
T H E C O N T I N U I T Y OF M U L T I L I N E A R I N T E G R A L O P E R A T O R S 
O N M O R R E Y SPACES 

L A N Z H E L I U 

A b s t r a c t . In this paper, the continuity of some multi l inear integral operators on 
Morrey spaces are obtained. The operators contain singular integral operators, L i t -
t l ewood-Pa ley operators, Marc inkiewicz operators and Bochner -R iesz operators. 

1. Introduction 

As the development of singular integral operators, their commutators and mul
tilinear operators have been well studied (see [1-6]). Prom [5] [6], we know that 
the commutators and multilinear operators are bounded on LP(R™) for 1 < p < oo. 
As the Morrey spaces may be considered as an extension of the Lebesgue spaces, 
and their have played an important role in studying the local behaviour of solu
tions for the partial differential equations(see [7-9]), it is natural and important to 
study the boundedness for the operators on the Morrey spaces. In [7], the authors 
obtain the boundedness for a large class of sublinear operators and commutators 
on the Morrey spaces. The purpose of this paper is to study the continuity of some 
multilinear integral operators on Morrey spaces, which contain singular integral op
erators, Littlewood-Paley operators, Marcinkiewicz operators and Bochner-Riesz 
operators. 
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2. Preliminaries and Theorems 

Throughout this paper, denote p' by l/p+ 1/p' = 1 for 1 < p < oo. Let ip be a 
positive, increasing function on K + and there exists a constant D > 0 such that 

<p(2t) < D<p(t), for all t > 0. 

Let / be a locally integrable function on K n , we define that, for 1 < p < oo, 

H / I U - = sup f \f(y)\"dy) , 

where, and in what follows, B = B(x, r) = {y e Rn : \x - y\ < r} is a ball in Rn. 
The Morrey spaces are defined by 

L * * (R " ) = {/ € Ljoc(M.n) : ||/||LP.. < oo}. 

If ip(r) = rs with S > 0, then IP^ = Lp's, which is the classical Morrey spaces (see 
[17] [18]). 

For a set E and a locally integrable function /, let f(E) — JEf(x)dx and 
fs = {E]"1 JEf(x)dx. For any locally integrable function /, the sharp function of 
/ is defined by 

f*(x) = sup J - / I / O , ) - fB\dy. 
xeB \£>\ JB 

It is well-known that (see [19]) 

f#(x) = sup inf f |/(2/) - c\dy. 

We say that / belongs to BMO(Rn) if f* belongs to L°°(]R n) and ||/||BMO = 

l l / # I U -
Let M(f) be the Hardy-Litt lewood maximal operator, we define that, for 

1 < p < oo, 

Mp(f) = (M\fn1/p, f*(x) - sup J L f \f(y)-fB\dy. 
xeB W\ JB 

In this paper, we will study some multilinear integral operators as following. 
Let rrij be the positive integers (j — 1, • • •, I), mx -\ h m; = m and Aj be the 

functions on M.n (j = 1, • • •, I). Set 

Rmj+1(Aj;x,y) = Aj(x)- ^ ^D<*A^x - y)a. 
|a|<mj 

D E F I N I T I O N 1. Let 5 and S' be Schwartz space and its dual and T : 5 —• S' be 
the linear operator. The multilinear integral operator associated to T is defined by 

TA(f)(x) =T (\x--\-ml[Rmi+1(Aj;x, •)/(•)) 
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D E F I N I T I O N 2. F ix t > 0. Let Ft : S —> S' be the linear operator. Set 

Ft
A(f)(x) = Ft ^\x - - r m n ^ + i C ^ i x , • ) / ( • ) j (*)• 

Let H be the Banach space H = {h : \\h\\ < oo} such that, for each fixed x e R n , 
Ft(f)(x) and Ff(f)(x) may be viewed as a mapping from [0,+oo) to H. Then, 
the multilinear integral operator related to Ft is defined by 

SA(f)(x) = ||Ft
A(/)(x)||, 

We define that S(f)(x) = ||jFi(/)(a:)||. 
Note that, when m = 0, 

TA(f)(x) = A(x)T(f)(x)-T(Af)(x) 

and 

S A ( / ) ( x ) = - A(x)Ft(Af)(x)\\, 

which are the commutators generated by T, S and A. 
Now we state our results as following. 

THEOREM 1. Let 1 < p < oo and 0 < D < 2". // multilinear integral 
operator TA is bounded on L p ( ]R n ) and satisfies the following size condition: 

for any f 6 L1(Rn) with compact support and x £ supp/, then 

\\TA(f)\\Lr.« <C\\f\\LP„. 

T H E O R E M 2. Let 1 < p < oo and 0 < .D < 2". 2/ ź/ie multilinear integral 
operator SA is bounded on L p ( R n ) and satisfies the following size condition: 

for any f G L1(Wn) with compact support and x supp/, then 

\\SA(f)\\LP,v<C\\f\\LP.v. 

REMARK 1. The size conditions in Theorem 1 and 2 are satisfied by many 
operators. Now we give some examples. 

E X A M P L E 1. Singular integral operators. 

Let T be the singular integral operators (see [4], [19-20]) such that 

T(f)(x)= f K(x,y)f(y)dy 
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for every bounded and compactly supported function /, where K satisfies: for 
e > 0, 

\K(x,y)\<C\x-yrn 

and 

\K(y,x) - K(z,x)\ + \K(x,y) - K(x,z)\ < C\y - z\°\x - z\~n~£ 

if 2\y — z\ < \x — z\. The multilinear operator related to T is defined by 

T (/)(*) = / — •_ ,.m K(x,y)f(y)dy. 

Then, it is easy to see that TA satisfies the conditions of Theorem 1 (see [4], [6]), 
thus the conclusion of Theorem 1 holds for TA. 

E X A M P L E 2. Littlewood-Paley operators. 
Fixed e > 0 and fi > (3n + 2)/n. Let tp be a fixed function which satisfies: 
(1) JRnrl>(x)dx = 0, 

(2) \i>(x)\<C(l + \x\)-(n+V, 
(3) \4>(x + y) — i>(x)\ < C\y\£(l + |a;|)-("+1+£) when 2\y\ < \x\; 
We denote that T(x) — {{y,t) 6 R " + 1 : \x - y\ < t} and the characteristic 

function of T(x) by Xr(x)- The multilinear Littlewood-Paley operators are defined 
by 

/ r°° Jt^ 1/2 

and 

where 

and Vt(z) = t-nifj{x/t) for i > 0. Set Ft(f)(y) = f * ipt(y). We also define that 
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, « / ) , ^ ( / / r w | f l , / , ( 5 ) , ^ ) 
1/2 

and 

*<"<*>-f/L. t+\x-y\ \Ft(f)(y)\2^ 
dydt 

1/2 

tn+l 

which are the Littlewood-Paley operators (see [20]). Let H be the space 

H= (h: \\h\\ = \h{t)\2dt/t^ ' < oo j 

or 

then, for each fixed x 6 R n , FA(f)(x) and FA(f)(x,y) may be viewed as the 
mapping from [0, +oo) to H, and it is clear that 

= H < ( / ) ( z ) l l . 9*{f)(x) = \\Ft(f)(x)\\, 

SA(f)(x) = \\xnx)Ft
A{f){x,y)\\, S^(f)(x) = \\xnx)Ft(f)(y)\\ 

nfi/2 

and 

<(/)(*) t+\x-y\ 
Ft

A(f)(x,y) 

t 
t+\x-y\ 

n.fi/2 

Ft(f)(y) 

It is easy to see that gA, SA and gA satisfy the conditions of Theorem 2 (see 
[10-12], [14]), thus the conclusion of Theorem 2 holds for gA, SA and gA. 

E X A M P L E 3. Marcinkiewicz operators. 

Fixed A > 1 and 0 < e < 1. Let Q be homogeneous of degree zero on R n 

with / S n - i Cl{x')do-(x') = 0. Assume that O £ Lip£{Sn~l). The Marcinkiewicz 
multilinear operators are denned by 

l4(f)(x) = (jf' \Ft
A(f)(x)\2^ 

1/2 
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and 

where 

and 

Set 

/tf (/)(*) = 
riA 

| i ^ ( / ) ( * , y ) l 2 ^ + 3 

1/2 

= /• n i = 1 ^ + 1 ( ^ ; x , y ) n ( , - y ) 

FA(f)(x,y)= [ 
J\y-z\<t 

Ulj=i Rmj+iiAjiy,z) n(y - z) 

We also define that 

A*n(/)(*) = ( j [ V t ( / ) ( s ) l 

M 5 ( / ) ( x ) = | F t ( / ) ( y ) | 

1/2 

,dydt 
^ + 3 

1/2 

and 

,,(/)W=(// 
nA 

I W ) ( y ) | 
2dydt 

1/2 

which are the Marcinkiewicz operators (see [21]). Let H be the space 

or 

Then, it is clear that 

/*£(/)(*) = M/X*) = ||Ft(/)(x)||, 

= \\xr{x)Ft
A(f)(x,y)\\, fis(f)(x) = ||x r (*)W)(l/)|| 

and 
x "A/2 

Ft
A{f)(x,y) 

t + \x-y\ 
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M A ( / ) ( X ) = 
t+\x-y\ 

%\/2 

Ft(f)(y) 

It is easy to see that / i ^ , fiA and fiA satisfy the conditions of Theorem 2 (see 
[13], [21]), thus Theorem 2 holds for fiA and nA. 

E X A M P L E 4. Bochner-Riesz operator. 
Let 6>(n- l)/2, Ą « ( / K O = (1 - * 2 | £ | 2 ) + / ( 0 and B?(z) = t~nBó(z/t) for 

i > 0. Set 

FsA
t (/)(*) = I n , = i Rmj+i{Aj;x,y) 

Bs
t(x-y)f(y)dy, 

The maximal Bochner-Riesz multilinear operator are defined by 

BAM)(x)=sup\BA
t(f)(x)\. 

t>o 

We also define that 

BsM)(x) = sup\Bs
t(f)(x)\ 

t>0 

which is the maximal Bochner-Riesz operator (see [16]). Let H be the space 
H = {h: \\h\\ = sup|/i(f)| < oo}, then 

t>o 

BUf){x) = ||B£(/)0r)||, Sf(/)(*) = ||B«(/)(a:)||. 

It is easy to see that BA„ satisfies the conditions of Theorem 2 (see [15], [22]), 
thus Theorem 2 holds for BA

t. 

3. Proofs of Theorems 

To prove the theorem, we need the following lemmas. 

L E M M A , (see [3]). Let Abe a function on W1 and DaA G Lq(Rn) for all a with 
\a\ = m and some q > n. Then 

\Rm(A;x,y)\<C\x-yr £ [ T ^ T T M f \DaA{z)\«dz 

Hi 

|a|=ri 

where Q(x,y) is the cube centered at x and having side of length 5y/n\x — y\. 
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P R O O F O F T H E O R E M 1. Let / e L P ^ ( R N ) . For a ball Q = Q(x0,r) c R N , set 
OO OO 

f(y) = (fxQ)(y) + £ ( / X 2 * + I Q \ 2 * Q ) ( ! / ) = /o(y) + £ ^ 
*;=i fc=i 

then 

/ \TAU)[x)\*dx< j \TA{f0){x)\*dx + JT, [ \TA(fk)(x)\pdx. 
JQ JQ t~\JQ 

By the Lp-boundedness of TA, we get 

/ \TA(f0)(x)\>dx < C f \f0(x)\"dx = C [ \f(x)\*dx<C\\f\\p
LP,Mr)-

JQ JRn JQ 
Without loss of generality, it may be assumed I = 2. We have, by the size condition 
of T, for k > 1, 

£ / \TA{fk){x)\*dx<Y, f ( f 
k=i Q fc=i JQ 

n^i^m.+i^sx.^i/fcd/) ! Y 
ay ax. \x-y\ 

Let Aj (x) = Aj (x)~ J2 si P a 4 j k g * " , then Rm. (A,-; z, j/) = i ? m . (i,-; x, y) 
\a\=m,j 

and DaAj = D a Ą - (.D aĄ,-)2Q for \a\ = m,. We write 

/ i . . . i m + « /fc(l/)<*3/ |z-y| ra+n 

T 2 

7H" j ^ ^ p H ^ -fk{y)dy 

l a ^ m i a i ' • ' K " (a; - y\m+n 

^2 -L f ^mjAjjx^y)^^-)^ 

1 /" (x — y)ai+<X2 

3
 a i ! a 2 ! 7 R n ~ j a 7 ^ p H r 

| a 2 | = m 2 

| a i | = m i , | a 2 | = " i 2 

= h + I 2 + h + h-

By Lemma and the following inequality (see [19]) 

\bQl - b Q 2 \ < C]og{\Q2\/\Qi\)\\b\\BMo for Qi C Q 2 , 

we know that, for x 6 Q and y € 2 f c + 1 Q \ 2 f cQ, 

\Rm(A;x,y)\<C\x-y\m £ (||£QA||BMo + | ( ^ ) 2 Q ( x , y ) - (DaA)2Q\) 
\a\=m 

<Ck\x-y\m W^AWBMO. 

\oc\—m 
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Note that \x - y\ ~ |a;0 - y\ for x € Q and y eRn\ 2Q, we obtain 

w * cf[ \ E I I ^ I I ^ O ] fc2 / i J Ą * 

j=l \\a\=m.j / 

For ^2, we obtain, by Holder's inequality, 

\D^Ai{y)\\f{y)\dy 

I n i i i / i i ^ / i \x — v\n 

|a|=rri2 l a i N w i 

\ VP 

, , , 1 J2^Q\2"Q F - 2/1" 
|a|=rri2 | a i | = ' n i 

|a|=m2 

Z' \ 1 / P ' 
/ I Z ^ M x d / ) - {DaAl)2Qfdy\ 

J2k+lQ J 
X 

1 r 

J = l V | a | = m j 

Similarly, 

\^^Ct[[ E H ^ l l s M o U 2 | 2 f c + 1 Q r V p ^ r ) V P | | / | U p , ¥ 

i=l \\a\=mj J 
For J 4 , taking quq2 > 1 such that l/p+ + l/g 2 = l , then 

N < c V / \DaiMy)\\Da*A2(y)\,, , ... 

" K , J r ^ A w e ^ — l / 2 ( * 
\ i/p 

^ c E wh\(fM
 imPdy) 

x ( 7 I ^ M i ^ ) - ^ ! Jagody 

x (^ f c + i Q l^ QM 2(y) - ( £ " A 2 ) 2 Q p a * y ) 1 / 9 2 

^Cn( E I I ^ I I B M O I ^ ^ Q I - V P ^ V P I I / I I ^ . 
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Thus 
OO 

Jfc=l 
oo 

fc=l 

<C^(r)||/||^ 

and 

l | r A ( / ) | | w <c||/||L̂ . 
This completes the proof of Theorem 1. • 

P R O O F O F T H E O R E M 2. Let / e L p ' v ( R n ) . Similarly to the proof of Theorem 
1, for a ball Q = Q{x0, r) c R n , set 

oo oo 

f(y) = (fxq)(y) + E ^ X 2 f c + l Q \ 2 k Q ) ( y ) = My) + ^2 Mv), 
fe=i it=i 

then 

/ |SA(/)(z)|pcte < / \SA(fo)(x)\"dx + f] f \SA(fk)(x)\i>dx. 
JQ JQ k^lJQ 

By the lAboundedness of SA, we get 

f \SA(f0)(x)\>>dx < C [ \f0(x)\*dx = C f \f(x)\Pdx < C\\f\\%,Mr)-
JQ JUn JQ 

Without loss of generality, it may be assume 1 = 2. We have, by the size condition 
of 5, for k > 1, 

Let Aj(x) = Aj(x) - X ) •~i(DQAj)2QXa. Similar to the proof of Theorem 1, we 
\a\=m.j 

get 

oo - oo 

E / i ^ a o w r ^ ^ c E i Q i ^ ^ ^ Q r 1 ^ fcr)ll/H^ 
fe=l"^ fc=l 

oo 
< C E ^ ( 2 - ^ ) ^ ( 0 1 1 / 1 1 ^ 

fc=i 

<Cip{r)\\f\\lP^ 

and 

I I ^ ( / ) | | L P , . <C||/||L P„. 

This completes the proof of Theorem 2. • 
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