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Abstract. We study quasi-continuous functions on the product of two spaces 
provided they are separately continuous. We apply our results to actions of (semi-) 
groups on topological spaces and to the problem of the uniqueness of extensions of 
separately continuous functions. 

1. Introduction 

It was probably R. Baire [2] who first distinguished functions defined on the 
product R x R which are continuous after making one of the two variables constant. 
For our purposes, we need a slightly more general notion. We say that a function 
/ : Xi x ... x Xn —• Z defined on the Cartesian product of topological spaces 
X i , X n into space Z is separately (quasi-)continuous if for each 1 < k < n and 
o-k € Xk the function / (oi,..,ak-i, •, flfc+i, ••, an) • Xk —» Z is (quasi-)continuous. 

Over the years, many studies have appeared which describe continuity-like 
properties of (separately continuous) functions. One of such properties is quasi-
continuity. Originated by S. Kempisty [10], it has been studied quite intensely 
afterwards (see, for example, [1], [3]). A comprehensive survey of quasi-continuous 
functions is given in [14]. 

In our paper, we use a quite general and non-traditional approach to quasi-
continuous functions, which allows us to place them among such functions as 
cliquish functions or barely continuous ones (see Section 3). 

The motivations for studying quasi-continuous functions in general setting come 
from two directions. One is due to W . Sierpiński [17] and is related to the uniqueness 
of extensions of separately continuous functions. The other one pertains determin­
ing whether a separately continuous action of a semi-group on a topological space 
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is actually continuous. By noticing that in some instances separately continuous 
functions are quasi-continuous, the so called automatic quasi-continuity, we were 
able to get positive answers to the aforementioned problems in some cases (cf. 
Corollary 3 and Theorem 3). 

For all undefined (topological or settheoretical) notions we refer to [6] and [9]. 

For an arbitrary function / : X —> Y and an open cover V of the space Y, let 

If M is a metric space and Ve is the family of all open balls of diameter less 
than s, then w ( / ; P £ ) is the set of all points where the oscillation of / does not 
exceed e. 

Sets of the form ui(f; V) are open. Let us call a function / to be V — cliquish 
if the set u>(f; V) is also dense in the space X. 

A sequence {Pn : n = 1,2,...} of open covers of a space Y is said to be a 
development for Y if for each y £ Y and for each selection Un from Vn, each 
containing the point y,the family {Un : n = 1,2,...} is a base at the point y. 

A subset F of a topological space is said to be nowhere dense if the interior of 
its closure is empty, i.e., Int (clF) = 0. A countable union of nowhere dense sets is 
called a meager set. The complement of a meager set is called a residual set. 

For arbitrary topological space X, the Baire number, b(X), is defined as follows: 

Spaces with an uncountable Baire number are called Baire spaces. 

L E M M A 1. Let {Vn : n = 1,2,...} be a development for Y and let f : X —*Y be 
aVn — cliquish function, for each n = 1,2,... Then the function f is continuous 
at each point of a residual subset of X. 

P R O O F . The set in question is the intersection of all sets uj(f; Vn). Indeed, if x € 
u>(f;Vn) for each n = 1 , 2 , t h e n one can find Vn € Vn and open neighborhoods 
Un of x satisfying f(Un) C Vn, n = 1,2,... Hence {Vn : n = 1,2,...} is a local base 
at the point y = f(x). If W is an arbitrary neighborhood of y, then Vm CW for 
some m and therefore f{Um) QW. • 

In a metric space M , if Vn denotes the family of all open balls of diameter less 
than then the sequence {Vn : n = 1,2,...} constitutes a development for M. A 
function / : X —+ M is said to be cliquish if / is a Vn—cliquish function for every 
n = 1,2,... 

As we have observed in the above lemma, cliquish functions may be continuous 
at each point of a "big" set. Let us distinguish some types of functions having 

2. Quasi-continuous and other functions 

uj(f;V) — {x G X : 3u open3vev {x&U and f(U) C V)} . 

b (X) = inf \ \K\ : V F S T C F is nowhere dense and Int ( I ) TZ \ ^ ID 
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plenty of points of continuity as well, and establish some connections with the 
cliquish ones. 

We say that a function / : X —* Y is r.c. — continuous if the restriction of / to 
any regularly closed subset of the space X has a point of continuity. 

We say that a function / : X —> Y is PWD if / is continuous at each point of 
a dense subset of X. 

L E M M A 2. Any PWD function is r.c. — continuous. 

P R O O F . It follows immediately from the fact that any non-empty regularly 
closed set has a non-empty interior. • 

L E M M A 3. If f : X —» y is r.c—continuous, then the function f is V—cliquish 
for each open cover V of the space Y. 

P R O O F . Let V be an open cover of the space Y. To prove that the set uj(f\ V) 
is dense in X, take arbitrary non-empty open set U Q X. Then clU is regularly 
closed and so the restriction of / to clU, f\clU, is continuous at some point, say p. 
Let V be a member of the cover V containing /(p). There exists a non-empty open 
set G C X such that p € G and f(G D clU) C V. Hence G f i U is a non-empty open 
set contained in u(f\V). In consequence, U r\u>(f;V) ^ 0. • 

T H E O R E M 1. Let f : X —> Y be a function from a Baire space X into a space 
Y with a development {Vn : n = 1,2,...}. The following conditions are equivalent: 
1. f is Vn—cliquish for each n — 1,2,...; 
2. f is r.c —continuous; 
3. f is PWD. 

P R O O F . The implication (3) —» (2) is in Lemma 2; The implication (2) —» (1) 
is in Lemma 3; The implication (1) —• (3) is in Lemma 1. • 

R E M A R K 1. The theorem is no longer true without assuming that the domain 
is a Baire space. There are known examples of r.c — continuous functions that are 
not PWD. 

Following K . Kuratowski [11], we say that a set F is nowhere dense at a point 
p if there exists an open neighborhood U of p such that U D F is nowhere dense. 
When preimage by a function of an open set is nowhere dense, even only at some 
point, the function cannot be continuous. Neither of these types of functions can 
avoid to posses this deficiency. For our next purposes we will need functions that 
are tame, in the sense that preimages of open sets are nowhere dense at no point. 

We say that a function / : X —> Y is quasi-continuous if it is tame and V- cliquish 
for each open cover V of Y. To locate quasi-continuous functions among those we 
have already considered, observe that r.c.-continuous tame functions are quasi-
continuous which, in turn, are V-cliquish for each open cover V. Let us consider 
the following example, due to J . Hoffman-Jorgensen. 

3 Annales 
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E X A M P L E 1. Let X be the square [-1,1] x [-1,1], let Y to be the product of 
spaces Y(a,t), where Y^s^ = [—1,1] for each (s, t) € X, and let / : X —* Y to be the 
function given by 

One can easily show that / is discontinuous at each point, so / is not r.c.-continuous. 
However / , treated as a function of two variables, is separately continuous, whence 
it is quasi-continuous, according to the forthcoming Corollary 1. 

We shall employ the following characterization of quasi-continuous functions. 

P R O P O S I T I O N 1. Let Y be a regular space. A function f : X —> Y is quasi-
continuous if and only if for each open sets U C X and V C Y, /([/) n V ^ 0 
implies that there exists a non-empty open set G CU such that /(G) C V. 

P R O O F . The implication " <— " is obvious. 
(—>) Let x E U be such that f(x) £ V. There exists an open set W in Y such 

that f{x) 6 W C clW C V. We set V = {V, Y - clW}. Since / is V-cliquish, the set 
is dense and open in X. Since / is tame, U f l / - 1 ( W ) cannot be nowhere 

dense. Hence uj(f;V) D U f l f_1(W) is not empty. If z is an element of the latter 
set, then there exists a neighborhood G of z contained in U and such that f(G) is 
contained in some member of the cover V. Since /(G) n W ^ 0 , f(G) QY — clW 

We are going to use the following three observations pertaining to quasi-conti­
nuous functions. 

L E M M A 4. Let f : X —> Y be a quasi-continuous function. IfY is regular and 
if D is a dense subset of an open set U C X, then f(U) C clf(D). 

P R O O F . Let x € U. To prove that f(x) e clf(D) take arbitrary open neighbor­
hood V of the point f(x). There exists a non-empty open subset G of U such that 
f{G) C V. Hence GnD ^ 0 and therefore 0 ^ f(GnD) C f(G)nf(D) C Vnf(D). 

• 
L E M M A 5. Let f : X —• Y be a quasi-continuous function into a regular space 

Y such that f~l{C) is a boundary subset of X whenever C is a boundary subset of 
Y. Then f_1(F) is a nowhere dense subset of X whenever F is a nowhere dense 
subset ofY. 

P R O O F . Let U be a non-empty open subset of X. If F is a nowhere dense subset 
of Y, then clF is a boundary subset of Y and therefore U cannot be contained in 
the set f~l(clF). Hence f(U) must intersect the open set Y — clF. There exists a 
non-empty open set UiQU such that f(Ui) QY - clF. Hence [Ą l~l Z - 1 ^ ) = 0-

f(u,v)(s,t) 

' 2{u-s)(v-t) 
< (u-s^ + iy-t)*' 

0, if (u, v) = (s,t). 

if (u,v) ̂  (s,t), 

and therefore /(G) C V. • 

• 
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L E M M A 6. Let f : X —> Y be a function that is not quasi-continuous. If the 
space Y is completely regular, then there exists a continuous function g : Y —» [0,1] 
such that the composition g o f : X —» [0,1] is not quasi-continuous either. 

PROOF. There are open sets U in X and V in Y such that f(U) f~l V ^ 0 and 
yet if G is a non-empty open subset of U, then f(G) — V ^ 0. Let i be a point of 
U such that f(x) £ V. There exists a continuous function g : Y —• [0,1] such that 
g(y) = 0 for y not in V and g(f(x)) = 1. Hence (g o /)([/) n (0,1] ^ 0 and for 
every non-empty open subset G of U, (g o f)(G) (0,1]. • 

At the end we shall remark on functions that are hereditarily cliquish or hered­
itarily r.c.-continuous or hereditarily PWD, where "hereditary" is meant only with 
respect to closed sets. So, for example, a function (into a metric space) is going 
to be called hereditarily cliquish if its restriction to arbitrary closed subset of the 
domain is a cliquish function. Note, however, that in this specific case "hereditary" 
has its ordinary meaning. Hereditarily cliquish functions were considered in [5] as 
"functions of first class". Hereditarily r.c.-continuous functions are better known 
as barely Baire functions (cf. [12]). Those three types of functions coincide again 
if their domain is a space that is hereditarily Baire. 

3. Automatic Quasi-continuity and Continuity of Actions 

I. Namioka [13] has proved that if X is Cech complete and Y is a compact, then 
for each separately continuous function / : X x Y —* M into a metric space M 
there exists a residual subset A of X such that / is jointly continuous at A x Y. 

The class of spaces for which Namioka's theorem is true for arbitrary compact 
space Y has been intensively studied (see [15] for a survey of results). Spaces 
belonging to that class are called Namioka spaces. We will use the fact that Namioka 
spaces are Baire (cf. [16]). 

We say that a space Z is of pointwise K-type if each point of Z belongs to a 
compact subset C of Z which has a base of neighborhoods of cardinality K, i.e., 
there exist open sets Ua, a < K, such that for each open neighborhood U of C 
there exists an a < K with C C Ua C U. Spaces of pointwise to—type are better 
known as spaces of pointwise countable type. 

Standard examples of spaces of pointwise countable type include locally compact 
Hausdorff spaces and spaces of countable character. 

L E M M A 7. Let Y be a regular space and let C be a compact subset ofY having 
a base of neighborhoods of cardinality K. If W is an open set in Y and q G W fl C, 
then there exists a compact subset KofY having also a base of neighborhoods of 
cardinality K and such that q £ K C W n C. 

PROOF. Let {Wn : n £ u} be a sequence of open sets in Y such that Wo = W 
and q £ Wn+i C clWn+i C Wn for each n £ u. Then K = C n f]{clWn : n £ w} 

3* 
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satisfies the required properties. To get a base of neighborhoods of K of size K, 
take a base B of neighborhoods of C of cardinality K , and consider 

K. = {U n Wn : U £ B and n € w} . 

If V is any open neighborhood of K, then by compactness of C there exists n G ui 
such that clWn F\C CV. Thus c/W„ — V is disjoint from C . Hence, there exists 
UeB such that U n (cZW„ - V ) = 0. So that t / n W n c y . • 

T H E O R E M 2. Let f : X x Y M be a separately continuous function into a 
metric space M. If X is a Namioka space, Y is a regular space of pointwise K-type 
and b(X) > K, then f satisfies the following condition: 
(*) IfU, V, W are open sets inX, Y, M, respectively, and (p,q) £ UxV and f(p, q) £ 
W, then there exist non-empty open sets, G in X and H in Y, such that G C U, q £ 
HCV, and f(G xH)CW. 

P R O O F . Let C be a compact subset of Y that has a base of neighborhoods of 
cardinality K and q £ C. B y Lemma 7 and utilizing continuity of the function 
/ (p, •) we can actually construct such a set C that C CV and f({p} x C) CW. 
There exists an open set W\ in M such that f({p} xC) CW\C clW\ C W. There 
exists an open set U\ in X such that p £ U\ C U and f(Ui x {q}) C W\. 

Let us consider the restriction of the function / to a subspace X x C. Since X 
is a Namioka space, there exists a residual subset A of X such that the function 
f \ X x C : XxC-*Mis continuous at each point of the set A x C. Let 
a £ AC\Ui. Thus / I X x C is continuous at (a, q) and f(a, q) £ W\. Hence there 
exist open sets, Vi in X and V\ in Y, such that a £ V~2 C U\, q £ V i C V, and 
/ (U2 x (C n Vi)) C W\. Applying Lemma 7 again, we construct a compact set K 
that has a base of neighborhoods of cardinality K and such that q £ K C C f l V\. 

Let S be a base of neighborhoods of K of cardinality K. For any B e B we set 

£ B = { z € Ł / 2 : / ( { x } x £ ) C V V i } . 

Clearly, the sets EB, B € B, cover the set Ł/2. Since 6(X) > K , one of them, 
say EH, is dense in a non-empty open subset G of Ui- By Lemma 4, / ( G x H) C 
clWi C W and the proof of (*) is finished. • 

C O R O L L A R Y 1. Let f : X x Y —* Z be a separately continuous function into 
a completely regular space Z. If X is a Namioka space, Y is a regular space of 
pointwise K-type and b(X) > K, then f is quasi-continuous. 

P R O O F . If / were not quasi-continuous, then by Lemma 6, there would exist a 
function h : X x Y —> [0,1] that is separately continuous but not quasi-continuous. 
B y Theorem 2, h would have to satisfy condition (*) which contradicts the charac­
terization of quasi-continuous functions given in Proposition 1. • 
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C O R O L L A R Y 2. Let f : X x Y —» M be a separately continuous function into 
a metric space M. If X is a Namioka space and Y is a regular space of pointwise 
countable type, then for each y inY the set 

{x £ X : f is jointly continuous at (x, y)} 

is aG$ dense subset of X. In particular, f is PWD. 

PROOF. F ix a y in Y. We shall show that for any e > 0 the set 

0£ = {x£X :tj(f; (x, ! / ) ) < £ } 

is dense in X. 
Towards this goal, let U be a non-empty open subset of X and pick any point x 

in U. B y condition (*) of Theorem 2 we get the existence of non-empty open sets 
G and H such that G C U, y € H, and f(G x H) is contained in the open ball 
with the center at f(x, y) and of radius e. Hence 0 ^ G C Oe. 

Since any Namioka space is Baire, the corollary follows. • 

Let (G; •) be a multiplicative algebraic group. We say that the group G acts 
on a set Z if there is a function A : G x Z —• Z, called action, that satisfies the 
following conditions: 

(i) A (1, z) = z for each z € Z. 

(ii) A (g • h, z) = A (g, A (h, z)) for all g, h in G and z in Z. 

C O R O L L A R Y 3. Let an abelian group G act on set Z and let A be an action. 
Suppose G and Z are endowed with topologies such that: 

(j) Z is a metric space and G is a Namioka space; 

(jj) G is a topological semi-group (i.e., the group operation is separately continu­
ous and the inverse operation is continuous); 

(jjj) Action A is separately continuous. 
Then action A is jointly continuous. 

P R O O F . Since Corollary 2 applies to A, we will be done if we can show that ($) 
If A is continuous at (g, x) then A is continuous at (h, x) for any h € G . 

Take any neighborhood W of A (h, x). Let k = h-g~x (and notice that h = k-g). 
Since A(h,x) = A(k,A(g,x)), and since A(k,•) is continuous, there exists an 
open neighborhood V of A (g, x) in Z such that A ({k} x V) C W. There exist 
an open neighborhood U of x in Z and an open neighborhood P of g in G such 
that A ( P x U) C V. Thus k • P is an open neighborhood of h in G such that 
A((fc • P) x U) = A({k} x A(P x U)) C A{{k} x V) C W. • 
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4. Automatic Quasi-continuity and Uniqueness of Extensions 

We shall prove more results on automatic quasi-continuity of separately con­
tinuous functions on the product of two spaces. For the sake of the feasibility of 
generalizing our next results to separately continuous functions on the product of 
more than two factors we will formulate them in a more general form. 

P R O P O S I T I O N 2. Let f : X x Y —> Z be a function into a regular space Z 
such that functions f (-,y) are continuous for each y inY and functions f (x, •) are 
quasi-continuous for each x in a dense subset D of X. If \(d, D) < b(Y) for each 
d in D, then f is quasi-continuous. 

P R O O F . Let U x V be an open set in X x Y containing a point (p, q) and 
let W be an open set in Z containing f(p,q). There exists an open set W\ in Z 
such that f(p,q) G W\ Q clW\ C W. There exists an open set U\ in x such that 
P G U\ C U and f(Ui x {q}) C W\. Let d be in U\ n D. Since / (d, •) is quasi-
continuous and / (d, q) € W\, there exists a non-empty open set Vt in Y such that 
f({d} x Vi) C W\. Let { G Q : a < K] be a family of open subsets of U\ such that 
{Ga P) D : a < K} form a base at p in the subspace D and K < b(Y). For a < n we 
set 

Ea = {y € Vi : / ( ( G Q n D) x {y}) C Wi}. 

Clearly, the sets Ea, a < K, cover the set V\. Hence, one of them, say Ep, is 
dense in a non-empty open subset V2 of V\. B y Lemma 4, f{Gp x V2) C clW\ C W. 

• 

P R O P O S I T I O N 3. Let f : X x Y —» Z be a function into a regular space Z 
such that f (x, •) and f (•, y) are quasi-continuous functions for all x in X and y 
in Y. Suppose that for each p € X there exists its open neighborhood U such that 
iru) (U) < b(Y). Then f is quasi-continuous. 

P R O O F . Let U x V be an open set in X x Y containing a point (p, q) and let 
W be an open set in Z containing f(p, q). There exists an open set Wi in Z such 
that f(p, q) £ W\ C clW\ C W. There exists a non-empty open subset V\ of V such 
that / ({p} x Vi) C W\. Let Ui be an open neighborhood of p that is contained in 
U and such that irw (Ui) = K < b(Y). If {Ga : a < K} is a 7r-base of U\, then, for 
a < K, we set 

Ea = {yeVi:f(Gax{y})CW1}. 

The sets Ea, a < K, cover the set V i . Indeed, let y be in V\. Since / (-,y) is 
quasi-continuous and / (jp) G W\, there exists a non-empty open subset G of Ui 
such that / (G x {y}) C W\. Since the family {Ga : a < K} is a 7r-base of LĄ, there 
is 8 < K such that G/3 C G . Hence y £ Ep. 

Since K < 6 ( Y ) , one of the sets i ? Q , say E0, is dense in a non-empty open subset 
V 2 of V i . By Lemma 4, f(G x V 2 ) C cJWi C W . • 
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C O R O L L A R Y 4. Let f : Xi x ... x Xn x Xn+i —> Z be a separately quasi-
continuous function into a regular space Z. If each of the spaces XK, k = 1,2,.., n, 
is a Baire space of countable local n-weight, and Xn+\ is arbitrary Baire space, 
then f is quasi-continuous. 

P R O O F . Let X = X\x ... x Xn and Y — Xn+i. The product Xi x ... x Xj is 
a Baire space of countable local w-weight for each 1 < j < n (cf. [7]). It follows 
from Proposition 3 by induction that / (-, y) is a quasi-continuous function for each 
y S Y. Thus the corollary follows from Proposition 3. • 

It is well known that continuous functions into Hausdorff spaces are deterrn-
ined by their values on dense subsets of the domain. It is not the case for quasi-
continuous functions; let f(x) = 0 i f 0 < a ; < | and f(x) = 1 if \ < x < 1; g(x) = 0 
if 0 < x < i and g(x) — 1 if | < x < 1. Then both / and g are quasi-continuous 
functions on the unit interval [0,1] which agree everywhere but one non-isolated 
point | . 

A theorem of Sierpiński [17] asserts that separately continuous real functions 
of finitely many real variables are determined by their values on dense sets. This 
theorem has been substantially generalized by W . Comfort [4] (and previously, 
by C. Goffman and C. Neugebauer [8]). We shall use our results on automatic 
quasi-continuity of separately quasi-continuous functions to strengthen the result 
of Comfort. 

T H E O R E M 3. Let f, g : Xi x . . . x Xn x Xn+i —» Z be separately quasi-continuous 
functions into a completely regular space Z, where each of the spaces XR, k = 
1,2,.., n, is a Baire space of countable local n-weight, and Xn+i is arbitrary Baire 
space. If f and g agree on a dense set of Xi x ... x Xn x Xn+i, then they are 
identical. 

P R O O F . Suppose that f{p) ^ g(p) for some p in Xi x ... x Xn x Xn+i. Let 
h : Z —> [0,1] be a continuous function such that h{f(p)) = 0 and h(g{p)) = 1. 
Then both ho f and hog were separately quasi-continuous functions. Suppose that 
/ = g on a dense subset D of Xi x ... x Xn x Xn+i. Then k = ho g — ho f were a 
separately quasi-continuous function from X i x ... x Xn x Xn+i into the interval 
[—1,1] that vanishes on the set D and takes value 1 at p. By Corollary 4, k is quasi-
continuous, so there would exist a non-empty open subset U of Xi x ... x Xn x Xn+i 
such that k{U) C (0,1], which would be impossible. • 
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