ON EQUILIBRIUM THEOREM

PRZEMYSŁAW TKACZ

Abstract. We prove that for given sets $A_0, ..., A_n \subset \mathbb{R}^n$ such as $D_i \subset A_i$ for each i = 0, ..., n exists a point $x \in D$ such as $d(x, A_0) = ... = d(x, A_n)$. This proof gives an algorithm of finding the point x.

The aim of this paper is to present the combinatorial and topological method of finding a point satisfying the thesis of theorem formulated above. It will be shown that using this method one can prove Sperner's Lemma and Equilibrium Theorem [3]. In [2] Kulpa used this lemma as a tool to generalise Equilibrium Theorem, therefore this theorem is a collolary of our theorem, too. Moreover, algorithm that allows to find the point mentioned in Sandwich Theorem [1] and Kuratowski-Steinhaus Theorem is obtained [4].

A subset $T \subset [0,1]^{n+1}$:

$$T := \{t = (t_0, ..., t_n) : \sum_{i=0}^n t_i = 1\}$$

is said to be the standard n-dimensional simplex.

Let $\{p_0, ..., p_n\}$ be an affinely independent set of n + 1 points in \mathbb{R}^n . Their convex hull:

$$\{x \in R^n : x = \sum_{i=0}^n t_i \cdot p_i, \sum_{i=0}^n t_i = 1\}$$

is called (*n*-dimensional) *n*-simplex with vertices $p_0, ..., p_n$ and is denoted $[p_0, ..., p_n]$.

The *m*-simplex spanned by any m+1 vertices $p_{i_o}, ..., p_{i_m}$ is called *m*-face of $[p_0, ..., p_n]$.

By $vert[p_0, ..., p_n]$ we call the set $\{p_0, ..., p_n\}$.

Received: March 21, 2005. Revised: June 13, 2005.

Key words and phrases: Sperner's Lemma, Equilibrium Theorem, Sandwich Theorem.

⁽¹⁹⁹¹⁾ Mathematics Subject Classification: 54H25.

Let $D := [d_0, ..., d_n]$ be *n*-dimensional *n*-simplex.

A finite family $T(\epsilon)$ of simplexes contained in D is called a ϵ -triangulation of D if:

(i) the intersection of any two simplexes in $T(\epsilon)$ is empty or a common face of each. (ii) if $\sigma \in T(\epsilon)$ then every face of σ is in $T(\epsilon)$.

(iii) $D = \bigcup \{ \sigma : \sigma \in T(\epsilon) \}.$

(iv) for each $\sigma \in T(\epsilon)$ diam $[\sigma] < \epsilon$.

Every map $\phi: D \to \{0, ..., n\}$ is said to be the map colouring D and the set $A \subset D$ we call k-coloured if $\phi(A) = \{0, ..., k\}$.

Denote by $D_i := [d_0, ..., d_{i-1}, d_{i+1}, ..., d_n]$ the *i*-th (n-1)-dimensional face of simplex D:

$$D_i := \{ x \in D : t_i = 0 \}.$$

LEMMA 1. For an arbitrary ϵ -triangulation of D and a map $\phi: D \to \{0, ..., n\}$ which for i = 0, ..., n satisfies the condition:

$$\phi(D_i) \neq i$$
.

The number $\alpha(D)$ of all n-simplexes contained in D, for which the set of its vertices is n-coloured, is odd.

PROOF. We proceed the proof with the induction on n.

In case n = 0 it is clear that the lemma is true because $\phi(D) = \{0\}$.

Assuming that the lemma holds for an (n-1)-dimensional (n-1)-simplex the condition $\phi(D_i) \neq i$ implies that only (n-1)-coloured face of *n*-simplex *D* is D_n . Considering D_n to be (n-1)-simplex, by our inductive hypothesis the number $\alpha(D_n)$ of (n-1)-simplexes in $T(\epsilon)$ lying on D_n , whose vertices are (n-1)-coloured, is odd.

Let $\alpha(\sigma)$ denotes the number of (n-1)-faces of $\sigma \in T(\epsilon)$, of which set of vertices is (n-1)-coloured.

If the set of vertices of σ is *n*-coloured then $\alpha(\sigma) = 1$.

If the set of vertices of σ is (n-1)-coloured then $\alpha(\sigma) = 2$. Otherwise $\alpha(\sigma) = 0$. Hence

$$\alpha(D) = \Sigma \alpha(\sigma), mod2$$

On the other hand, an (n-1)-face which vertices are (n-1)-coloured in $\Sigma \alpha(\sigma)$ is counted exactly once or twice, according it is subset of D_n or not. We have

$$\Sigma \alpha(\sigma) = \alpha(D_n), mod2$$

hence

 $\alpha(D_n) = \alpha(D), mod2.$

But $\alpha(D_n)$ is odd. Thus $\alpha(D)$ is odd, too.

THEOREM 1. Let be given sets $A_0, ..., A_n \subset \mathbb{R}^n$ such as $D_i \subset A_i$ for each i = 0, ..., n. Then there exists a point $x \in D$ such as

$$d(x, A_0) = \dots = d(x, A_n).$$

PROOF. Let us define a map $f: D \to R^n$, $f = (f_1, ..., f_n)$: $f_i(x) := d(x, A_i) - d(x, A_{i-1})$ for i = 1, ..., n and the sets $H_i^- := f_i^{-1}((-\infty, 0]), H_i^+ := f_i^{-1}([0, \infty))$. Define a map $\phi: D \to \{0, ..., n\}$ by

$$\phi(x) := max\{j : x \in \bigcap_{i=0}^{j} F_{i}^{+}\}$$

where $F_0^+ = D$ and $F_i^+ = H_i^+ \setminus \bigcap_{l=i}^n D_l$ for each i = 1, ..., n. Let *n*-simplex

$$D' := [a(d_0 - d_n) + d_n, ..., a(d_{n-1} - d_n) + d_n, d_n] = [d'_0, ..., d'_{n-1}, d'_n]$$

where a > 1 is fixed, be an extension of D.

Denote:

$$B_0 := [d'_0, d_n] \setminus [d_0, d_n],$$

 $B_i := [d'_0, ..., d'_i, d_n] \setminus [d_0, ..., d_i, d_n] \setminus \bigcup_{j=0}^{i-1} B_j ext{ for } i = 1, ..., n-1.$

Define the extension of the map ϕ :

$$\phi'(x) := egin{cases} \phi(x) & ext{for} \quad x \in D, \ 0 & ext{for} \quad x \in B_0, \ dots & dots \ n-1 & ext{for} \quad x \in B_{n-1}. \end{cases}$$

Let us prove that for every $\epsilon > 0$ exists *n*-simplex $\sigma_{\epsilon} \subset D$ such as the set of its vertices is *n*-coloured.

Let us take $\epsilon > 0$ and the ϵ -triangulation of *n*-simplex D' denoted by $T'(\epsilon)$ hence that

(v) for all $\sigma \in T'(\epsilon)$ if $\sigma \cap D' \setminus D \neq \emptyset$ then $\sigma \cap Int[D] = \emptyset$.

The map ϕ' has following properties: $\phi'(D'_i) \neq i$ and $\phi'(d_i) = i$ for each i = 0, ..., n, hence the only (n-1)-coloured (n-1)-face is D'_n .

From lemma 1 the number of (n-1)-faces of $\sigma \in T'(\epsilon)$ which are included in D'_n hence that their vertices are (n-1)-coloured is odd. Moreover ϕ' is defined in the way that there exists exactly one (n-1)-simplex that lies in D'_n so that its vertices are (n-1)-coloured. Besides the point d'_0 is one of its vertices. This simplex is the (n-1)-face of exactly one *n*-simplex which is denoted by σ_0 .

Define induction procedure:

If $\phi'(vert\sigma_k) = \{0, ..., n-1\}$ then take "unused" (n-1)-face of σ_k so that its vertices are (n-1)-coloured. For this face we have exactly one *n*-simplex different from σ_k which contains our face. Let us call it σ_{k+1} .

Otherwise we have $\phi'(vert\sigma_k) = \{0, ..., n\}$ end.

The procedure must stop because the number of simplexes is finite. The last *n*-simplex we call σ_{ϵ} .

The map ϕ' was constructed in the way that $\phi'(vert\sigma_{\epsilon}) = \{0, ..., n\}$ and the condition (v) implies $\sigma_{\epsilon} \subset D$.

Observe that the condition $x_{i-1}, x_i \in \sigma_{\epsilon}$, $\phi(x_{i-1}) = i - 1$ and $\phi(x_i) = i$ implies $x_{i-1} \in H_i^-$, $x_i \in H_i^+$ for i = 1, ..., n. From Bolzano Theorem we have such $c_i \in [x_{i-1}, x_i]$ that $f(c_i) = 0$ for i = 1, ..., n. Without the loss of generality we can take $\epsilon = \frac{1}{n'}$. From $diam[S_{\epsilon}] < \epsilon$ we obtain $lim_{n' \to \infty} c_i^{n'} \to c$ and from the continuity of f_i we get $f_i(c) = 0$ for i = 1, ..., n. Now it is clear that

$$d(x, A_0) = \dots = d(x, A_n).$$

COROLLARY 1 (Sperner). Let $\{A_0, ..., A_n\} \subset \mathbb{R}^n$ be closed covering of D. If $D_i \subset A_i$ for each i = 0, ..., n, then $A_0 \cap ... \cap A_n \neq \emptyset$.

PROOF. From the theorem 1 there exists a point $x \in D$ that $d(x, A_0) = ... = d(x, A_n)$. Since $\{A_0, ..., A_n\}$ covers D, there exists index j such that $x \in A_j$, it implies $d(x, A_0) = ... = d(x, A_n) = 0$ but A_i is closed for i = 0, ..., n hence we have

$$A_0 \cap ... \cap A_n \neq \emptyset.$$

_	_
- 1	
- 1	r.

THEOREM 2 (Equilibrium Theorem). Let $f: D \to [0, \infty)^{n+1}$, $f = (f_0, ..., f_n)$ be a continuous map such that $f_i(D_i) = \{0\}$ for i = 0, ..., n. Then for each $t \in T$, there exists a point $x \in D$ such that

$$f(x) = |f(x)| \cdot t.$$

PROOF. Let us define sets:

$$A_i := \{ x \in D : f_i(x) \leq |f(x)| \cdot t_i \}.$$

Observe that the family $\{A_0, ..., A_n\}$ covers simplex D, because if not, there exists $a \in D \setminus (A_0 \cup ... \cup A_n)$ and we have $f_i(a) > |f(a)| \cdot t_i$ for each i = 0, ..., n, and

$$|f(a)| = \sum_{i=0}^{n} f_i(a) > \sum_{i=0}^{n} |f(a)| \cdot t_i = |f(a)|$$

contradiction.

The condition $f_i(D_i) = \{0\}$ implies $D_i \subset A_i$ for i = 0, ..., n. From the theorem 1 there exists $x \in D$ such that $d(x, A_0) = ... = d(x, A_n)$ but we know $x \in A_j$ hence $d(x, A_0) = ... = d(x, A_n) = 0$. Moreover from continuity of f every set A_i is a closed subset of compact space D that is why $x \in (A_0 \cap ... \cap A_n)$ and therefore:

$$|f(a)| = \sum_{i=0}^{n} f_i(a) \le \sum_{i=0}^{n} |f(a)| \cdot t_i = |f(a)|$$

yields:

$$f(x) = \mid f(x) \mid \cdot t.$$

The proofs of corollaries formulated below the reader will find in [2], [3].

Let $\mu(A)$ means the *n*-dimensional Lebesgue measure of the set $A \subset \mathbb{R}^n$. For any point $x \in D$ let us denote

$$D_i(x) := conv\{d_0, ..., d_{i-1}, x, d_{i+1}, ..., d_n\}.$$

COROLLARY 2 (Sandwich Theorem). Let $A \subset D$ be a measurable set. Then for any point $t \in T$ there exists a point $x \in D$ such that for each i = 0, ..., n

$$\mu[A \cap D_i(x)] = t_i \cdot \mu(A).$$

For a given set $A \subset \mathbb{R}^n$ and a point $x \in \mathbb{R}^n$ let

$$A - x := \{a - x : a \in A\}$$

means a translation of the set A.

Assume $0 \in IntD$. Let for each i = 0, ..., n M_i be the cone consisting of the union of all rays joining 0 to the points of D_i .

COROLLARY 3 (Kuratowski-Steinhaus Theorem). Let $A \subset \mathbb{R}^n$ be a bounded Lebesgue measurable set. Then for each $t \in T$ there exists $x \in \mathbb{R}^n$ such that for each i = 0, ..., n

$$\mu[(A-x)\cap M_i]=\mu(A)\cdot t_i.$$

References

- Borsuk K., An application of the theorem on antipodes to the measure theory, Bull. Acad. Polon. Sci., 1 (1953), 87-90.
- [2] Kulpa W., Convexity and The Brouwer Fixed Point Theorem, Topology Proc., 22 (1997), 211-235.
- [3] Kulpa W. Sandwich Type Theorems, Acta Univ. Carol. Math. Phys. 35 (2), 45-50.
- [4] Kuratowski K. and Steinhaus H., Une application géométrique du théoréme de Brouwer sur les points invariants, Bull. Acad. Polon. Sci., 1 (1953), 83-86.
- [5] Sperner E., Neuer Beweis f
 ür die Invarianz der Dimensionzahl und des Gebieties, Abh. Math. Sem. Ham. Univ., 6 (1928), 265-272.

COLLEGE OF SCIENCE CARDINAL STEFAN WYSZYŃSKI UNIVERSITY IN WARSAW UL. DEWAJTIS 5 01-815 WARSZAWA e-mail: pemt@op.pl