used the fact established by
M. Cipolla [3] that the number (c?” —1)/(c? — 1) is a pseudoprime to the base
c such that p{c? — 1 and that the series 3 1/p, where p runs over the primes,
is divergent.

First we note that the divergence of Z 1/log P,, follows from the esti-

mation P(x) > clogx (see A. Rotk1ew1cz R Wasén [19]). Indeed, if we put
x = P, in the last inequality we get

(4) P(P,) > clog P,

and the divergence follows at once from the well-known divergence of the
harmonic series.

DEFINITION 5. A composite number n is called a strong Lucas pseudo-
prime with parameters P and Q if (n,2QD) = 1, n—(D|n) = 23.r are odd and

(5) either u, =0 (modn) or wvg, =0 (modn) forsomet, 0 <t<9.

C. Pomerance put forward (see |21, p. 78]) the following question.

Given integers P, Q with D = P? — 4Q not a square, do there exist infin-
itely many, or at least one, Lucas pseudoprimes n with parameters P and Q)
satisfying (D|n) = —1.

An affirmative answer to this question in the strong sense (infinitely many
n) is contained, except in the trivial cases P? = Q,2Q,3Q in the following
theorem, which follows from the results of [21].

THEOREM T (see [21]): Given integers P,Q with D = P? —4Q # 0, —Q,
—2Q,—3Q and ¢ = £1, every arithmetic progression ax + b, where (a,b) =1
which contains an odd integer ng with (Dlng) = e contains infinitely many
strong Lucas pseudoprimes n with parameters P and Q) such that (D|n) = e.
The number N(X) of such strong pseudoprimes not exceeding X satisfies

log X

N(X) > C(PﬂQvavbvg)m7

where ¢(P,Q,a,b,e) is a positive constant depending on P,Q,a,b, €.
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Now we shall prove the following

THEOREM 2. Given integers P,Q with D = P? —4Q # 0, —Q, —2Q, —3Q
and € = £1, every arithmetic progression ax + b, where (a,b) = 1 contains

an odd integer ny such that (D|n) = €. The series Y. 1/log Py(fl), where P\
=1

is the n-th strong Lucas pseudoprime with pammetgrs P and Q of the form
ax + b, where (a,b) =1 such that (D|P,§“)) = ¢ is divergent.

PROOF. Let P(® the n-th strong pseudoprime of the form ax + b, where
(a,b) = 1 with (D|P{") =¢.
By Theorem T

N@(X) > m.
Put X = Pfla), hence
N@ (Pé‘”) S log Pflaza)?
log log Py
hence
©) L L
loglog P
Thus by (6) we have
(7) logn > loglog P,(L“).
By (6) and (7) we have
(8) log P\ < n (log log Pé“)) < nlogn.
Hence, it follows that
(9) Zl/logP,(L“) >>Zl/nlogn

and the divergence of the series > 1/log P follows from well known diver-
gence of Y 1/nlogn. O
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3.2. Carmichael numbers

DEFINITION 6. A composite number n is Carmichael number if

n|(a™ —a) forallaeN.

In 1994 W.R. Alford, A. Granville and C. Pomerance proved [1] the fol-
lowing

THEOREM A. G. P. There are infinitely many Carmichael numbers. In
particular, for x sufficiently large, the number C(z) of Carmichael numbers
not exceeding x satisfies C(z) > /7.

The best result belongs to Glyn Harman. In 2005 he proved [9] the fol-
lowing theorem.

THEOREM G. H. [9] There exists 3 > 0.33 such that, for all sufficiently
large x, we have

(10) C(x) > 2.

Though P. Erdés [7] (see also A. Granville and C. Pomerance [8]), has
conjectured that C(z) > x'7¢ for every € > 0 and = > z¢(¢), we known no
numerical value of z with C(z) > z'/? (see R. Crandall and C. Pomerance [4,
p. 123]).

The following theorem holds

THEOREM 3. Let C,, denote the n-th Carmichael number. From the con-
jecture of P. Erdds that C(x) > x'7¢ for every e > 0 and x > x¢(e) it follows

that the series Y. 1/CL=¢ is divergent for every e > 0.

n=1
PROOF. Suppose that € > 0 then by the conjecture of P. Erdés:
C(z) > x'~¢ for every ¢ > 0 and z > z¢(e).
Put 2 = C,,. Then

C(C,) > Cl=¢  for n > ng(e),

(11) n > Cl=¢  for n > ng(e),
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and hence
(12) > 1/Ch =D 1/,
and it follows that the series 3" 1/C=¢ is divergent. g

By conjecture of P. Erdés and C. Pomerance [7] the number C(z) of
Carmichael numbers not exceeding x satisfies

C(.T) — xl—(l—i—O(l)) Inlnlnz/Inlnz
as r — OQ.

Denoting by P2(x) the number of base — 2 pseudoprimes up to z, C. Pomer-
ance [14] proved that

C(CE) < xlflnlnlnx/lnlnm

)

Pg(l') < xl—lnlnlnx/(Q Inlnx)

for all sufficiently large values of x.
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