EXISTENCE OF POSITIVE SOLUTIONS
OF SOME INTEGRAL EQUATIONS

JAN LIGEZA

Abstract. We study the existence. of positive solutions of the integral equation
1
() = / k(t, 5)f(s,2(s), &' (s), ...,z D(s))ds, n>2
]

in both C™~1[0, 1] and W™—1:P|0, 1] spaces, where p > 1. The Krasnosielskii fixed
peint theorem on cone is used.

1. Introduction

In analyzing nonlinear phenomena many mathematical models give rise to prob-
lems for which only nonnegative solutions make sense. This paper deals with exis-
tence of positive solutions of the integral equations of the form

1
L) () = / k(t,8)f(s,2(s), &'(S), ..., 2™V (s))ds, n>2.
[¢]

Throughout this article k is nonnegative. The literature on positive solutions
is for the most part devoted to (1.1) when f is not dependent on derivatives of
the function z (see [1]-[5]). Existence in this paper will be established using Kras-
nosielskii’s fixed point theorem in a cone, which we state here for the convenience
of the reader.

THEOREM 1.1. (K. Deimling [4], D. Guo [5]). Let E = (E,| -||) be a Banach
space and let K C E be a cone in E. Assume Q; and Qy are bounded open subsets
of E with0 € Q and @, C Qy and let A: KN (Q2\ 1) — K be continuous and
completely continuous. In addition suppose either
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|Aul| < |lull for v e K Noy and  ||Au| > ||u]| foru e KNoQ,

or

|Aul] > ||u|| foruw e K NOh and |Aulj < ||ull for v e K NoQ,
hold. Then A has a fized point in K N (Qa \ ).

2. Main results
In this section we present some results for the integral equation (1.1).

THEOREM 2.1. Suppose the following conditions are satisfied:

(2.1) k:[0,1] x [0,1] — [0, 00), %lt’ﬁ (1=0,1,...,n—2) exist and are continuous
on [0,1] x [0,1],

‘ (2.2) there exists g%:,,ﬂ_%iz for allt €1[0,1] and a.e. s €(0,1],
(2.3) there exist k* € C[0,1], k; € L*[0,1) and M > 0 such that

(a) k*(t) >0 for a.e. t € [0,1],
(b) k ()>Oandf0 (s)ds >0 fori=0,1,...,n—1 and a.e. s € [0,1],

(c) Mk*(t)k; |6t, ts)|<k(s) fori=20,1,...,n-1;t € [0,1] and
a.e. S€ [0 1]
(2.4) the map
t— %_ (, 5)

is continuous from [0,1] to L[0,1],

(2.5) there ezists a function d € C[0,1] with d(t) > 0 for a.e. t € [0,1] such that

|

an—l

ok

k(t,s) — H (t,s )\+ .+ atnl(ts)

> d(t) [k(t, s) + ‘E(w)\ +

for all t € [0,1] and a.e. s € [0,1],

(2.6) £:[0,1] x [0,00) X (—00,00)*"} — [0,00) is continuous and there exists a
function P(u) such that

flt,vo,v1,. .., vn—1) < Y(vo + |v1} + ...+ |vn-1l)

on [0,1] x [0,00) X (—00,00)™ !, where : [0,00) — [0,00) is continuous,
nondecreasing and Y(u) > 0 for u > 0,
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(2.7) there exists r > 0 with

n—1 1 i
r &k(t, 5)
_— su / _—
¥(r) ; te[OI,:’l] ) ot

(2.8) f(t,vo,v1,...,9n-1) > g(vo) for

ds,

(t,v0,v1,...,Un—1) € [0,1] x [0,00) X (—00,00)""!

with g:[0,00) — [0,00) continuous and nondecreasing and g(u) > 0 for
u >0,

(2.9) there exist R > 0 and to € [0,1] such that R > r, k*(to) > 0, d(to) > 0 and

n—1

a—k(to, S)

+o | p

1
ok
R< /(k(to,s)+’5t—(to,s)
0

) d(to)g(RMd(s)k* (s)) ds.

Then (1.1) has a positive solution x € 0[1(1)311 with z(t) > 0 for a.e. t € [0,1].
PROOF. Let

-1 = selon] [u@®| + W@+ ... + D)), E=(C"0,1,] - fnz1)

'

and

K ={ueC™0,1]: u(t)—d)][uw(®)] +..+ u®D&)|] > M)k @) ulln_s
for ¢ € [0,1]}.

Clearly K is a cone of E. Let
U ={ueC"'0,1]: |lufs_1 <7}, Q2={ueC™'[0,1]: [ufn_1 < R}

and f*(s,u(s)) = f(s,u(s),u(s),...,u™(s)). Now, let A:K N (Q\ Q) —
C™1[0,1] be defined by

1
(210) Az(t) = / k(t, 5)f*(s, 2(s)) ds.
0
First we show A: KN (Q2\ Q) — K. Ifz € KN(Q,\ Q) and t € [0,1], then
relations (2.1), (2.5) imply
Az(t) — d(8)[|(Az)' @) + ... + |(Az) ™ D(1)|]
1
Ok(t,s) .,
/———ét—f (s,z(s))ds

0

1
- / k(t, $)* (s, 2(s)) ds — d(z) [
0
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+...+ 6;‘ 11 k(t,s)f*(s,z(s)) ds
Ok o1
> d(t)/ [k(t,s) + ‘Et_(t’s) +...+ pre g bt 8) ]]f*(s,x(s)) ds
0

and this together with (2.3) yields

[ AZ[ln-1 > Az(t) — d(®)[|(Az) @) + ... + |(An) V()] ]
d(t)(i:Mk* / ()£ (s, 2(s) )ds)

On the other hand (2.3) implies

(2.11)

!
-

n

1
(2.12) | Awllnn < ; A(8)F* (s, z(s)) ds.
[

i
o

Taking into account (2.11)—(2.12) we conclude that
Az(t) — d(t)[ |(Az) ()] + ... + [(Az)* D @) | ] > Md(@)k* (8)[| A[ln—1 -
Consequently Az € K so A: K N (Q2\ Q1) — K. We now show
(2.13) |Azlln-1 < ||zllne1 forz € KNOQ,.

To see this let © € KN 0Q;. Then ||z|n—1 = r and z(t) > Md(t)k*(t)r for
t € [0,1]. Also for t € [0,1] we have

1 1

n-1 i
Az)D(t < ok )ds
3 (40 )| 00/\ I (s 20

i=0

This together with (2.6)—(2.7) yields

Azlln-s < ¥(llalln-n) (Z sup / | S (6:9)

so (2.13) holds. Next we show

ds) <r=|z)n-1,

(2.14) IAzlner > |2llnoy  for z € KN8Qs.

To see it let z € K N OQy. Then we get ||z||,—1 = R and z(t) > RMd(t)k*(t)
for t € [0,1]. Now with to as in (2.9) we have
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| Azln—1 > Ax(to) — d(to) [ |(Az)'(to)| + - - - + | (A=) "D (t0)] ]

1
n—1
> d(to)/ [k(to,s)+‘%(to,s) +...+ %k(to,s) ]f*(s,x(s))ds
0
1
-1
> d(to)/ [k(to,s) + |gt—k(t0,s) +...4+ %—_—Tk(to,s) }g(z(s))ds.

0
This together with (2.8)—(2.9) yields

1

IAzla-s > dto) [ (RMd(s)k*(9) [k(to,s) ; ]%(to,s)
0

an—l

Wk(to, s)
Hence we obtain (2.14). By (2.3)-(2.4) and the Arzela—Ascoli theorem we conclude
that A:K N (s \ ;) — K is continuous and compact. Theorem 1.1 implies A
has a fixed point z € K N (Q2 \ Q), i.e. 7 < ||zfln—1 < R and z(t) > Md(t)k*(t)r
for ¢t € [0,1]. This completes the proof of Theorem 2.1. a

+...+

] ds > R = ||z||n-1-

REMARK 2.2. To illustrate the applicability of Theorem 2.1 we consider the
following boundary value problems:

(2.15) { ;’(’ é;) =+ Z( (lt) i(tg 2'(t)) =0
(2.16) { 2’(’(’)(;):2 (f 1(; Z(;?( f)/ (i),0 :f"(t))

(2.17) {ZZ)))(Z j(fz)()tzz(zlr)citlx(lgt): ag’"u))
(2.18) {2‘3)(2 ?(f (()f; i(ﬁf(S(l)f(S)jo“”

Of course the problems (2.15)—(2.18) are equivalent to the problem of deter-
mining the fixed point of the operators T; of the form:

219) Ty = / Ca(t, 5)f(s,2(s), z'(s)) ds,
01

(2.20) To(z)(t) = /Gz(t,s)f(s,x(s),x'(s),:z”(s))ds,
0

1
(2.21) Ty(x)(t) = / G(t, 5)f(s, 2(s), 2'(s), "(5), 2" (s)) ds,
V]
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1
(2.22) Tu(z)(t) = /G4(t, $)f(s,z(s),2'(s),z"(s),z"(s)) ds,
0

where the Green functions G; are defined as follows

t(l —s), 0<t<s<1
s(1—t), 0<s<t<1,

(2.23) Gi(t,s) = {

(t(1 —5)(2s — st —t) 0<t<s<1
(2.24) G2(t’s) =9 2(1 t 22
sA-8° 0ss<t<l,
(T 2
( (s —1)2t2(—2st —t + 3s) 0<t<s<l1
6 ’ -
2.25) Gslt,s) =
( ) 3(t, ) ﬁ32[(_23+3)t3+3t2(8—2)+3t—'3] 0<s<t<1
\ 6 ’ S
(s —1)[t3 + ts(s — 2)] 0<t<s<l1
6 ’ B
(2.26)  Gu(t,s) = 4
t3s — 3st® +#(s® + 25) — °
<sg<t<l1.
{ 6 o Osestsl

REMARK 2.3. There are many functions k(t, s) that satisfy condition (2.5). It
is not difficult to check that the function

[ nin t% g] if k(t, 5) = G (¢, s)
e

oo min :tg;’ _z) ,t2§1+31;)], if k(t, s) = Ga(t, s)

min (175_ H a ;;) t], if k(t, 5) = Ga(t, 5)

\ min -t(12_0t)2, t2(120_ t)], if k(t, 5) = Ga(t, s)

(with ¢t € [0,1]) fulfills condition (2.5). It is easy to see that the functions G,(t, s)
do not satisfy (2.3)(c) for j =1,2,3,4.

We will give later on a theorem on the existence of positive solutions of the
problems (2.16)~-(2.18).

EXAMPLE 2.4. Consider the problem
- 2(0) + (2(t) + /(2)))? = 0
’ z(0) = 2'(0), z(1) = —2'(1).

The problem (2.27) is-equivalent to the problem of determining the fixed point
of the operator Ts of the form
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1
n@m=/cwmuw+wan

where the Green function Gy is defined as follows

5(t, s) (2_3)3(1+t)’ 0<t<s<l
Fix to = 4, d(t) = 1, M = 1, k*(t) = 1, Ko(s) = k1(s) = £ and 9(u) = g(u) =
u? for t € [0,1} and u € [0, 00). Clearly
g(RMd(s)k* (s)) = R2M2d(s)k"2(s) = %632
and

d (%) /1 (Gs (%,s) + % (%,S)‘) g(RMd(s)k*‘(s))ds
0
() 3

for sufficiently large R. Next we claim (2.7) holds for 7 = 1. To see this notice that

]dsZR

9 T
=550

1
sup /Gstsds+ sup /’a—cits)
te(0,1] te(0,1] 4

So (2.7) holds. Thus all conditions of Theorem 2.1 are satisfied and the problem
(2.27) has a positive solution z € C2[0,1] with z(t) > 0 for t € (0,1).

It is possible to obtain another existence results for (1.1) if we change some
conditions on the nonlinearity f and some of the conditions on the kernel k.

In the sequel, we will assume that %:,,;_l{i(t, s) is continuous with respect to (t s)
on triangles 0 <t <s<land 0<s<t<1 By %%;—_1—;“-(3-{-0,3) (%—:—4‘-(3 ,8))
we will denote the right-hand (the left-hand) side derivative of order n — 1 of k at

(s, ).

THEOREM 2.5. Let conditions (2.1), (2.6)—(2.7) be satisfied. Moreover, we as-
sume that

(2.28) gt"T:lfk is continuous with respect to (t,s) on triangles 0 <t < s <1 and
0<s<t<l,

(2.29) there exist constants dp > 1, Mo >0 and m € (0, %) such that
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( ok o1k
dok(t, s) — (i——(t,s))—i—...-&— Sl = (&, s))
(a) < n—1
(s s)+‘at +...+ pre k(s —0,3)
L forte[m,1-m], s€[0,1] andt < s,
( Ok ok
dok(t,s) — (l—(t,s)l+.‘.+ prew v (2 3))
(b) > il
\ > k(s, s) at(s,s) oot |5 k(s +0,5)
L fortem,1—m|, s€[0,1] and s <,
( ok 1k
k(s,s)+<|5t-(s,s) ... 4 T 1(s ))
(<) > ok
\ > Mo ( k(t,s) + |5 (8,8)| + -+ | 5o k(E, 8)
. forte0,1], s€[0,1j andt < s,
( Ok n—1
k(s,s) + a(s,s) +...+ Frve —=—(5+0,5)
@ Ok o
> Mo | k(t,s) + 5% ts)+...+ o a7 k(t, 8)
L fort € 0,1], s €[0,1] and s < t,

(2.30) there exist T € C[m,1 —m] and g € C[0,00) such that 7 > 0 on [m,1 - m)],
g:[0,00) — [0,00), g is nondecreasing, g(n) > 0 for n > 0 and

flt,vo,v1,. .0, Une1) 2> T(t)g{ve)  fort € [m,1 —m)]
and (vg,v1, . ..,Un_1) € [0,00) X (—o0,00)""1,
(2.31) there exist numbers R> 0 and to € [m,1 —m] with R > r and

1-m

doR < / [dok(to,s)—(’g—lz(to,s)
D (Ré\jo)‘r(s)ds.

Then (1.1) has a positive solution x € C™1[0,1] such that minye(m,1—m) dox(t) >
Mo’r‘.

n—1

+...+ otn-1

k(to, S)
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PRrROOF. Let
K= {u € C™710,1] : wu(t) >0, te[miln | [dou(t) — (’u’(t)] +...+ Iu("_l)(t)D
> Mollufln- §.

Clearly K is a cone of E. Let Q, Q2, f*(s,2(s)), and A be defined as in the
proof of Theorem 2.1. First we show A: KN(Q2\Q;) — K. Let z € KN(Qz\Q),
s €[0,1] and t € {m,1 — m]. Then relations (2.1), (2.29) imply

doAx(t) — [|(Az)'(B)] + ... + |[(Az) "D (t)] ]

Oj ke )= (|2t 9] .+ [ )] st
> [ oo+ e+ .+g:;';<s+os>]f<sx(»ds

; j[k(s,s)+yat<s o+ 2 00| e ctona
On the other hand, by (229) we get for 5, € 0,1
j[k<s,s)+}m<s S R L R | PO

+j[k(s,s)+,at ) EES a3 5=0,9)] | *(s,a(6)) ds

o/t[kas +[ %)+ +Zfl<ts>] 7*(s,2(s)) ds
+ Mo /[k(t 9+ |G|+t | Gk )| | oot s

> Mo[ |Az(®)| + |(Az) ®)| + ... + |(Az) "D @)|].
Thus
min  [doAz(t) — (|(Az)'(t)| + ... + |(Az)*"V(t)|] > Mo|)Az|ln—s

t€[m,1-m]
and in consequence A(K) C K. We now show
(2.32) lAzlln—1 < ||Z|ln-1 forzre KNoQ,.

To see this let € KN 9Q . Then ||z||n—1 = r and doz(t) > Mor for t €
[m,1 —m]. Also for t € [0,1] we have



30 Jan Ligeza
S SN 6k(t )|
T inO@ <Y [ | 2(s)) ds
=0 =0

1 1.
8k
< su —(t,s)|ds Zl|pno1) 7 =l||2|n-1-
(Z e 0/‘W( ) )w(u lnes) < = llzllams
Thus (2.32) holds. Next we show
(2.33) Az|ln=1 = l|Z||ln-1 forz € KNoQ,.

To see it let z € K N 8Qy. Then we get ||z|l,~1 = R and doz(t) > MR for
t € [m,1 —m|. By (2.30)—(2.31) we have

dol| Az|ln-1
> doAx(to) — [|(Am)'(to)| .o+ |(Ax)("_1)(tg)|]
1-m
> / [dok(to,s)— (‘%Ig(to,s) +...+ g:nl’f(to,s) )] f*(s,z(s))ds
> 7m[dok(to,s) - (IZ]: (to, )| + ...+ gnlf(to,s) )] g (R;j()) T(s)ds

> doR = do“.’l)“n_l .

Thus (2.33) holds. The standard arguments show that the operator A is con-
tinuous and compact. Theorem 1.1 implies A has a fixed point z € K N (Q2 \ 1)
ie. 7 < ||z|ln—1 < R and doz(t) > Mor for t € [m,1—m]. This completes the proof
of Theorem 2.5. O

COROLLARY 2.6. Let assumptions (2.1), (2.6), (2.28)—(2.31) be satisfied. More-
over, let there exists v > O with E{r—) > a, where

n—1
a =
i—o ts€[0,1]

8k(t, s)
ot |

Then (1.1) has a positive solution z € C™~1(0,1] with min;e[m,1—m) doz(t) > Mor.
REMARK 2.7. It is not difficult to verify that the following constants

if k(t,s) = Gi(t, s)
12, if k(¢,s) = G1(t, 8)
144, if k(t,s) = Ga(t, s)

[N SR

if k(t, s) = Ga(t, s)
Mo =< and dg=

1 . 20000, if k(t,s) = Gs(t, s)

=, ifk(t,s) = Gs(t, ’

5> Th(ts) = Caltis) 1280, if k(t, s) = Ga(t, s)
L % if k(t, s) = Ga(t, s)

satisfy condition (2.29) with m = 1.
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REMARK 2.8. Let i € {1,2,3,4} and let functions G; be defined by relations
(2.15)-(2.18). It is not difficult to check that:

5
sup Gi(t,s)+ sup G, (t s)| = -,
t,s€[0,1] t,s€[0,1) 4
G O?G,(t 1
sup Ga(t,s)+ sup 6—3(t,s) + sup __2_(2,_3) = - (5v/5 — 6),
t,5€[0,1] t,scfo,1) | OF t,5€[0,1] ot 4
0G3 0%G3 3G,
sup Gs(t,s)+ su t,s){+ su —=(t,8)|+ su t, s
t,se[op,l] 3( ) t,se[op,l] ot ( ) t,se[g,ll ot? ( ) t,sE[(I)D,I] o3 ( )
_ 3913448 N
- 162 192’
%G 8G
sup Gy(t,s)+ sup (t s)| + sup 52 “2(t,s)|+ sup 6t34(t’ s)
t,s€[0,1] t,s€(0,1] t,s€[0,1] t,s€(0,1]
61 /3
=18 + o7

REMARK 2.9. Consider the following boundary value problem

(2.34) {””“)“) = L= + O + O + 1 O)

z(0) = 2'(0) = z(1) = z'(1) = 0,

where t € [0,1], a > 1 and o, 3,7, > 0.
Let n be a natural number such that n > max(a, 3,7, §). Then

1
gtus + 01} + Jva|” + Jus]?)

—

< z(@+vg + o)™ + fua|™ + |vs|™)

[4+(’Uo+”01|+|’l)2|+|’03|) ] for Vo € [0,00)

OOI'-‘OO

1 1
P(u) = 5(4 +u"), g(w)= g'vg, Tt)=t, m= 211-, r=1, do = 20000,

1
50 Mo=1; and k(t,s)=Ga(t,s)

(where G3 is defined by (2.25)). Then

8 3913 +48
=57 16 +@ a

1[1_(7"5= 4+ rn
and
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() e
o1 (1) 2 ()

892G, 1 .
otz \ 2’
Iy

3 o
- 6_93(5, )H sR®ds o ;R = 20000R

—-
|

0G3
ot

62G 8RG
(tO’ 3) = 2 (t01 3)

[ Taseata,n - %22

m

T~ | %

3
1

ot3 320000> —

for sufficiently large R.
It is easy to check that the function

1
f(t,’l)o,’vl,vz,'vs) = gt(vg + |’U1‘6 + |U2l7 + l'U3‘5)
- fulfills all assumptions of Theorem 2.5. So the problem (2.34) has a positive solution
x € C4[0,1] with z(t) > 0 for t € (1,3).
Notice the function

~ 1
f(t,vo,v1,v2,03) = Zt(vo + [v1] + |v2| + |val)

has not property (2.31). To see this let = be a solution of the problem

34y {m“) (0) = 38(a() +12' O] + 2" @)+ " @)
2(0) = 2/(0) = z(1) = /(1) =0, te€ [0,1].
Then
1 1
o0) = 3 [ Galt,)a(®) +12'(5)| + la"(5) + la" (5)) s d.
0
Hence

1.
lzlls < —al|m||3.

This together with sa < 1yields z(t) = 0 for t € [0,1] and in consequence the

problem (2.34)’ has not positive solutions. So f does not satisfy (2.31).
Tt is not difficult to verify that the function

1
f(ty 'l}o,’l)1,'l)2,’l)3) = gt('l}g + l’UlIﬁ + |’U2“Y + Ivsls)

satisfies all assumptions of Theorem 2.5 with

3 1
k(t, s) = Gult, s), Moo= 16’ do =1280, m= 7

1 1
g(vo) = gv(‘,", U(u) = §(4+u"), r=1;, «,8,734>0and a>1.
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So the problem

2(t) = %t(w(t)" +12' @) + =" @ + =" (0)I°)
z(0) =z"(0) = z(1) =2"(1) =0, z€[0,1]
has a positive solution z € C*[0,1] such that z(t) > 0 for t € (3, 3).
Proceeding analogously to problem (2.34) we can prove that the problems
2(1) = SH(z()* + I OF +12" (O

2(0) =2(1) =/ (1) =0, te[0,1], &,B,7,6>0, a>1

28) + St (D) + 1 0F) =0
z(0)=z(1)=0, te[0,1]; a,8,7,0>0, a>1
have positive solutions z such that z(t) > 0 for t € (4 3 4)

Before formulating a next theorem we will introduce some notation. For p > 1,
LP[0,1] is the Banach space of functions z such that |z|? is Lebesgue integrable on

[0, 1] with the norm
ol = ( / o |"dt>

The symbol W™=12[0,1] (n > 2) denotes the set of all functions z with z(»~?
absolutely continuous and ("~ € LP[0,1]. For z € W"~1P[0, 1] we introduce the
following norm

n—2
lellnotp = sup [}j Iw"')(t)l] WCTS
tefo,1] i=0

The space (W™=1?[0,1], || ||n—1,p) is the Banach space. We adopt the following
convention y(t +7) =0if t + 7 ¢ [0,1] and y € LP[0,1].
A function

£:10,1] x [0, 00) x (=00,00)""! — [0, 00)
is a Carathéodory function provided: If f = f(¢, z), then
(i) the map z — f(t, 2) is continuous for almost all ¢ € [0, 1],
(ii) the map t — f(t,2) is measurable for all z in [0, 00) X (—o0, 00)™ 1,

If f is a Carathéodory function, by a solution to (1.1) we will mean a function
z which has an absolutely continuous (n — 2)st derivative such that z satisfies the
integral equation (1.1) almost everywhere in [0, 1].

3 Annales
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THEOREM 2.10. Assume that conditions (2.1)-(2.2), (2.5) are satisfied and p, q
are such that p,q > 1 and %+% = 1. Suppose the following conditions are satisfied:

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

there erist k* € C[0,1}, k; € L?[0,1] and M > 0 such that

(a) k*(t) >0 for a.e. t €[0,1},

(b) ki(s) >0 and folﬁi(s) ds >0 fori=0,1,...,n—1 and a.e. s € [0,1],

(c) Mk*(@)ki(s) < |2XE2)| < Fi(s) fori=0,1,...,n—1; t € [0,1] and
a.e. s € [0,1],

(d) the map (t,s) — %%—k(t, s) is measurable,

f:[0,1]) % [0, 00) x (—00,00)""! — [0, 00) is a Carathéodory function and
there exist nonnegative functions p; € L10,1] and a constant p, > 0 with

n-2

F(t,v0,v1, ..., vn1) £ Y Pilt)[vi] + Pc1(t) + Palvn-1]7

=0

forj=0,1,...,n—1 and a.e. t € [0,1],

f(t,vo,v1,...,vn-1) < ¥(vg + jv1| + ... + |vn_1]) for a.e. t € [0,1] and
(V0,21 - -+, Un—1) € [0,00) X (—00,00)" "t with ¥: [0, 00) — [0,00) contin-
uous and nondecreasing and U(u) > 0 for u > 0,

there exists ¢ € C[0,1] with
|¥(z+ || +...+ |:L'("_1)|)||; <o(|zlln-1,p)  for all z € W1P[0,1],
ft,vo0,v1,...,Un-1) = g(vo) for a.e. t € [0,1] and all (vo,v1,...,0n—1) €

[0, 00) x (—00,00)*~1 with g: [0,00) — [0, 00) continuous and nondecreas-
ing and g(u) > 0 foru >0,

there exists r > 0 with

r —
> *
<P(T) = (b+ ”kn—l”p)7
where
n—2 1'k *
b= sup ||l=—(, ) ,
,Z:; e o )

there exist R > 0 and tg € [0,1] such that R > r, k*(tg) > 0, d(tg) > 0 and

R< [ dto)o(RMK(5)d(s) [k(to,s) n i%?(to,S)
0

Jas.

n—1

a—-k‘(to, S)

ot | my
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Then (1.1) has a solution x € W~1P[0,1] with z(t) > 0 for a.e. t € [0,1].

ProOF. Let a(t) = Md(t)k*(t) and let

K={ueWrbr[0,1]: u(t)— [Iu'(t)l +...+ Iu("_l)(t)” > a(t)lufln-1,p
for a.e. t € [0,1]}.

Clearly K is a cone of W»~1?[0,1]. Let

0 = {ue W20, 1] ullorp <7},
Q2 ={ue W 120,1) : |lulln_1,p < R}

and let
F*(s,u(s)) = f(s,u(s),(s),...,u™V(s)).
Let
A K (@ \ Q) — WRLP[0,1]
be defined by
1
Az(t) = / k(t, 5)f*(s, 2(s)) ds.
0
Then
1
(2.42) |(Az)™D(2)| / $)f*(s,2(s)) ds
and

|Az(t) + |(Ax)’ @]+ ... +|(Az)=D(t)]|

(2.43) 1_0 / l )

From relations (2.42)-(2.43), (2.37)—(2.38) and Hélder’s inequality it follows

n—2

F(s,z(s))ds < Z /E(S)f*(s,x(s))ds.

i=0 0

1
Aoy <3 / ()" (0 ds < 3 I 17 (5, NI
(2.44) - =0 =0

n—

S P(l|zlln—1p) el -

[

I
=)

Note that A is well defined and 4 is a bounded operator. Now we will prove
AKN(Q\Q) — K. Ifz € KN (Q2\ Q) and ¢ € [0,1], then (2.35), (2.5),

3*
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(2.44) imply
Az(t) — d(t) [ |(Az) (£)] + ...+ |(Az) "~ D(2)]]

1
2t [ [s+ 500

> d(t)ME*(t (Z/k (s)f*(s, z(s))ds)

=0
> Md(t)k*(t)llAIHn— 1p 2 e Az]ln—1,p-
Thus Az € K and A:K N (Q2\ Q1) — K. Now we will prove that A

is a continuous operator. It is enought to show that the Niemytzki operator
H:Wn=1?[0,1] — L9(0, 1] defined by

Hz(t) = f(t,z(t),2'(t),..., 2" D(2))

is continuous. The proof of the continuity of H is similar to the proof of Theorem 1.2
in [6]. Let {Z,} be a sequence of elements of W"~1P[0,1] converging to Z in
Wn=12[0,1]. Then there exists a subsequence {Zvr ' (t)} such that

n-—1

+...+ a1

= k(t, 8)

] f(s,z(s)) ds

Alim T,(,';_l)(t) =z (¢) for a.e. t € [0,1].
—00

Moreover, there exists a function g € LP[0, 1] satisfying the following condition
lff,’:_l)(t)l < g(t) for a.e. t € [0,1]

([6], Lemma 2.1). Hence by (2.36) we conclude that there exists a function h €
L'[0,1] such that

£ (2@, F 1),.... 2D @) = f(£,F0, (8), 20, (1), ..., ()] < h(t)

for ae. t € [0, 1].

From the Lebesgue dominated convergence theorem it follows that the Niemytz-
ki operator H is continuous at the point Z. We next show that A is completely
continuous. Let Q be a bounded set in (W™~1?[0,1], || - {ln—1,). Then, by virtue of
(2.44) we have A(Q) is bounded in (W™=1?[0,1], ||+ [ln-1,5). We need to prove that
A(Q) is relatively compact. We will use the Arzela-Ascoli and the Riesz theorems.
In fact, let y, € A(Q) ie.

= A(z,), x, €.

Since A(Q) is bounded in (W™=1P[0,1], || - ln—1,p) there exist subsequences {m(J )}
and {y(] )} of sequences {x(] )} and {y(J )} uniformly convergent to z(/) and y¥
respectively for j = 0,1,...,n—2. Without loss of generality we can assume that the

sequences {.7:(] )} and {y(] )} are uniformly convergent to z(9) and ¥, respectively.

We will prove that there exists a subsequence {y,(,';_ 1)} of the sequence {y,(,"_l)}
such that
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Allr{:o “y,(,':_l) - y||; =0, where 7 € L?P[0,1].

In fact, for fixed 7 > 0, we have by the Holder inequality and the Fubini theorem
that

1
' / |(Az,) (¢ + 7) — (Az,) ™D (8|7 dt
0

1

1,1 . .
o1 o1 P 2
< / (/ 3tn—1k(t+’r,3)—-—atn_1k(t,s) ds)dt/ (/lf*(S,-’L'u(S))]qu) dt
0 ‘o 4\

4 1 an—-l 6n—1 p
< (Pllelln-1)? [ ( [kt +729) = mamrkt,) dt) ds.

0 0

Now using the fact that translates of LP functions are continuous in norm we
see that

/ |(Az)™~D(t + 1) - (Az) ™~ D(t)|Pdt — 0

as 7 — 0 uniformly. From the Riesz compactness criteria it follows that there
exists a subsequence {y,(,';“l)} of the sequence {y,(,"_l)} convergent in L?[0,1] to a
function 7 € L?[0,1]. It is easy to notice that (y(®)™~1(t) = g(t) for a.e. t € [0, 1].
So A(S2) is relatively compact, i.e. A is completely continuous. Next we show that

(2.45) |AZllno1p < |€ln-1, forz e KNOQ,.

Let z € KN O, 50 ||z]|n-1,, = r and z(t) > a(t)r for a.e. t € [0,1]. The
relation (2.37)~(2.40), (2.42)-(2.44) yield

n—2
(2.46) > 142)D@)] < be(l[zlln-1,5)
j=0
and
n—2
(247) ) |(An)D )| + [(A2) V" < @2 lln-1,6) (b + [Ensll}) <
3=0

Now, taking into account the relations (2.46)—(2.47) and (2.40) we get
Azlln-1,p < |Zlln-1,p-
So (2.45) holds. We finally show that
(2.48) lAz|ln-1p > ||Z|ln-1p, forze KNoOKQ,.

To see this let z € KNy, 50 [|z]|n—1,, = R and z(t) > a(t)R for a.e. t € [0,1].
Thus for a.e. ¢ € [0, 1] we have
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Azlin-1,p, 2 Ax(to) — d(to)[ |(Az)'(to)| + - .. + | (Az)* (ko) ]

o1k
d(to) / [0, + | o) .+ | i | stwtopas.
This together with (2.41) yields
lAz||ln—1, = R= zlln-1,p -

Thus (2.48) holds. Now Theorem 1.1 implies A has a fixed point z € K 0(92\91)
i.e. z(t) > a(t)r for a.e. t € {0,1]. This proves Theorem 2.10.
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