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Abstract. Let P := (Pt)t>o be a strongly continuous contraction semigroup of 
symmetric operators on L2(m). Let 13 be a Bochner subordinator and let P'5 be the 
subordinated semigroup of P by means of j3, i.e. Pf := f£° P3fit(ds). We give in 
this paper an energy formula for the P^-potentials with finite energy in terms of the 
P-exit laws and of /?. We deduce an explicit energy formula for the a-potentials. 

0. Introduction 

Let (E,£,m) be a a-finite measure space and let P := (Pt)t>o be a strongly 
continuous contraction semigroup of m-symmetric operators on L 2 ( m ) . Let A 
denote the generator of P with domain D(A). The associated energy form is defined 
by a (/, g) :=< —Af, g > for / , g £ D(A) and the energy norm e is defined on D(A) 
by 

(0.1) e («) :=< -Au, u > 1 / 2 (u e D(A)) 

Let V be the associated Dirichlet space, i.e. the completion of D(A) in L 2 ( m ) with 
respect to any of the equivalent norms defined by the bilinear forms s.p(f,g) := 
a (/> 9) + P < /> 9 >i P > 0- We denote by a (resp. e) the extension of the energy 
form (resp. norm) on V. A positive element u of V is called a P-potential with 
finite energy if e{u) < 00 and if a (u, / ) > 0 for each positive function / € V. We 
denote by V} the set of such functions. 

A classical problem in potential theory is the following: Find an "explicit" 
formula for the energy e onVf. 
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Suppose for a moment that P admits a Green function G and that each potential 
u € Vf admits an integral representation on the form u = Gp for some a-finite 
positive measure on (E,£) (cf. 2.3 below). In this case, the following energy 
formula is well known 

(0.2) e 2 (u) = J jG(x,y)dp(x)dp(y). 

But there are many important situations for which a Green function does not exist 
(cf. Examples 1.2 and Remarks 2.2 below). 

We present in this paper another integral representation type for the potentials 
of finite energy, valid in general settings and we deduce an energy formula. Our 
main tool is the notion of exit law. Note first that our approach is adapted from 
many papers ([1], [2], [6], [7] and [10-13]) which are devoted to this notion, but we 
are concerned with the general abstract case. 

Let us return to the general case. A P-exit law is a family <p :— (<pt)t>o of 
positive elements of L2(m) such that 

(0.3) P3(pt = (fs+t, rn - a.e. (s,t > 0) 

After some preliminaries in the first paragraph, we present in the second paragraph 
a general energy formula for P (proved in [7] if P is the transition function of a right 
process). Namely, for each P-potential u G Vf, there exists a unique P-exit law <p 
such that 

(0.4) Ptu = V(pt, ra-a.e. 

where V := /0°° Ptdt is the potential operator of P. We also deduce the energy 
formula 

poo 

(0.5) e2(u) = 2 \\<pt\\2

2dt, 
Jo 

The third paragraph contains the main result of this paper, namely an energy for
mula for the subordinated semigroup: Let (3 = (/3t)t>o be a convolution semigroup 
on [0, +oo[ and let P'3 := (Pf)t>o be the subordinated semigroup of P in the sense 
of Bochner by means of /3, i.e. 

poo 

(0.6) Pf := / Psdf3t(Sy 
Jo 

It is known that P^ is also a strongly continuous contraction semigroup of 
m-symmetric operators on {E,£). If h is a P^-potential with finite energy, i.e. 
e p(h) < oo, it is proved in this paper that there exists a unique P-exit law 
(p := (<fit)t>o such that 

(0.7) Pth = V0(pt, m - a . e . 

where is the potential operator of P". We also obtain an energy formula for h 
on the form 

pOO 

(0.8) e}(h) = / \\<fs/2\\2

2K(ds) 
Jo 
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where K := / 0 °° 0tdt. 
If /3 is the Dirac subordinator, it can be easily seen that the energy formula 

(0.5) is a particular case of (0.8). If /? is the subordinator "fractional power" of 
order a £]0,1[, then we have 

(0.9) e2

a(h) = 2aT(a) \\<p.Hi a"-1 da 
Jo 

for each abstract Riesz potential h. 

1. Preliminaries 

Let (E, £) be a measurable space and let m be a cr-finite positive measure on 
(E, £). We denote by < . , . > the inner product in L2(m) and by ||.||2 the associated 
norm. We say that a property holds m-a.e. if the set for which this property fails is 
m-negligible. If T is a set of functions defined on E, denote by T+ the set of positive 
elements of T. Note that < . , . > and ||.||2 may be extended to m-a.e. positive 
measurable functions defined on E in the usual way. Finally, ex will denote the 
Dirac measure at point x £ E. 

1.1. S Y M M E T R I C SEMIGROUPS 

For the following notions, we refer the reader to [15] or [16]. 
A strongly continuous m-symmetric contraction semigroup on E is a family P := 
(Pt)t>o of linear operators on L2(m) such that 

1. For each * > 0 and / € L2(m) with 0 < / < 1, we have 0 < Ptf < 1 
(contraction property). 

2. For every s,t > 0: PsPt = Ps+t (semigroup property). 

3. For a l H > 0 and /,g e L2(m): < Ptf,g >=< /, Ptg > (symmetry property). 

4. l im | |Pt / — / l b = 0, for every / S L2(m)(strong continuity). 

In this case, we say shortly that P is an m-symmetric semigroup on E. 
Let P be an m-symmetric semigroup on E. The associated generator A is defined 

by 

(1-1) A(f):= lim j(Ptf-f) 

on its domain D(A) which is the set of all functions / £ L2(m) for which this limit 
exists in L2(m). It is well known that D(A) is dense in L2(m) and A is a closed 
operator on E. In the same way, the potential operator associated to P is defined 
by 

/•OO pt 
(1.2) V(f):= Psfds~ l im PJds 

Jo t-"*-00 Jo 
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on its domain D(V) which is the set of all functions / € L2(m) for which this limit 
exists in L2(m). Moreover, if R(V) is the range of V then R(V) c D(A) and (cf. 
[3], Chap. 11 for example). 

(1-3) A(Vf) = - / , ( / G D(V)) 

1.2. E X A M P L E S 

For the following examples we refer the reader to ([5], XIII , 3). 

(i) Let Xd(dx) — dx be the Lebesgue measure on R d , d > 3. For t > 0 and 
x G R d , let gt{x) := ( 2 i r t )^ 2 e x P(~^f t" ) ^ e Gaussian transition function on 
R d . For each t > 0 and / G L2(m) define Btf := gt * f. Then B := ( B t ) t > 0 is 
a strongly continuous A d-symmetric semigroup on L2(Xd), called semigroup of the 
Brownian motion on R d . For this example the associated generator is A :— | A 
where A is the Laplacian operator. The associated potential operator is given by 
Vf(x) = CdJ \x — y\2~d f(y) dy for some constant ej. 

(ii) Let n be a convolution semigroup on R d , i.e., a family fi :— (/xt)t>o of 
sub-probability measures on R d such that (cf. [3] Chap. 8 and Chap. 13) 

1. fa * IM = Ms+t for all s, t > 0. 

2. limt-,0 /it - £o vaguely. 

We suppose that /z is symmetric, i.e. 

3. fit{—w) = Mt(w) for each t > 0 and for each Borel subset u> of R d . 

Let Ptf := /xt * / , then P := (Pt)t>o is a A d-symmetric contraction semigroup 
on R d . If T := J*0°° /xt dt and if A :— lim |( /x t — £o) vaguely then Vf = T * / and 

Af = A* f. Moreover (1.3) is equivalent to T * A = — EQ in this case. If we take 
Mt := gt-Xd, we obtain the Brownian semigroup. 

(iii) For x G M D , let g{x) := gi(x) = ^2J)d/'i e xP(—^2~) be the Gaussian function 
on R d and let m := g • Xd be the so called Gaussian measure on R d . 

For t > 0, / G L2(m) and x G R d let 

(1.4) Utf(x) = J f{xexp (-Cj + yy/l-exp(-t)) m(dy)-

(1.4) is the so called Mehler formula. 

Then U := (Ut)t>o is a strongly continuous m-symmetric semigroup on R d , 
called the semigroup of Ornstein-Uhlenbeck on R d . In this case, the associated 
generator is A := | ( A — < ., V >) where V is the gradient operator. 

There is no explicit formula for the potential operator W of U but it can be 
expressed in terms of the Hermite polynomials of R d : Indeed, if Ha denotes the 
Hermite polynomial of multiindex a := ( a i , . . . ,0^) G N d then 

(1.5) UtHa = exp f - ^ ) Ha; (t>0) 
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where |a | := ct\ +... +aa. Hence, by integration of (1.5), we have WHa = (^)Ha. 
In other words Ha is an eigen function of W for the eigen value a/2. 

2. Energy and exit laws 

2.1. E N E R G Y 

For the following notions and properties, we refer the reader to [6] and to the 
related references, in particular ([5], XIII , 4). 

Let P be an m-symmetric semigroup on E with generator A denned on D(A). 
The associated energy form a is denned by 

(2.1) *(f,g):=<-Af,g> (f,g G D(A)). 

It is known that a is positive on D(A), i.e. a( / , / ) > 0 for each / G D(A). Hence 
the associated energy norm e is defined by 

(2.2) e (/) := a (/, ff'2 = < -Af, f >^'2; ( / G D{A)). 

For f,g £ D(A) and p > 0, let ap(f,g) :=< -Af,g > +p < f,g >. The Dirichlet 
space V associated to P, is defined as the completion of D(A) in L2(m) with respect 
to any norm defined by ap. We denote by a (resp. e) the extension of the energy 
form (resp. norm) on T>. B y the symmetry property, e is continuously extended 
and 

(2-3) a( / , 5 )<e( / ) -e( f f ) ; (/,<?€ 2>). 

A (positive) element u of V is called a P-potential if a(u,f) > 0 for each positive 
function / G V. We denote by V the cone of the P-potentials, i.e. 

V := {u G V+ : a (u, / ) > 0, for all / G £>+} 

We denote by Vj the subset of P-potentials with finite energy, i.e. Vj := {u G V: 
e (u) < oo}. Note that 

(2.4) D(A) r\V = D(A) nV f = {u G D(A) : u > 0 and Au < 0 m.a.e.} 

For example, for each / G D+(V), the function Vf is a P-potential with finite 
energy. Moreover 

/•CO poo 

(2.5) e 2{Vf) =< /, Vf >= / <f,Ptf>dt = 2 \\Ptff2 dt 
Jo Jo 

by (1.2), (1.3), (2.2) and the symmetry property. The relation (2.4) will be gener
alized for each u G Vf. 
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2.2. R E M A R K S 

1. A Green function for P (if it exists) is a (£®£,B([0, oo])-measurable function 
G : £ x £ - > [ 0 , o o ] such that Vf(x) = J G(x, y) f{y) m{dy) for every x e E and 
/ S D (V). Here £([0, oo]) stands for the Borel field of [0, ooj. 

If P admits a Green function Q then, under some regularity hypothesis, each 
potential u £ Vf admits an integral representation on the form u = Gp := 
J G(.,y) dp(y) for some <r-finite positive measure on (E, £) (cf. [8] Chap. 5 and 
Chap. 6). In this case, the following energy formula is known (cf. [8] Chap. 11) 

(2.6) e2(u) = J j G{x,y)dp{x)dp{y). 

2. If P is defined by a symmetric convolution semigroup p, then (cf. [5], XIII , 
4 for example). 

(2.7) e 2 (u ) = J \u{x)\2i>(x)dx 

where tp is the negative definite function defined by p (i.e. pt = exp(-txp)). 

3. Let p be a symmetric convolution semigroup on Rd and let P be the associated 
A d-symmetric semigroup. Then P admits a Green function if and only if T := 
J 0 ° ° pt dt is absolutely continuous with respect Xd. This is the case of the Brownian 
semigroup B , where the associated Green function is N(x, y) := \x — y\2~d the so 
called Newtonian Kernel. 

4. Note that, there is no Green function for the Ornstein-Uhlenbeck semigroup 
U . Moreover U is not given by a convolution semigroup. 

5. The aim of this paper is to find an energy formulae analogous to (2.6) or 
(2.7) but valid in the general case. Central to our development will be the notion 
of exit law. 

2.3. E N E R G Y AND CAPACITY 

The notion of energy is closely related to the notion of capacity in the following 
sense: A measurable subset F of E is said to be capacitable if 

up •= inf{u 6 Vf : u = 1 on F} 

is a P-potential with finite energy. In this case the capacity C(F) of F is given by 
C(F):=e2(uF). 

If there exists a Green function G and if UF = GpF then C(F) = PF(F). In 
fact, in the classical potential theory, the preceding relation is given as definition 
of capacity (cf. [8] for more details). 

2.4. E X I T LAWS 

Let P be an m-symmetric semigroup. A family <p = (</?t)t>o C L\{m) is an exit 
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law for P provided (cf. [7] for example) <p verifies the functional equation: 

(2.8) Ps<pt j= <Ps+u m-a.e. ( s , t> 0) 

Two exit laws <p and are said equivalent if (fit — ifrt-Tn.&.e. for each t > 0. 
Note that, for each / e L\(m) the family (Ptf)t>o is a (so called closed) 

P-exit law, by the semigroup property. Moreover the trivial relation Pt(Vf) = 
V(Ptf); (t > 0) will be generalized in the following result for every P-potential with 
finite energy. Let us remark also that: W i t h the notation of Example 1.2.(i), it is 
easy to see that Btg3 = gs+t, hence (gt)t>o is a B-exit law. However (<?t)t>o is not 
closed. 

Exit laws serve to represent potentials in a general setting (cf [6],[7],[10-13]). 
For the symmetric case, let us first recall the following result which is proved in 
([7], Proposition (3.7)) if P is the transition function of a right process. 

2.5. T H E O R E M 

Let P be an m-symmetric semigroup with potential operator V. For each poten
tial u €Vf, there exists a unique (up to equivalence) P-exit law ip such that 

(2.9) Ptu = V(ft, m - a.e. (t > 0) 

Moreover, we have 

rOO 

(2.10) e2(u) = 2 htgdt-
Jo 

where ip := {y>t)t>o is the associated P-exit law. 

2.6. R E M A R K S 

1. The proof of 2.5 given in [7], can be adapted in the abstract case. Moreover, 
we can also adapt those of ([6], Proposition 3.10). 

2. Let F be a capacitable subset of E, then by 2.5 we have C(F) = 2 / 0°° | | y t | | i dt 
where (p is the P-exit law associated to the potential up-

3. In what follows, we want to obtain similar Formulas for the subordinated 
semigroup, in the Bochner sense. In particular, Theorem 2.5 will be generalized 
and proved in the abstract framework. 

3. Energy and subordination 

3.1. B O C H N E R SUBORDINATION 

We consider R endowed with its Borel field, we denote by suppfi the support 
of the measure \x defined on E and by A the Lebesgue measure on [0, oo[. 
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A Bochner subordinator is a convolution semigroup 8 — {8t)t>o of subprobab-
ility measures on R such that, for each t > 0, we have 8t ^ £o a n d suppdt c [0, oo[ 
(cf. [3] Chap. 14). 

According to ([3] Chap. 14), the associated potential K := f0°° 88ds is a Borel 
measure on [0, oo[. Moreover, let 5 := l im } (8t - eo) be the associated Levy gener
ator. Then (cf. Example 1.2.(ii)) 

(3.1) K * S = —eo 

Let P be an m-symmetric semigroup on E and let /3 be a Bochner subordinator. 
For every t > 0 and for every / € L 2 ( m ) , we may define 

pOO pr pOO 

(3.2) Pff:= / PJ8t(ds)~ l im / Pffdt = / Psf dK(s) 
Jo r->0° Jo Jo 

According to [15] for example, P ' 3 := (Pf)t>o is a strongly continuous m-symmetric 
semigroup on E. It is said to be subordinated to P in the sense of Bochner by means 
of 8 (cf. for example [4],V,3 or [15] 5.3). 

We index by all entities associated to P" : In particular A@ is the associated 
generator, V13 is the potential kernel of P^ , is its set of potentials and ap (resp. 
e@) the associated energy form (resp. norm). Note that, for / £ D{V&) we have 

(3.3) Vfif:— / Pffdt= / P3fdK(s)-
Jo Jo 

3.2. R E M A R K S 

1. The most important example in Analysis is the so called one-sided stable 
subordinator of order a e]0,1[, i.e. the unique convolution semigroup n := (?7t)t>o 
on [0, oo[ such that for each t > 0, the Laplace Transform L (ryt) of % is given by 
L(r]t)(x) = exp(— txa), x > 0. In this case, we have n{dt) = l ] o i 0 0 [ ( i ) r ( a ) i a - 1 • dt 
(cf. [3] Chap. 14 for example). If A is the generator of an m-symmetric semigroup 
P and if Av is the generator of P^ the subordinated of P by means of rj then 
A71 = — (—A)a the fractional power of order a of A (cf. [16]). In this case a Fn-
potential is called an a-potential (specifically a Riesz potential of order a if P is 
the Brownian semigroup on R d ) . Moreover the energy form will be denoted by e a . 

2. If h € V;3 is a P^-potential then by Theorem 2.5 
poo 

B%{h) = 2 WUldt 
Jo 

where ip := (ipt)t>o is the associated P^-exit law. 
In the following, we want to express ep(h) in terms of "the initial values", 

namely in terms of the P-exit laws and the subordinator 8. 

3. For a P^-potential of the form h := V0f for some / € D+(V0), it can be 
seen that 

pOO 

(3.4) e}(V^f)= | | P . / 2 / | | | « ( d S ) . 
Jo 
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The energy formula (3.4) will be generalized for every P^-potential with finite 
energy. 

3.3. T H E O R E M 

Let P be an m-symmetric semigroup, let /3 be a subordinator and let P13 be the 
subordinated of P by means of 0. For each P13-potential h G Vf, there exists a 
unique (up to equivalence) P-exit law ip such that 

(3.5) Pth = V0<pu m.a.e. (t > 0) 

P R O O F . Let h € V0

f and t > 0. Since Pt(L2(m)) c D(A) ([6], p. 292) and 
D(A) C D(A0) ([15], p. 269) then Pth € D(A0). We show now that Pth is a P0-
potential. Indeed, by (2.4), it suffises to prove that A0(Pth) < 0. If h € D(A) then, 
by (2.4), Aph < 0 since h is a P^-potential. Therefore, Aff(Pth) = Pt(A0h) < 0 
since P is a positive operator. For the general case, it suffises to use the density of 
D(A) in V and the continuity of the energy form a. 

In other words, we have proved that <pt := —A^(Pth) is well defined and ipt € 
L\(m). Moreover, since the Levy generator 6 is a bounded measure on [i, oo[ (cf. 
[10], Proposition 2) and h € L\(m), we have 

/•OO 

(3.6) <pt:=-Afl(Pth) = - Pr+thd6(r) 
Jo 

by the well definition of A13. 
Now by the Theorem of Fubini and the semigroup property, wę have m-a.e. 

rOO rOO 

Psft := - / PsPr+thdS(r) = - Pr+3+thdS(r) = ip3+t 

Jo Jo 

for all s,t > 0. Hence <p := {<pt)t>o verifies (2.8). 
Since K is a Borel measure and 6 is bounded on [t, oo[, we may apply the Theorem 

of Fubini. Thus, by (2.8), (3.6) and (3.1), we have m-a.e. 

Vf><pt = J~P,<ptdK{s) 

= Io° Vs+t dK(s) 

= - /o°° /o°° Pr+a+thd5(r)dK(s) 

= -J0°°Pl+thd(S*K)(l) 

= Pth-

Finally, ip is a P-exit law and (3.5) is verified. • 

3.4. L E M M A 

Let P be an m-symmetric semigroup, let (3 be a subordinator and P^ be the 
subordinated ofP by means of (3. For each P&-potential h € Vf 

(3.7) Vmep(Pth)=ep(h); 
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P R O O F . Let h € Vj and let t > 0, note first that Pth e Vp

} by Theorem 3.3. 
B y the density of D{AP) in V13 and the continuity of e^g, it suffises to prove (3.7) 
for h € D(A0). In this case, we have ApPth = PtA^h. Then by (2.2) and (2.4) 
applied to A13 instead of A, we have 

e2

0(Pth) - e}(h) = < A^h,h> - < A^Pth,Pth > 
= < A^h, h-Pth> + <A<3h- A^Pth, Pth > 
= < A*h, h-Pth> + <A0h- PtA^h, Pth > 

Then 

(3.8) |o|(A) - e^^^, < | | ^7» | | 2 | | / i _ Ą / ^ H , , + H f c H a l l ^ f a - Ą ^ / i | | 2 

since ||Pf/i||2 < Wh by the contraction property. The relation (3.7) is also a 
consequence of (3.8) and the strong continuity of P. • 

3.5. T H E O R E M 

Let P be an m-symmetric semigroup, 3 be a subordinator with potential measure 
K and let P " be the subordinated o / P by means of 6. For each P ' 3 -potential h € V® 

pOO 

(3.9) e ! ( / » ) = / \Ws/2\\22<ds) 
Jo 

where <p is the associated P-exit law by Theorem 3.3. 
P R O O F : Let h be in and let <p be the associated P-exit law by Theorem 3.3 

and let t > 0, then by (2.2), (3.5) and (1.3) we have 

efcPth) =< -A0 Pth, Pth >=< -AfiVp<pt,Vfi<pt >=< ifuVvt > 

where V 3 is the potential operator of P ' 3 . Moreover by (3.3) we obtain 
pOO poo 

< <pt,V0ipt >=< ft, / PsVtdK{s) >= < <pt,Ps<Pt > dhz(s) 
Jo Jo 

Finally by (2.8) we have 
poo 

< <pt, V0<pt >= / II Vt+(r/2) Hi Mr)- (* > o) 
Jo 

Therefore 
pOO 

(3.10) e}(Pth)= / | | V t + { R / 2 ) H i d « ( r ) . (* > 0) 
Jo 

Using Lemma 3.4, we obtain 
pOO 

(3.11) e2

0(h) = \im ||^+(r/2)||ad/e(r). 
'1° JO 

On the other hand, since ip is a P-exit law, it can be easily seen that ||y>t+(r/2)||2 T 
||<£(r/2)l|2 as i I 0. The energy formula (3.9) is a consequence of (3.11) and the 
monoton class Theorem. 
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3.6. R E M A R K S 

1. Similar results are obtained in [1] by specific methods, if P is associated to a 
right process. 

2. Let C13 be the /3-capacity, i.e. the capacity defined by P^. For each /?-
capacitable subset F of E, let hF := inf{h e : h = 1 on F} be the associated 
/3-potentiel. By the proof of 3.3 and 3.5, we have 

3. If we take /3t '•= £t, then P^ = P and K,(dt) = dt the Lebesgue measure 
on [0, oo[. Hence Theorem 2.5 is a particular case of Theorems 3.3 and 3.5. In 
particular, the energy formula (3.9) generalizes (2.10). 

4. If K is absolutely continuous with respect to the Lebesgue measure on [0, oo[, 
i.e. n(dt) = k(t).dt for some Borel function k : [0, oo[—» [0, oo[, then (3.9) becomes 

As application of (3.12), we obtain the following energy formula for the abstract 
Riesz potentials. 

3.7. C O R O L L A R Y 

Let P be an m-symmetric semigroup. Then, for each a e]0,1[ and for each 
a-potential h we have 

where tp is the associated P-exit law. 
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