ON EQUILIBRIUM THEOREM

PRZEMYSLAW TKACZ

Abstract. We prove that for given sets Ag, ..., An C R"™ such as D; C A; for each
i=0,...,n exists a point x € D such as d(zx, Ag) = ... = d(z, An). This proof gives
an algorithm of finding the point z.

The aim of this paper is to present the combinatorial and topological method
of finding & point satisfying the thesis of theorem formulated above. It will be
shown that using this method one can prove Sperner’s Lemma and Equilibrium
Theorem [3]. In [2] Kulpa used this lemma as a tool to generalise Equilibrium
Theorem, therefore this theorem is a collolary of our theorem, too. Moreover,
algorithm that allows to find the point mentioned in Sandwich Theorem [1] and
Kuratowski—Steinhaus Theorem is obtained [4].

A subset T C [0, 1]+

T:={t= (tg, ...,tn): iti = 1}
=0

is said to be the standard n—dimensional simplex.
Let {po,...,Pn} be an affinely independent set of n + 1 points in R™. Their

convex hull:
n n
{re Rz = Zti - Pis th’ =1}
=0 i=0

is called (n-dimensional) n-simplex with vertices po, ..., pn and is denoted [py, ..., pr)-
The m-simplex spanned by any m-+1 vertices p;,,...,ps,. is called m-face of

[Po, vony P

By wert|py, ..., pn] we call the set {po, ...,pn}
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Let D: = [dy, ..., dn] be n-dimensional n-simplex.

A finite family T'(¢) of simplexes contained in D is called a e-triangulation of D
if:
(i) the intersection of any two simplexes in 7'(¢) is empty or a common face of each.
(ii) if o € T'(¢) then every face of o is in T'(e).
(ili) D = U{o:0 € T(e)}.
(iv) for each o € T'(€) diam|o] < e.

Every map ¢: D — {0,...,n} is said to be the map colouring D and the set
A C D we call k-coloured if qS(A {0, ...,k}.

Denote by Dj;:= [dy,...,d;=1,dis1, ... n] the i-th (n—1)-dimensional face of
simplex D:

D;:= {iL‘ € D:t; =0}.

LEMMA 1. For an arbitrary e-triangulation of D and a map ¢: D — {0, ...,n}
which for i = 0,...,n satisfies the condition:

#(D;) # i.

The number a(D) of all n-simplezes contained in D, for which the set of its vertices
is n-coloured, is odd.

PROOF. We proceed the proof with the induction on n.

In case n =0 it is clear that the lemma is true because ¢(D) = {0}.

Assuming that the lemma holds for an (n — 1)-dimensional (n — 1)-simplex
the condition ¢(D;) # ¢ implies that only (n — 1)-coloured face of n-simplex D is
D,,. Considering D,, to be (n— 1)-simplex, by our inductive hypothesis the number
a(Dy) of (n—1)-simplexes in T'(¢) lying on Dy, whose vertices are (n — 1)-coloured,
is odd.

Let a(o) denotes the number of (n—1)-faces of o € T'(¢), of which set of vertices
is (n — 1)-coloured.

If the set of vertices of ¢ is n-coloured then a(s) = 1.

If the set of vertices of o is (n — 1)-coloured then a(s) = 2. Otherwise a(o) = 0.

Hence

(D) = Za(o), mod2

On the other hand, an (n — 1)-face which vertices are (n — 1)-coloured in Ta(o)
is counted exactly once or twice, according it is subset of D,, or not. We have

Ya(o) = a(Dy), mod2
hence
a(Dy) = a(D), mod2.
But a(D,,) is odd. Thus a(D) is odd, too. O

THEOREM 1. Let be given sets Ag,...,An C R™ such as D; C A; for each
1=0,...,n. Then there exists a point x € D such as

d(z,Ag) = ... =d(z, A,).
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PROOF. Let us define a map f: D — R™, f = (f1,..., fn): fi(z):= d(z, A;) —
d(z, Ai—1) for i = 1,...,n and the sets H := f71((~00,0]), H;":= f71([0, 00)).
Define a map ¢: D — {0, ...,n} by

é(z): = maz{j:z € ﬂ F'}
i=0

where Fy" = D and Ff = HF \ (., D; for each i = 1,...,n.
Let n-simplex

D':=[a(do — dn) + dn, ..y a(dn-1 — dp) + dn,dn] = [}, ..., dsy 1, db)]

where a > 1 is fixed, be an extension of D.

Denote:
BO: = [dé)a dn] \ [dOadn]?
i—1
Bj:= [dy, -, d},dn) \ [do, -y diy da] \ | Bj fori=1,..,n—1.
Jj=0

Define the extension of the map ¢ :

¢(z) for z € D,

(@) 0 for = € By,
)=

n—1 for £ € B,_1.

Let us prove that for every ¢ > 0 exists n-simplex o, C D such as the set of its
vertices is n-coloured.

Let us take ¢ > 0 and the e-triangulation of n-simplex D’ denoted by T”(¢)
hence that
(v) for all o € T'(€) if c N D'\ D # 0 then o N Int[D] = 0.

The map ¢’ has following properties: ¢'(D}) # i and ¢'(d;) = ¢ for each i =
0,...,n, hence the only (n — 1)-coloured (n — 1)-face is D/,.

From lemma 1 the number of (n — 1)-faces of o € T"(¢) which are included in
D;, hence that their vertices are (n — 1)-coloured is odd. Moreover ¢’ is defined
in the way that there exists exactly one (n — 1)-simplex that lies in D/, so that
its vertices are (n — 1)-coloured. Besides the point dj is one of its vertices. This
simplex is the (n — 1)-face of exactly one n-simplex which is denoted by oy.

Define induction procedure: ~
If ¢'(vertox) = {0,...,n — 1} then take “unused” (n — 1)-face of o} so that its
vertices are (n — 1)-coloured. For this face we have exactly one n-simplex different
from o which contains our face. Let us call it og41.

Otherwise we have ¢'(vertoy) = {0,...,n} end.

The procedure must stop because the number of simplexes is finite. The last
n-simplex we call o..

The map ¢’ was constructed in the way that ¢'(verts) = {0,...,n} and the
condition (v) implies o, C D.
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Observe that the condition z;_1,Z; € o¢, ¢(zi—1) =i — 1 and ¢(z;) = i implies
z,_1 € H , z; € H;" for i = 1,...,n. From Bolzano Theorem we have such

¢i € [ri—1,z;] that f(¢;) = 0 for i = 1,...,n. Without the loss of generality we

can take ¢ = X.. From diam[S] < € we obtain limp ooc} — ¢ and from the

continuity of f; we get fi(c) =0 for i = 1,...,n. Now it is clear that

d(.’l], Ao) =..= d(:L‘,An).

COROLLARY 1 (Sperner). Let {Ay,...,An} C R™ be closed covering of D. If
D; C A, for eachi=0,...,n, then Ao N...N A, # 0.

PROOF. From the theorem 1 there exists a point z € D that d(z, Ap) = ... =
d(z,Ay). Since {Ag,..., An} covers D, there exists index j such that x € Aj, it
implies d(z, Ag) = ... = d(z, As) = 0 but A; is closed for i =0,...,n hence we have

Aoﬂ...ﬂAn#ﬂ.
c

THEOREM 2 (Equilibrium Theorem). Let f: D — [0,00)"*1, f = (fo, ..., fn) be
o continuous map such that fi(D;) = {0} for i = 0,...,n. Then for each t € T,
there exists a point x € D such that

f(z) =l f(z) |- t.
PROOF. Let us define sets:
A= {z € D: fi(z) <| f(=) | - t:}.

Observe that the family {Ay, ..., An} covers simplex D, because if not, there exists
a€ D\ (A U..UA,) and we have fi(a) >| f(a) |- t; for each i =0,...,n, and

| f(a) |=)_ fila)> Y| f(a) | ti =| f(a) |

i=0 =0
contradiction.
The condition f;(D;) = {0} implies D; C A; for i = 0,...,n. From the theorem
1 there exists z € D such that d(z, Ag) = ... = d(z, An) but we know x € A; hence
d(z, Ag) = ... = d(z,A,) = 0. Moreover from continuity of f every set A; is a

closed subset of compact space D that is why = € (A9 N...N A,) and therefore:
n n
| f(a) |= " file) <D | fla) | t: =] f(a) |
=0 i=0

yields:
f(@) =] f(=) |- t.



On Equilibrium Theorem 63

The proofs of corollaries formulated below the reader will find in [2], [3] .
Let p(A) means the n-dimensional Lebesgue measure of the set A C R". For
any point x € D let us denote

Di(iL‘): = COTL’U{dQ, ceey di—la x, di+1, veny dn}
O

COROLLARY 2 (Sandwich Theorem). Let A C D be a measurable set. Then for
any point t € T there exists a point x € D such that for each i =0, ...,n

ulAN Di(z)] = ti - u(A).
For a given set A C R™ and a point z € R" let
A-z:={a—z:0 € A}

means a translation of the set A.
Assume 0 € IntD. Let for each i = 0,...,n M; be the cone consisting of the
union of all rays joining 0 to the points of D;.

COROLLARY 3 (Kuratowski-Steinhaus Theorem). Let A C R™ be a bounded
Lebesgue measurable set. Then for each t € T there exists £ € R™ such that for
eachi=0,..,n

ul(A - 2) N M) = u(A) - .
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