ON EQUILIBRIUM THEOREM

Przemysław Tkacz

Abstract

We prove that for given sets $A_{0}, \ldots, A_{n} \subset R^{n}$ such as $D_{i} \subset A_{i}$ for each $i=0, \ldots, n$ exists a point $x \in D$ such as $d\left(x, A_{0}\right)=\ldots=d\left(x, A_{n}\right)$. This proof gives an algorithm of finding the point x.

The aim of this paper is to present the combinatorial and topological method of finding a point satisfying the thesis of theorem formulated above. It will be shown that using this method one can prove Sperner's Lemma and Equilibrium Theorem [3]. In [2] Kulpa used this lemma as a tool to generalise Equilibrium Theorem, therefore this theorem is a collolary of our theorem, too. Moreover, algorithm that allows to find the point mentioned in Sandwich Theorem [1] and Kuratowski-Steinhaus Theorem is obtained [4].

A subset $T \subset[0,1]^{n+1}$:

$$
T:=\left\{t=\left(t_{0}, \ldots, t_{n}\right): \sum_{i=0}^{n} t_{i}=1\right\}
$$

is said to be the standard n-dimensional simplex.
Let $\left\{p_{0}, \ldots, p_{n}\right\}$ be an affinely independent set of $n+1$ points in R^{n}. Their convex hull:

$$
\left\{x \in R^{n}: x=\sum_{i=0}^{n} t_{i} \cdot p_{i}, \sum_{i=0}^{n} t_{i}=1\right\}
$$

is called (n-dimensional) n-simplex with vertices p_{0}, \ldots, p_{n} and is denoted $\left[p_{0}, \ldots, p_{n}\right]$.
The m-simplex spanned by any $m+1$ vertices $p_{i_{o}}, \ldots, p_{i_{m}}$ is called m-face of $\left[p_{0}, \ldots, p_{n}\right]$.

By $\operatorname{vert}\left[p_{0}, \ldots, p_{n}\right]$ we call the set $\left\{p_{0}, \ldots, p_{n}\right\}$.

Let $D:=\left[d_{0}, \ldots, d_{n}\right]$ be n-dimensional n-simplex.
A finite family $T(\epsilon)$ of simplexes contained in D is called a ϵ-triangulation of D if:
(i) the intersection of any two simplexes in $T(\epsilon)$ is empty or a common face of each.
(ii) if $\sigma \in T(\epsilon)$ then every face of σ is in $T(\epsilon)$.
(iii) $D=\bigcup\{\sigma: \sigma \in T(\epsilon)\}$.
(iv) for each $\sigma \in T(\epsilon) \operatorname{diam}[\sigma]<\epsilon$.

Every map $\phi: D \rightarrow\{0, \ldots, n\}$ is said to be the map colouring D and the set $A \subset D$ we call k-coloured if $\phi(A)=\{0, \ldots, k\}$.

Denote by $D_{i}:=\left[d_{0}, \ldots, d_{i-1}, d_{i+1}, \ldots, d_{n}\right]$ the i-th $(n-1)$-dimensional face of simplex D :

$$
D_{i}:=\left\{x \in D: t_{i}=0\right\} .
$$

Lemma 1. For an arbitrary ϵ-triangulation of D and a map $\phi: D \rightarrow\{0, \ldots, n\}$ which for $i=0, \ldots, n$ satisfies the condition:

$$
\phi\left(D_{i}\right) \neq i .
$$

The number $\alpha(D)$ of all n-simplexes contained in D, for which the set of its vertices is n-coloured, is odd.

Proof. We proceed the proof with the induction on n.
In case $n=0$ it is clear that the lemma is true because $\phi(D)=\{0\}$.
Assuming that the lemma holds for an ($n-1$)-dimensional ($n-1$)-simplex the condition $\phi\left(D_{i}\right) \neq i$ implies that only $(n-1)$-coloured face of n-simplex D is D_{n}. Considering D_{n} to be ($n-1$)-simplex, by our inductive hypothesis the number $\alpha\left(D_{n}\right)$ of $(n-1)$-simplexes in $T(\epsilon)$ lying on D_{n}, whose vertices are ($n-1$)-coloured, is odd.

Let $\alpha(\sigma)$ denotes the number of $(n-1)$-faces of $\sigma \in T(\epsilon)$, of which set of vertices is $(n-1)$-coloured.

If the set of vertices of σ is n-coloured then $\alpha(\sigma)=1$.
If the set of vertices of σ is $(n-1)$-coloured then $\alpha(\sigma)=2$. Otherwise $\alpha(\sigma)=0$.
Hence

$$
\alpha(D)=\Sigma \alpha(\sigma), \bmod 2
$$

On the other hand, an $(n-1)$-face which vertices are $(n-1)$-coloured in $\Sigma \alpha(\sigma)$ is counted exactly once or twice, according it is subset of D_{n} or not. We have

$$
\Sigma \alpha(\sigma)=\alpha\left(D_{n}\right), \bmod 2
$$

hence

$$
\alpha\left(D_{n}\right)=\alpha(D), \bmod 2
$$

But $\alpha\left(D_{n}\right)$ is odd. Thus $\alpha(D)$ is odd, too.
THEOREM 1. Let be given sets $A_{0}, \ldots, A_{n} \subset R^{n}$ such as $D_{i} \subset A_{i}$ for each $i=0, \ldots, n$. Then there exists a point $x \in D$ such as

$$
d\left(x, A_{0}\right)=\ldots=d\left(x, A_{n}\right)
$$

Proof. Let us define a map $f: D \rightarrow R^{n}, f=\left(f_{1}, \ldots, f_{n}\right): f_{i}(x):=d\left(x, A_{i}\right)-$ $d\left(x, A_{i-1}\right)$ for $i=1, \ldots, n$ and the sets $H_{i}^{-}:=f_{i}^{-1}((-\infty, 0]), H_{i}^{+}:=f_{i}^{-1}([0, \infty))$. Define a map $\phi: D \rightarrow\{0, \ldots, n\}$ by

$$
\phi(x):=\max \left\{j: x \in \bigcap_{i=0}^{j} F_{i}^{+}\right\}
$$

where $F_{0}^{+}=D$ and $F_{i}^{+}=H_{i}^{+} \backslash \bigcap_{l=i}^{n} D_{l}$ for each $i=1, \ldots, n$.
Let n-simplex

$$
D^{\prime}:=\left[a\left(d_{0}-d_{n}\right)+d_{n}, \ldots, a\left(d_{n-1}-d_{n}\right)+d_{n}, d_{n}\right]=\left[d_{0}^{\prime}, \ldots, d_{n-1}^{\prime}, d_{n}^{\prime}\right]
$$

where $a>1$ is fixed, be an extension of D.
Denote:

$$
\begin{gathered}
B_{0}:=\left[d_{0}^{\prime}, d_{n}\right] \backslash\left[d_{0}, d_{n}\right], \\
B_{i}:=\left[d_{0}^{\prime}, \ldots, d_{i}^{\prime}, d_{n}\right] \backslash\left[d_{0}, \ldots, d_{i}, d_{n}\right] \backslash \bigcup_{j=0}^{i-1} B_{j} \text { for } i=1, \ldots, n-1 .
\end{gathered}
$$

Define the extension of the map ϕ :

$$
\phi^{\prime}(x):=\left\{\begin{array}{lll}
\phi(x) & \text { for } & x \in D \\
0 & \text { for } & x \in B_{0} \\
\vdots & & \\
n-1 & \text { for } & x \in B_{n-1}
\end{array}\right.
$$

Let us prove that for every $\epsilon>0$ exists n-simplex $\sigma_{\epsilon} \subset D$ such as the set of its vertices is n-coloured.

Let us take $\epsilon>0$ and the ϵ-triangulation of n-simplex D^{\prime} denoted by $T^{\prime}(\epsilon)$ hence that
(v) for all $\sigma \in T^{\prime}(\epsilon)$ if $\sigma \cap D^{\prime} \backslash D \neq \emptyset$ then $\sigma \cap \operatorname{Int}[D]=\emptyset$.

The map ϕ^{\prime} has following properties: $\phi^{\prime}\left(D_{i}^{\prime}\right) \neq i$ and $\phi^{\prime}\left(d_{i}\right)=i$ for each $i=$ $0, \ldots, n$, hence the only ($n-1$)-coloured ($n-1$)-face is D_{n}^{\prime}.

From lemma 1 the number of $(n-1)$-faces of $\sigma \in T^{\prime}(\epsilon)$ which are included in D_{n}^{\prime} hence that their vertices are $(n-1)$-coloured is odd. Moreover ϕ^{\prime} is defined in the way that there exists exactly one ($n-1$)-simplex that lies in D_{n}^{\prime} so that its vertices are $(n-1)$-coloured. Besides the point d_{0}^{\prime} is one of its vertices. This simplex is the $(n-1)$-face of exactly one n-simplex which is denoted by σ_{0}.

Define induction procedure:
If $\phi^{\prime}\left(v e r t \sigma_{k}\right)=\{0, \ldots, n-1\}$ then take "unused" $(n-1)$-face of σ_{k} so that its vertices are $(n-1)$-coloured. For this face we have exactly one n-simplex different from σ_{k} which contains our face. Let us call it σ_{k+1}.

Otherwise we have $\phi^{\prime}\left(\right.$ vert $\left._{k}\right)=\{0, \ldots, n\}$ end.
The procedure must stop because the number of simplexes is finite. The last n-simplex we call σ_{ϵ}.

The map ϕ^{\prime} was constructed in the way that $\phi^{\prime}\left(\right.$ vert $\left._{\epsilon}\right)=\{0, \ldots, n\}$ and the condition (v) implies $\sigma_{\epsilon} \subset D$.

Observe that the condition $x_{i-1}, x_{i} \in \sigma_{\epsilon}, \phi\left(x_{i-1}\right)=i-1$ and $\phi\left(x_{i}\right)=i$ implies $x_{i-1} \in H_{i}^{-}, x_{i} \in H_{i}^{+}$for $i=1, \ldots, n$. From Bolzano Theorem we have such $c_{i} \in\left[x_{i-1}, x_{i}\right]$ that $f\left(c_{i}\right)=0$ for $i=1, \ldots, n$. Without the loss of generality we can take $\epsilon=\frac{1}{n^{\prime}}$. From $\operatorname{diam}\left[S_{\epsilon}\right]<\epsilon$ we obtain $\lim _{n^{\prime} \rightarrow \infty} c_{i}^{n^{\prime}} \rightarrow c$ and from the continuity of f_{i} we get $f_{i}(c)=0$ for $i=1, \ldots, n$. Now it is clear that

$$
d\left(x, A_{0}\right)=\ldots=d\left(x, A_{n}\right)
$$

Corollary 1 (Sperner). Let $\left\{A_{0}, \ldots, A_{n}\right\} \subset R^{n}$ be closed covering of D. If $D_{i} \subset A_{i}$ for each $i=0, \ldots, n$, then $A_{0} \cap \ldots \cap A_{n} \neq \emptyset$.

Proof. From the theorem 1 there exists a point $x \in D$ that $d\left(x, A_{0}\right)=\ldots=$ $d\left(x, A_{n}\right)$. Since $\left\{A_{0}, \ldots, A_{n}\right\}$ covers D, there exists index j such that $x \in A_{j}$, it implies $d\left(x, A_{0}\right)=\ldots=d\left(x, A_{n}\right)=0$ but A_{i} is closed for $i=0, \ldots, n$ hence we have

$$
A_{0} \cap \ldots \cap A_{n} \neq \emptyset .
$$

TheOrem 2 (Equilibrium Theorem). Let $f: D \rightarrow[0, \infty)^{n+1}, f=\left(f_{0}, \ldots, f_{n}\right)$ be a continuous map such that $f_{i}\left(D_{i}\right)=\{0\}$ for $i=0, \ldots, n$. Then for each $t \in T$, there exists a point $x \in D$ such that

$$
f(x)=|f(x)| \cdot t .
$$

Proof. Let us define sets:

$$
A_{i}:=\left\{x \in D: f_{i}(x) \leq|f(x)| \cdot t_{i}\right\}
$$

Observe that the family $\left\{A_{0}, \ldots, A_{n}\right\}$ covers simplex D, because if not, there exists $a \in D \backslash\left(A_{0} \cup \ldots \cup A_{n}\right)$ and we have $f_{i}(a)>|f(a)| \cdot t_{i}$ for each $i=0, \ldots, n$, and

$$
|f(a)|=\sum_{i=0}^{n} f_{i}(a)>\sum_{i=0}^{n}|f(a)| \cdot t_{i}=|f(a)|
$$

contradiction.
The condition $f_{i}\left(D_{i}\right)=\{0\}$ implies $D_{i} \subset A_{i}$ for $i=0, \ldots, n$. From the theorem 1 there exists $x \in D$ such that $d\left(x, A_{0}\right)=\ldots=d\left(x, A_{n}\right)$ but we know $x \in A_{j}$ hence $d\left(x, A_{0}\right)=\ldots=d\left(x, A_{n}\right)=0$. Moreover from continuity of f every set A_{i} is a closed subset of compact space D that is why $x \in\left(A_{0} \cap \ldots \cap A_{n}\right)$ and therefore:

$$
|f(a)|=\sum_{i=0}^{n} f_{i}(a) \leq \sum_{i=0}^{n}|f(a)| \cdot t_{i}=|f(a)|
$$

yields:

$$
f(x)=|f(x)| \cdot t .
$$

The proofs of corollaries formulated below the reader will find in [2], [3] .
Let $\mu(A)$ means the n-dimensional Lebesgue measure of the set $A \subset R^{n}$. For any point $x \in D$ let us denote

$$
D_{i}(x):=\operatorname{conv}\left\{d_{0}, \ldots, d_{i-1}, x, d_{i+1}, \ldots, d_{n}\right\} .
$$

Corollary 2 (Sandwich Theorem). Let $A \subset D$ be a measurable set. Then for any point $t \in T$ there exists a point $x \in D$ such that for each $i=0, \ldots, n$

$$
\mu\left[A \cap D_{i}(x)\right]=t_{i} \cdot \mu(A)
$$

For a given set $A \subset R^{n}$ and a point $x \in R^{n}$ let

$$
A-x:=\{a-x: a \in A\}
$$

means a translation of the set A.
Assume $0 \in \operatorname{Int} D$. Let for each $i=0, \ldots, n M_{i}$ be the cone consisting of the union of all rays joining 0 to the points of D_{i}.

Corollary 3 (Kuratowski-Steinhaus Theorem). Let $A \subset R^{n}$ be a bounded Lebesgue measurable set. Then for each $t \in T$ there exists $x \in R^{n}$ such that for each $i=0, \ldots, n$

$$
\mu\left[(A-x) \cap M_{i}\right]=\mu(A) \cdot t_{i} .
$$

References

[1] Borsuk K., An application of the theorem on antipodes to the measure theory, Bull. Acad. Polon. Sci., 1 (1953), 87-90.
[2] Kulpa W., Convexity and The Brouwer Fixed Point Theorem, Topology Proc., 22 (1997), 211-235.
[3] Kulpa W. Sandwich Type Theorems, Acta Univ. Carol. Math. Phys. 35 (2), 45-50.
[4] Kuratowski K. and Steinhaus H., Une application géométrique du théoréme de Brouwer sur les points invariants, Bull. Acad. Polon. Sci., 1 (1953), 83-86.
[5] Sperner E., Neuer Beweis für die Invarianz der Dimensionzahl und des Gebieties, Abh. Math. Sem. Ham. Univ., 6 (1928), 265-272.

College of Science
Cardinal Stefan Wyszyński
University in Warsaw
ul. Dewajtis 5
01-815 Warszawa
e-mail: pernt@op.pl

