Published: 2006-09-29

The d'Alembert and Lobaczevski difference operators in ????_λ spaces

Maciej Przybyła

Abstract

Let X be a linear normed space, λ≥0, n∈ℕ. Let ????λ(n) be a set defined by
????λ(n) = {g: Xn→ℂ |  |g(x)| ≤ Mg · eλΣk=1n‖xk, x∈Xn},
where Mg is a constant depending on g. Moreover for all g∈????λ(n) we define
g‖ := supx∈Xn {e-λΣk=1n‖xk · |g(x)|}.
In the paper norms of the d'Alembert and Lobaczevski difference operators in the ????λn spaces are calculated (their Pexider type generalizations are also considered). Moreover it is proved that if f: X→ℂ is a function such that A(f)∈????λ(2), where A is the d'Alembert difference operator, then f∈????λ or A(f) = 0.

Download files

Citation rules

Przybyła, M. (2006). The d’Alembert and Lobaczevski difference operators in ????_λ spaces. Annales Mathematicae Silesianae, 20, 7–17. Retrieved from https://journals.us.edu.pl/index.php/AMSIL/article/view/14065

Domyślna okładka

Vol. 20 (2006)
Published: 2006-09-29


ISSN: 0860-2107
eISSN: 2391-4238
Ikona DOI 10.1515/amsil

Publisher
University of Silesia Press

This website uses cookies for proper operation, in order to use the portal fully you must accept cookies.