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ON LUCAS NUMBERS, LUCAS PSEUDOPRIMES
AND A NUMBERTHEORETICAL SERIES INVOLVING

LUCAS PSEUDOPRIMES AND CARMICHAEL NUMBERS

Andrzej Rotkiewicz

Abstract. The following theorems are proved:
(1) If α and β 6= α are roots of the polynomial x2−Px+Q, where gcd(P, Q) =

1, P = α + β is an odd positive integer, then (α + β)n+1|αx + βx if and
only if x = (2l + 1)(α + β)n, where l = 0, 1, 2, . . . and then

gcd

(
α(α+β)n

+ β(α+β)n

(α + β)n+1
, α + β

)
= 1.

(2) Given integers P, Q with D = P 2 − 4Q 6= 0,−Q,−2Q,−3Q and ε = ±1,
every arithmetic progression ax + b, where gcd(a, b) = 1 contains an odd

integer n0 such that (D|n0) = ε. The series
∞∑

n=1

1/ log P
(a)
n , where P

(a)
n

is the n-th strong Lucas pseudoprime with parameters P and Q of the
form ax + b, where gcd(a, b) = 1 such that (D|P (a)

n ) = ε, is divergent.
(3) Let Cn denote the n-th Carmichael number. From the conjecture of

P. Erdős that C(x) > x1−ε for every ε > 0 and x ≥ x0(ε), where C(x)
denotes the number of Carmichael numbers not exceeding x it follows

that the series
∞∑

n=1

1/C1−ε
n is divergent for every ε > 0.

Let P,Q be non-zero integers. Then the polynomial x2−Px + Q, has the
roots α, β = P±

√
D

2 , where D = P 2 − 4Q.
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For each n ≥ 0, define un = un(P,Q) and vn = vn(P,Q) by:

u0 = 0, u1 = 1, un = Pun−1 −Qun−2 (for n ≥ 2),
v0 = 2, v1 = P, vn = Pvn−1 −Qvn−2 (for n ≥ 2).

The sequences un(P,Q) and vn(P,Q) are called the first and second Lucas
sequences with parameters P and Q. If η = α/β is a root of unity then the
sequences un(P,Q), vn(P,Q) are said to be degenerate.

If gcd(P,Q) = 1, then for degenerate sequence we have (P,Q) = (1, 1),
(−1, 1), (2, 1) or (−2, 1). If the sequence is degenerate, then D = 0 or D = −3.
For D 6= 0 by Binet’s formulas:

un =
αn − βn

α− β
, vn = αn + βn,

un(−P,Q) = (−1)n−1un(P,Q), vn(−P,Q) = (−1)nvn(P,Q).

1. Historical remarks

In the book [2], which contains every extant work by E. Galois (1811–1832)
on page 301 it is written:

8, 27, 64, 125, 343, 512, 729, 1000
33 + 53

23
,

43 + 53

33
,

23 + 73

33
,

53 + 73

33

(in the denominator of last number, instead 33 should be 32 · 22).
The above passage of Galois manuscript suggests that m(a + b)|am + bm

if 2 - m and every prime factor of m divides a + b.
We note here that E.E. Kummer [11] (see L.E. Dickson [5], p. 737) showed

that if an n is odd prime we have

an ± bn

a± b
= (a± b)n−1 ∓ (a± b)n−3ab +

n(n− 3)
2

(a± b)n−5a2b2 ∓ . . .

and if the above number and a± b have a common factor, it divides the last
term ±n(ab)(n−1)/2, and is equal n if a and b are relatively prime with n.

Since the coefficients n, n(n − 3)/2, . . . are divisible by n, the exponent
of the highest power of n dividing an ± bn exceeds by unity that in a ± b.
T. Boncler (see W. Sierpiński [24], p. 67) proved that for every odd n and
coprime integers a and b we have (a + b)2|an + bn if and only if (a + b)|n.
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The author proved [17] that if (a, b) = 1 and a+ b is a positive odd integer
then (a+ b)n+1|ax + bx if and only if x = (2l +1)(a+ b)n, where l = 0, 1, 2, . . .
and

gcd

(
a(a+b)n

+ b(a+b)n

(a + b)n+1
, a + b

)
= 1.

Here we shall prove the following generalization of the above theorem.

Theorem 1. If α and β 6= α are roots of the polynomial x2−Px+Q, where
gcd(P,Q) = 1, P = α + β is an odd positive integer, then (α + β)n+1|αx + βx

if and only if x = (2l + 1)(α + β)n, where l = 0, 1, 2, . . . and then

gcd

(
α(α+β)n

+ β(α+β)n

(α + β)n+1
, α + β

)
= 1.

Proof. By the so-called law of repetition [26, p. 87] we have:
Let pe (with e ≥ 1) be the exact power of p dividing un. We shall write

pe‖un when pe|un, pe+1 - un. Let f ≥ 1, p - k. Then, pe+f divides unkpf .
Moreover, if p - Q, pe 6= 2 then pe+f is the exact power of p dividing unkpf .

For the sequence vn we have:
If p is an odd prime, λ > 0 and pλ‖vm, then pα+µ‖vmnpµ , where p - n, n

is odd, and µ ≥ 0.
Let v1 = α + β = pα1

1 pα2
2 . . . pαk

k , where p1, p2, . . . , pk are odd primes. We
have (α + β)n+1 = pα1+nα1

1 pα2+nα2
2 . . . pαk+nαk

k and by law of repetition for
vn we have
(α+β)n+1|αx+βx if and only if x = (2l+1)pnα1

1 pnα2
2 . . . pnαk

k = (2l+1)(α+β)n,
where l = 0, 1, 2, . . . and since by law of repetition: pαi+nαi

1 ‖vp
nαi
i

for i =
1, 2, . . . , k thus

gcd

(
αp

nα1
1 p

nα2
2 ...p

nαk
k + βp

nα1
1 p

nα2
2 ...p

nαk
k

pα1+nα1
1 pα2+nα2

2 . . . pαk+nαk

k

, p1p2 . . . pk

)
= 1

and

gcd

(
α(α+β)n

+ β(α+β)n

(α + β)n+1
, α + β

)
= 1. �

Examples
1) P = α + β = 3, Q = α · β = −1, D = P 2 − 4Q = 13; the characteristic

polynomial is x2 − 3x− 1; v0 = 2, v1 = 3, vn = 3vn−1 + vn−2 (n ≥ 2),
v0 = 2, v1 = 3; v2 = 11, v3 = 36 = 22 ·32, v4 = 119 = 7 ·17, v5 = 393 = 3 ·131,
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v6 = 1298 = 2 · 11 · 59, v7 = 4287 = 3 · 1429, v8 = 14159, v9 = 46764 =
22 · 33 · 433, (α + β)3 = 33|α(α+β)2 + β(α+β)2 and

gcd

(
α(α+β)2 + β(α+β)2

(α + β)3
, α + β

)
= gcd

(
22 · 33 · 443

33
, 3
)

= 1.

2) P = 3, Q = 1 we have α, β = 3±
√

5
2 , v0 = 2, v1 = 3, α, β = 3±

√
5

2 ,
vn = 3vn−1 − vn−2 (n ≥ 2)
v0 = 2, v1 = 3, v2 = 7, v3 = 18, v4 = 47, v5 = 123 = 3 ·41, v6 = 322 = 2 ·7 ·23,
v7 = 843 = 3 · 281, v8 = 2207, v9 = 5778 = 2 · 33 · 107

33‖v9, gcd

(
α(α+β)2 + β(α+β)2

(α + β)3
, α + β

)
= gcd

(
2 · 33 · 107

33
, 3
)

= 1.

2. Landau’s and Jarden’s results

Let P = 1, Q = −1, so D = 5.

The Lambert series is L(x) =
∞∑

n=1

xn

1−xn = x + 2x2 + 2x3 + . . . in which the

coefficient of xn is d(n) – the number of the divisors of n. The Lambert series
is convergent for 0 < x < 1. Let Fn denote the n-th Fibonacci number.

E. Landau [12] had evaluated
∞∑

n=0
1/Fn in terms of the sum of Lambert’s

series and
∞∑

n=0
1/F2n+1 in relation to theta Jacobi series which are defined as

follows, for 0 < |q| < 1 and z ∈ C:

θ1(z, q) = i
∞∑

n =−∞
(−1)nq(n− 1

2 )2e(2n−1)πiz,

θ2(z, q) =
∞∑

n =−∞
q(n+ 1

2 )2e(2n−1)πiz,

θ3(z, q) =
∞∑

n =−∞
qn2

e2nπiz,

θ4(z, q) =
∞∑

n =−∞
(−1)nqn2

e2nπiz.
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In particular, we have

θ1(0, q) = 0,

θ2(0, q) = 2q1/4 + 2q9/4 + 2q25/4 + . . . ,

θ3(0, q) = 1 + 2q + 2q4 + 2q9 + . . . ,

θ4(0, q) = 1− 2q + 2q4 − 2q9 + . . . .

Landau’s result (see E. Landau [12] and P. Ribenboim [16, pp. 51–61]) are

Theorem L1:
∞∑

n=1
1/F2n =

√
5
[
L
(

3−
√

5
2

)
−L

(
7−3

√
5

2

)]
=
√

5
[
L
(
β2
)
−L

(
β4
)]

, β = 1−
√

5
2 .

Theorem L2:
∞∑

n=0
1/F2n+1 = −

√
5
(
1 + 2β4 + 2β16 + 2β36 + . . .

)
(
β + β9 + β25 + . . .

)
= −

√
5

2

[
θ3(0, β)− θ2(0, β4)

]
θ2(0, β4).

In 1948 D.R. Jarden [10] gave the following generalization of Landau’s
theorem.

Let u0 = 0, u1 = 1, un = Pun−1 + un−2 (n = 2, 3, 4, . . .; P , an arbitrary
positive real number) and D = P 2 + 4. Let a = P−

√
D

2 ans b = P+
√

D
2 = − 1

a

be the roots of the equation x2 − Px− 1 = 0.
Jarden’s results are the following:

Theorem J1: The series
∞∑

n=1

1
u2n

converges and

∞∑
n=1

1/u2n =
√

D
(
L
(
a2
)
− L

(
a4
))

.

Theorem J2: The series
∑

1/u2n+1 converges and

∞∑
n=0

1/u2n+1 = −
√

D
(
1 + 2a4 + 2a16 + 2a36 + . . .

) (
a + a9 + a25 + . . .

)
.
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3. Lucas pseudoprimes

Let a, b be relatively prime integers with |a| > |b| > 0. For any n > 0, let
φn(a, b) denote the n-th homogeneous cyclotomic polynomial, defined by

φn(a, b) =
∏
d|n

(
ad − bd

)µ(n/d)
,

where µ is the Möbius function.

Definition 1. A composite n is called a pseudoprime if n|2n − 2.

Definition 2. If 1 ≤ d1 < d2 < . . . < dk are integers, we shall call the

number n =
n∏

i=1
φdi(2, 1) a cyclotomic number and if n is a pseudoprime we

shall call it a cyclotomic pseudoprime.

The above definition was introduced in 1982 by C. Pomerance (see [15]).
In the paper [22] it was proved the following:

Theorem P1: If n > 3 is a prime or an odd pseudoprime then the number
(2n − 1)φ2n−2(2) is a cyclotomic pseudoprime.

Examples
The least cyclotomic pseudoprime of the form (2n − 1)φ2n−2(2) is (25 −

1)φ30(2) = 31 · 331 = 10261. For pseudoprime 341 we get the cyclotomic
pseudoprime (2341 − 1)φ2341−2(2).

Definition 3. A composite number n is called a Lucas pseudoprime with
parameters P and Q if (n, 2DQ) = 1 and

(1) Un−(D|n) ≡ 0 (mod n),

where (D|n) is the Jacobi symbol.

Instead of φn(α, β), where α and β are roots of the polynomial x2−Px+Q
we shall write φn.

Definition 4. If 1 ≤ d1 < d2 < . . . < dk are integers, we shall call the

number n =
k∏

i=1
φdi a cyclotomic Lucas number and if n is a pseudoprime we

shall call it Lucas cyclotomic pseudoprime.
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In the paper [22] the author proved the following:

Theorem P2: If p > 5, P = α + β ≥ 1, Q = αβ = −1, p - P 2 + 4 = D,
then the number upφup−(D|up) is a cyclotomic Lucas pseudoprime.

Examples
1) For P = 1, Q = −1 we get Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21,

34, 55, 89, 144, . . . and companion Fibonacci sequence

vn(1,−1) : 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . . .

The least Fibonacci cyclotomic pseudoprime (that is cyclotomic Lucas pseudo-
prime for P = 1, Q = −1) we get for p = 7. For p = 7 we have upφup−(5|up) =
u7 · φ14 = u7 · v7 = 13 · 29 = 377.

2) For P = 2, Q = −1 the numbers un = un(2,−1) and vn = vn(2,−1)
are the Pell numbers and the companion Pell numbers. We have

un(2,−1) : 0, 1, 2, 5, 12, 29, 70, 169, . . . ,

vn(2,−1) : 2, 2, 6, 14, 34, 82, 198, 478, . . . .

The smallest Pell cyclotomic pseudoprime of the form upφup−(8|up) we get for
p = 3. We have u3φu3−(8|u3) = 5φ5−(8|5) = 5φ5+1 = 5φ6 = 5 · 7 = 35.

Problem 1. Let P,Q be non-zero rational integers P ≥ 1, Q 6= −1. Does
there exist a natural number n0 such that for every prime number p > n0 the
number upΦup−(D|up) is a cyclotomic Lucas pseudoprime with parameters P
and Q?

3.1. Number theoretical series involving Lucas pseudoprimes and
Carmichael numbers

Let P (x) denote the number of pseudoprimes ≤ x. In 1949 P. Erdős stated
that

(2) C1 log x < P (x) < c2x/(log x)k, for every k and x > x0(k).

K. Szymiczek [25] proved, using the following result of P. Erdős [6]

(3) P (x) < 2x exp
{
−1

3
(log x)1/4

}
if x > x0



56 Andrzej Rotkiewicz

that 1/Pn < 2/n(log n)4/3. Therefore
∞∑

n=1
1/Pn <

∞∑
n=1

2/(log n)4/3 and since

the last series is convergent
∞∑

n=1
1/Pn is also convergent.

The author asked [18, Problem 47] whether the series
∑

1/ log Pn is con-
vergent. A. Mąkowski [13] proved that the series

∑
1/ log Pn is divergent,

where Pn denotes the n-th pseudoprime with respect to c (n is a pseudoprime
to the base c if n is composite and n|cn − c). He used the fact established by
M. Cipolla [3] that the number (c2p−1)/(c2−1) is a pseudoprime to the base
c such that p - c2− 1 and that the series

∑
1/p, where p runs over the primes,

is divergent.

First we note that the divergence of
∞∑

n=1
1/ log Pn follows from the esti-

mation P (x) > c log x (see A. Rotkiewicz, R. Wasén [19]). Indeed, if we put
x = Pn in the last inequality we get

(4) P (Pn) > c log Pn

and the divergence follows at once from the well-known divergence of the
harmonic series.

Definition 5. A composite number n is called a strong Lucas pseudo-
prime with parameters P and Q if (n, 2QD) = 1, n−(D|n) = 23 ·r are odd and

(5) either ur ≡ 0 (mod n) or v2tr ≡ 0 (mod n) for some t, 0 ≤ t < 9.

C. Pomerance put forward (see [21, p. 78]) the following question.
Given integers P,Q with D = P 2 − 4Q not a square, do there exist infin-

itely many, or at least one, Lucas pseudoprimes n with parameters P and Q
satisfying (D|n) = −1.

An affirmative answer to this question in the strong sense (infinitely many
n) is contained, except in the trivial cases P 2 = Q, 2Q, 3Q in the following
theorem, which follows from the results of [21].

Theorem T (see [21]): Given integers P,Q with D = P 2 − 4Q 6= 0,−Q,
−2Q,−3Q and ε = ±1, every arithmetic progression ax + b, where (a, b) = 1
which contains an odd integer n0 with (D|n0) = ε contains infinitely many
strong Lucas pseudoprimes n with parameters P and Q such that (D|n) = ε.
The number N(X) of such strong pseudoprimes not exceeding X satisfies

N(X) > c(P,Q, a, b, ε)
log X

log log X
,

where c(P,Q, a, b, ε) is a positive constant depending on P,Q, a, b, ε.
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Now we shall prove the following

Theorem 2. Given integers P,Q with D = P 2 − 4Q 6= 0,−Q,−2Q,−3Q
and ε = ±1, every arithmetic progression ax + b, where (a, b) = 1 contains

an odd integer n0 such that (D|n) = ε. The series
∞∑

n=1
1/ log P

(a)
n , where P

(a)
n

is the n-th strong Lucas pseudoprime with parameters P and Q of the form
ax + b, where (a, b) = 1 such that (D|P (a)

n ) = ε is divergent.

Proof. Let P (a) the n-th strong pseudoprime of the form ax + b, where
(a, b) = 1 with (D|P (a)

n ) = ε.
By Theorem T

N (a)(X) � log X

log log X
.

Put X = P
(a)
n , hence

N (a)
(
P (a)

n

)
� log P

(a)
n

log log P
(a)
n

,

hence

(6) n � log P
(a)
n

log log P
(a)
n

.

Thus by (6) we have

(7) log n � log log P (a)
n .

By (6) and (7) we have

(8) log P (a)
n � n

(
log log P (a)

n

)
� n log n.

Hence, it follows that

(9)
∑

1/ log P (a)
n �

∑
1/n log n

and the divergence of the series
∑

1/ log P
(a)
n follows from well known diver-

gence of
∑

1/n log n. �
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3.2. Carmichael numbers

Definition 6. A composite number n is Carmichael number if

n| (an − a) for all a ∈ N .

In 1994 W.R. Alford, A. Granville and C. Pomerance proved [1] the fol-
lowing

Theorem A. G. P. There are infinitely many Carmichael numbers. In
particular, for x sufficiently large, the number C(x) of Carmichael numbers
not exceeding x satisfies C(x) > x2/7.

The best result belongs to Glyn Harman. In 2005 he proved [9] the fol-
lowing theorem.

Theorem G. H. [9] There exists β > 0.33 such that, for all sufficiently
large x, we have

(10) C(x) > xβ.

Though P. Erdős [7] (see also A. Granville and C. Pomerance [8]), has
conjectured that C(x) > x1−ε for every ε > 0 and x ≥ x0(ε), we known no
numerical value of x with C(x) > x1/2 (see R. Crandall and C. Pomerance [4,
p. 123]).

The following theorem holds

Theorem 3. Let Cn denote the n-th Carmichael number. From the con-
jecture of P. Erdős that C(x) > x1−ε for every ε > 0 and x > x0(ε) it follows

that the series
∞∑

n=1
1/C1−ε

n is divergent for every ε > 0.

Proof. Suppose that ε > 0 then by the conjecture of P. Erdős:

C(x) > x1−ε for every ε > 0 and x > x0(ε).

Put x = Cn. Then

C (Cn) > C1−ε
n for n > n0(ε),

hence

(11) n > C1−ε
n for n > n0(ε),
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and hence

(12)
∑

1/C1−ε
n ≥

∑
1/n,

and it follows that the series
∑

1/C1−ε
n is divergent. �

By conjecture of P. Erdős and C. Pomerance [7] the number C(x) of
Carmichael numbers not exceeding x satisfies

C(x) = x1−(1+0(1)) ln ln ln x/ ln ln x

as x →∞.
Denoting by P2(x) the number of base – 2 pseudoprimes up to x, C. Pomer-

ance [14] proved that

C(x) < x1−ln ln ln x/ ln ln x,

P2(x) < x1−ln ln ln x/(2 ln ln x)

for all sufficiently large values of x.
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