
E X I S T E N C E O F P O S I T I V E S O L U T I O N S 
O F S O M E I N T E G R A L E Q U A T I O N S 

J A N L I G Ę Z A 

Abstract. We study the existence of positive solutions of the integral equation 

l 
x(t) = J k(t,s)f(s,x(s),x'{s),...,x(n-1)(s))ds, n>2 

o 

in both C n _ 1[0,1] and Wn _ 1'P[0,1] spaces, where p > 1. The Krasnosielskii fixed 
point theorem on cone is used. 

1. Introduction 

In analyzing nonlinear phenomena many mathematical models give rise to prob­
lems for which only nonnegative solutions make sense. This paper deals with exis­
tence of positive solutions of the integral equations of the form 

i 
(1.1) x(t) = Jk(t,s)f(s,x(s),x'(s),...,x(n-V(s))ds, n > 2. 

o 
Throughout this article fc is nonnegative. The literature on positive solutions 

is for the most part devoted to (1.1) when / is not dependent on derivatives of 
the function x (see [l]-[5]). Existence in this paper will be established using Kras­
nosielskii's fixed point theorem in a cone, which we state here for the convenience 
of the reader. 

T H E O R E M 1.1. (K. Deimling [4], D . Guo [5]). Let E = (E, \\ • ||) be a Banach 
space and let K C E be a cone in E. Assume Six and ^2 are bounded open subsets 
of E with 0 6 fii and fli C H2 and let A: K n (f&2 \ fil) — * K be continuous and 
completely continuous. In addition suppose either 
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\\Au\\ < \\u\\ foruGKn dfli and \\Au\\ > \\u\\ for u e K n dQ.2 

or 

\\Au\\ > ||u|| forueKndtox and \\Au\\ < \\u\\ forue KndQ,2 

hold. Then A has a fixed point in K D (Q2 \ f^i)-

2. Main results 

In this section we present some results for the integral equation (1.1). 

T H E O R E M 2.1. Suppose the following conditions are satisfied: 

(2.1) k: [0,1] x [0,1] —• [0, 00), ^ (I = 0 , 1 , . . . , n — 2) exist and are continuous 
on [0,1] x [0,1], 

(2.2) there exists a"a t '„ f cJi ' j ) for all t € [0,1] and a.e. s € [0,1], 

(2.3) there exist k* <E C[0,1], Ę € L^O, 1] and M > 0 swc/i (feat 

(a) jfc*(t) > 0 /or a.e. t 6 [0,1], 

(b) fci(s) > 0 and j ' 1 fc,(s) ds > 0 /or i = 0 , 1 , . . . , n — 1 and a.e. s £ [0,1], 

(c) Mk*{t)ki{s) < | 0 ( t , s ) | < fcj(s) /or i = 0 , 1 , . . . , n - 1; * € [0,1] and 
a.e. s € [0,1], 

(2.4) the map 
in— 1 

dtn 
-fc(M) 

is continuous from [0,1] £0 L1^, 1], 

(2.5) t/iere exists a function d € C[0,1] wit/i d(t) > 0 for a.e. t e [0,1] such that 

\dk. 
k(t, s) - d{t) 

> d(t) k(t,s) + 

+ . . .+ 
dk, . 

dn~lk 

+ ...+ gtn-l V ' > 

(2.6) /:[0,1] x [0,oo) x ( - o o . o o ) " - 1 

function il>(u) such that 

for all t € [0,1] and a.e. s € [0,1], 

—• [0,00) is continuous and there exists a 

f(t, v0, vi,.. .,vn-i) < tp(v0 + \vi\ + ... + K - i I) 

on [0,1] x [0,oo) x (-00, o o ) 7 1 - 1 , where i/>:[0,00) —• [0,00) is continuous, 
nondecreasing and tp(u) > 0 f°r u> 0, 
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(2.7) there exists r > 0 with 

n - l j. 

>J2 sup \ 
dlk(t,s) 

^ TTo *6[0,1J dt* 
ds, 

(2.8) f(t,v0,vi,... ,vn-i) > g(v0) for 

( t ,Uo,Wl . - - - ,Wn-l ) G [0,1] x [0,oo) x ( - o o , o o ) n _ 1 

with g: [0, oo) —> [0, oo) continuous and nondecreasing and g(u) > 0 for 
u>0, 

(2.9) there exist R > 0 and t0 € [0,1] such that R> r, k*(t0) > 0, d(tQ) > 0 and 

i 

i ? < J(k(t0,s) + 
0 

d(t0)g(RMd{s)k*(s))ds. 

Then (1.1) /ios a positive solution x £ CjJ ̂  witfi x(t) > 0 /or a.e. £ 6 [0,1]. 

P R O O F . Let 

M „ - i = sup [\u{t)\ + \u'(t)\ + ... + \u^-l\t)\], E = (C7"-1[0,l],||-||n-i) 
*e[o,i] 

and 

K={u£ C " - 1 ^ , 1] : u(t)-d(t)[ \u'(t)\ +...+ l ^ - ^ W l ] >Md(t)fc'(t)||ti||n-i 
for t e [0,1]}. 

Clearly K is a cone of E. Let 

O i = {u e C " - 1 ^ 1] : ||u||n_i < r}, fi2 = { « € C " - 1 ^ , 1] : ||u||n_i < fl} 

and f*(s,u(s)) = / ( * , « ( * ) . « ' ( * ) . •••. u ( n _ 1 ) (*)) - Now, let A:K n ( f i 2 \ Hi) —• 
C7 n - 1 [0 , l ] be defined by 

(2.10) Ax(t) = J k(t,s)f*(s,x(s))ds. 

First we show A:KC\ ( f i 2 \ fix) —• i f . If x € K n ( f l a \ fii) and t e [0,1], then 
relations (2.1), (2.5) imply 

Ax{t) -d(t)[\(Ax)'(t)\ + ... + \(Ax)^)(t)\] 

r 1 

= J k(t,s)f*(s,x(s))ds-d(t) J 
d-^r{s,x{s))ds 

dk dn~l \ 
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+ . . .+ / §^1-k(t,s)f*(s,x(s))ds 

1 

> d(t) J k(t,s) + 
dk 
dt 

(t,s) + ...+ 
gn-l 

T: r * ( M ) /*(s,x(s)) ds 

and this together with (2.3) yields 

\\Ax\U-i > Ax(t) - d(t) [\(Ax)'(t)\ + ... + ^ ^ ( t ) ] } 

(2.11) 
>d(t)yJ2Mk*{t) J Jfc«(a)/'(s,x(a))dsj. 

On the other hand (2.3) implies 

(2.12) 
n-1 i 

i=o i 

Taking into account (2.11) —(2.12) we conclude that 

Ax(t) - d(t) [ \(Ax)'(t)\ + ... + {(AxY^it)]} > M d ( t ) * * (t)||Ac||»-i. 

Consequently Ax G K so A: K n (Q2 \ Oi ) —> K. We now show 

(2.13) WMU-i < ||x||„_i for x € K n a j l j . 

To see this let x € I f n d f t i . Then ||x||„_i = r and x(t) > Md(t)k*(t)r for 
t e [0,1]. Also for t G [0,1] we have 

nf\(Ax^{t)\<j:J dJ%s) 

i=0 i=0 n 

f*(s,x(s)) ds. 

This together with (2.6)-(2.7) yields 

||Ar||„_i < V ( I N n - i ) 2 sup / w ( t , s ) 
V ^ t€[o,i] i ol­

ds] <r= ||x||„_i, 

so (2.13) holds. Next we show 

(2.14) ||Ar||n_i > ||x||n_i for x G K n 9fi 2 • 

To see it let x e n dQ.2. Then we get ||x||n_i = i? and x(t) > RMd(t)k*(t) 
for ( G [0,1]. Now with t0 as in (2.9) we have 

file:////Ax/U-i
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||^||n_1 > Ax(t0) - d(t0) [\(Ax)'(t0)\ + • • • + \(Ax)^(to) 
i 

/
dk 9 n _ 1 

k(t0,s)+ -^(t0,s) + ...+ Q£-[k(to 

o 
i 

/

dk dn~l 

k(t0,s)+ -^(to,s) + ...+ ^—[k(to 

o 
This together with (2.8)-(2.9) yields 

i 
\\Ax\\n-i > d(t0) Jg(RMd(s)k*(s)) 

gn-l 

,s) f*(s,x(s))ds 

,s) g(x(s))ds. 

dk 

k(t0,s)+ -fo(to,s) 

ds> R— ||x|L_i. Hence we obtain (2.14). B y (2.3)-(2.4) and the Arzela-Ascoli theorem we conclude 
that A:K (~l (f22 \ f̂ i) -—* K is continuous and compact. Theorem 1.1 implies A 
has a fixed point x e K n (H2 \ fii), i.e. r < ||x||„_i < R and x(t) > Md(t)k*{t)r 
for t S [0,1]. This completes the proof of Theorem 2.1. • 

REMARK 2.2. To illustrate the applicability of Theorem 2.1 we consider the 
following boundary value problems: 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

x"(t) + f(t,x(t),x'(t)) = 0 
x(0) = x ( l ) = 0, 

x"'(t) = f(t,x(t),x'(t),x"(t)) 
x(0) = x ( l ) = x ' ( l ) = 0, 

XW(t) = f(t,x(t),x'(t),x"(t),x'"(t)) 
x(0) = x'(0) = x ( l ) = x ' ( l ) = 0, 

= f(t._v(f\.T.'(f\.T."(i\.r"'(t)) 

{ 
(x^{t) = f{t,x{t),x>(t),x"{t),x">{ 
\ x(0) = x"(0) = x ( l ) = x" ( l ) = 0. 

Of course the problems (2.15)-(2.18) are equivalent to the problem of deter­
mining the fixed point of the operators T* of the form: 

i 
(2.19) T1(x)(t) = JGl(t,s)f(s,x(s),x'(s))ds, 

o 
i 

(2.20) T2(x)(t) = J G2(t, s)f(s, x(a), x'(s), x"(s)) ds, 

(2.21) T 3 ( x ) ( 0 = jG3(t,s)f(s,x(s),x'(s),x"(s),x"'(s))ds, 
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(2.22) Ti(x)(t) = jG4(t,s)f(s,x(s),x'(s),x"(s),x"'(s))ds, 

where the Green functions Gi are defined as follows 

f t ( l - s ) , 0 < t < s < l 
\ s ( l - t ) , 0 < * < * < 1, 

t(l - s)(2s - st - t) 

(2.23) .Gi(t,s) 

(2.24) G2(t,s) 
s2(l-t)2 

( (s-l)H2(-2st-t + 3s) 

0 < t < s < 1 

0 < s < t < 1, 

(2.25) G 3 ( M ) = < 
s 2 [ ( -2s + 3)t 3 + 3i 2 (s - 2) + 3i - s] 

0 < t < s < 1 

0 < s <t < 1, 

(2.26) G 4 ( t , s ) = ^ 

f ( s - l ) [ t 3 + t s ( s - 2 ) ] 
6 

t 3 s - Zst2 + t(s3 + 2s) - s3 

0 < ( < s < 1 

0 < s < t < 1. 

REMARK 2.3. There are many functions k(t,s) that satisfy condition (2.5). It 
is not difficult to check that the function 

d(t) = { 

t 1-t 

min 

min 

min 

t + 2' 3-t 

l - t \ 2 t2(l-t) 

if k(t,s) = Gi(t, s) 

if k(t,s) = G2(t,s) 

if k(t,s) = G3(t,s) 

iik(t,s) = Gi(t, s) 

3 - t ) ' 2* + 12 
t3(l-t) {l-t)3t 

75 ' 75 

t(l-t)2 t2{l-t) 
20 20 

(with t £ [0,1]) fulfills condition (2.5). It is easy to see that the functions Gj(t,s) 
do not satisfy (2.3)(c) for j = 1,2,3,4. 

We wil l give later on a theorem on the existence of positive solutions of the 
problems (2.16)-(2.18). 

EXAMPLE 2.4. Consider the problem 

(2.27) j 
x"(t) + (x(t) + \x'(t) | ) 2 - 0 
z(0)=:r/(0), x ( l ) = - x ' ( l ) . 

The problem (2.27) is equivalent to the problem of determining the fixed point 
of the operator T5 of the form 
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Ts(x)(t) = J G5(t,s)(x(s) + \x'(s)\)2ds, 

where the Green function G5 is defined as follows 

( (2-*)(! + *) 

G ^ ' S ) = » ( 2 - . ) ( ! + * ) 

0 < s < t < 1 

0 < t < s < 1. 

F ix t 0 = i d(«) = i M = i , fc*(t) = 1, fco(s) = fci(a) = | and ^(«) = 
w 2 for t € [0,1] and u G [0,00). Clearly 

and 

g(RMd(s)k*{s)) = R2M2d2(s)k*2(s) = —R2 

: / [ * G - ) 

a c 5 (I 

R2 

1024 

at V 2 

dG5 (\ 

g(RMd(s)k*(s))ds 

+ dt 12' 
ds> R 

for sufficiently large R. Next we claim (2.7) holds for r = \. To see this notice that 

i 1 
sup / Gb(t,s)ds+ sup / -^-(t,s) 

t€[o,i] J te[o,i] J a t 

9 r 
ds = - < 

8 ~ ip{r) 
2. 

So (2.7) holds. Thus all conditions of Theorem 2.1 are satisfied and the problem 
(2.27) has a positive solution x G C2[0,1] with x(t) > 0 for t G (0,1) . 

It is possible to obtain another existence results for (1.1) if we change some 
conditions on the nonlinearity / and some of the conditions on the kernel k. 

In the sequel, we will assume that gf„-i (t, s) is continuous with respect to (t, s) 
on triangles 0 < t < s < 1 and 0 < s < t < 1. B y f ^ r ( s + 0 , s) ( f - ^ r ( s - 0 , s)) 
we will denote the right-hand (the left-hand) side derivative of order n — 1 of k at 
(s,s). 

T H E O R E M 2.5. Let conditions (2.1), (2.6)-(2.7) be satisfied. Moreover, we as­
sume that 

(2.28) g t n-i k is continuous with respect to (t,s) on triangles 0 < t < s < 1 and 
0 < s < t < 1, 

(2.29) there exist constants do > 1, Mo > 0 and m 6 (0 , 5 ) suc/i t/iat 
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(a) 

dok(t, s) 
dk 
dt 

(t,s) + ...+ r ( M ) 

> k(s,s) + 
dk 
dt 

(s,s) + ...+ 
d m - l 

dt" 
^k(s-0,s) 

(b) 

for t £ [m, 1 — m], s £ [O,1] and t < s 

d0k(t,s)-(^ ^(t,s) + ...+ 

>k(s,s) + \ — (s,s)\ + ...+ 

dn-xk, . 

£ n - l 

/or £ G [m, 1 — m], s G [0,1] and s <t, 

(c) 

k(s,s) + 
dk 

(s,s) 
dt 

> M0 (k(t, s) + 

+ ...+ 

dk 

dn~lk, n . 
r(s-0,s) 

dt 
(t,s) + ...+ 

& n— 1 
^k(t,a) 

for t € [0,1], s € [0,1] and t < s, 

+ - + a ^ s + 0 ' s ) J 
(d) 

<?fc 
fc(s, s) + 

> M0 ( k(t, s) + 

for t G [0,1], s G [0,1] and s < t, 

(2.30) there exist r G C[m, 1 — m] and g G C[0, co) such that r > 0 on [m, 1 — m], 

[0, co) —• [0, co), g is nondecreasing, g(ń) > 0 for n > 0 and 

/ ( i , v 0 , " i , •.., w n _i) > r(t)g(v0) for t G [m, 1 - m] 

and ( u 0 , u i , . . . , u „ _ i ) G [0,oo) x (—cc, o o ) n _ 1 , 
(2.31) there exist numbers R > 0 and to G [wi, 1 — m] with R> r and 

1—m 

doR < J d0k(t0,s) 
dk 
di (to,s) 

+ ...+ 
gn-l 

9 ( - J — ) T(S) ds. 
V do 

Tften (1.1) Zias a positive solution x £ Cn 1[0,1] swc/i tftat m i n t 6 [ m ) i _ m ] dox(t) > 
M0r. 
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P R O O F . Let 

K = ( t i € Cn~l[0,1] : u(t) > 0, min [d 0u(t) - (\u'{t)\ + ... + |u(n- ł)(t)|) 
L [m, 1—m] 

> M0||w||„-i}. 

Clearly K is a cone of E. Let Qi, Cl2, f*(s,x(s)), and A be denned as in the 
proof of Theorem 2.1. First we show A: Kn(Tl2\Cli) —*K. Let x G Jfn ( fk\fti) , 
s € [0,1] and t G [m, 1 — m]. Then relations (2.1), (2.29) imply 

d0Ax(t) - [ |(Ac)'(t)| + • • • + K A r ) ^ - 1 ^ * ) ! ] 

dok(t, s) -/ 
0 
t 

1 
0 

+ 

at 
(t,s) + ...+ 

dn~lk, x 

&(s, s) 
at 

(s,s) + ...+ 
dn~1k 
a t ^ r ( s + 0 ' s ) 

/ k(s,s) + 
dk 
at 

(s,s) + ...+ 
d^k, n . 
a ^ r ( s - ° ' s ) 

f*(s,x(s))ds 

f*(s,x(s))ds 

f*(s,x(s)) ds. 

On the other hand, by (2.29) we get for s,t € [0,1] 
t 

I k(s,s) + 

i 

•/ 
t 

t 

>M0J 

dk 
at (s,s) + . . .+ 

dn_1k 
a t ^ r ( s + 0 ' s ) 

k(s,s) + 

k(t,s) + 

dk 
dt 

dk 
dt 

(s,s) 

(t,s) 

+ ...+ 

+ . . .+ 

r (« - 0 , s ) 
a t " - 1 v ; 

a t ^ r ^ s ) 

+ M ( &(t, s) + 
a_fc 
at 

( t , s ) + ...+ 

f*(s,x(s))ds 

f*(s,x(s))ds 

f*(s,x(s))ds 

f*(s,x(s))ds 
dn-xk,- x 

d i ^ { t ' 3 ) 

> M0[\Ax(i)\ + \(Ax)'(t)\ + ... + \(Ax)<n-»®\]. 

Thus 

min [doAc(t) - (|(Ar)'(t)| + . . . + \(Ax)^(t)\] > MoWAx^ 

and in consequence A(K) C K. We now show 

(2.32) ||Ac||n_i < ||x||„_i for x G K n dSlx. 

To see this let x G K n a ^ . Then ||x||„_i = r and d 0 x(t) > M 0 r for t G 
[m, 1 - m]. Also for t G [0,1] we have 
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S K A T O W I <x; / ns,X(s))ds 

/ n _ 1 f dik 

V ̂  *€I0.1] i 9 t 

ds V ( l k l l n - i ) < r = ||x|| n _i. 

Thus (2.32) holds. Next we show 

(2.33) ||Ac||n-i > ||a:||„_i for x £ K n d f t 2 • 

To see it let x £ K n d9.2 • Then we get ||x||„-i = R and d0x(t) > M0R for 
t£[m,l-m}. B y (2.30)-(2.31) we have 

d 0||Ac|| n_i 
> d0Ax(t0) - [ \(Ax)'(t0)\ + ... + j (Ax) (t0) I ] 

f r / dk dn k \ > J ^d0k(t0,s)-^—(t0,s)+...+ ^ZT(to,s)j 
m 

1 — m , v i 

/

r ( dk dn k \ 

\d0k(to,s)-(—(to,s) +...+ ^zr(to,s) j 

f*(s,x(s)) ds 

(RMo 
\ d0 

T(S) ds 

> doR = do||a;||n-i • 

Thus (2.33) holds. The standard arguments show that the operator A is con­
tinuous and compact. Theorem 1.1 implies A has a fixed point x £ K n (Cl2 \ Sli) 
i.e. r < ||x||n-i < R and dox(t) > Mor for t £ [m, 1 — m]. This completes the proof 
of Theorem 2.5. • 

COROLLARY 2.6. Let assumptions (2.1), (2.6), (2.28)-(2.31) 6e satisfied. More­
over, let there exists r > 0 iwt/i > a, where 

n - l 

a = Y"] sup 
i=o t.'e[o,i) 

9*fc(t,s) 

Tften (1.1) has a positive solution x £ Cn 1[0,1] with m i n t € [ m i l _ m ] d o z ( 0 > M 0 r . 

REMARK 2.7. It is not difficult to verify that the following constants 

iik(t,s)i=Gi(t,s) 

if k(t, s)=G2(t,s) 
Mo={ 

( 1 
2' 
1 
6' 
l_ 

16' 

and do = 
if fc(i, s) = G 3 ( t , s) 

12, if A;(t,s) = Gi(t,s) 
144, if fc(t,s) = G2(t,s) 

20000, if fc(t,s) = G 3 ( t , s ) 
1280, if k(t, s) = G 4 ( t , s) 

- , iik(t,s)=Gi(t,s) 

satisfy condition (2.29) with m= \. 
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R E M A R K 2.8. Let i e {1,2,3,4} and let functions G{ be denned by relations 
(2.15)-(2.18). It is not difficult to check that: 

sup Gi (t, s) + sup 
t,s€[0,l] t,sG[0,l] 

sup G2(t, s)+ sup 
t,s€[0,l] t,s£[0,l] 

sup G3(t, s)+ sup 
*,*6[o,i] t,se[o,i] 

at 

dG2 

dt 

dG3 

dt 

(t,s) 

(t,s) 

(t,s) 

39VT3 + 48 1 
162 + 192' 

sup G4(t,s)+ sup 
t,«€[0,l] t,se[o,i] 

_ 61 -v/3 
~ 48 + 27 ' 

dG4 

dt 

5 
4 ' 

+ sup 
t,«e[o,i] 

+ sup 
t,se[o,i] 

+ sup 
t,s€[0,l] 

d2G2(t,s) 
dt2 

d2G3 

i ( 5 V 5 - 6 ) , 

dt2 

d2GA 

(t,a) 

dt2 
(t,s) 

+ sup 
t,s€[0,l] 

+ sup 
t,s€[0,l| 

dt3 

0 3 G 4 

(t,s) 

dt3 
(t,s) 

R E M A R K 2.9. Consider the following boundary value problem 

(2.34) 
*<4>(i) = \t(x(t)a + \x'(t)f + |i"(t)p + \x"'(t)\s) 

x(0) = x'(0) = x( l ) = x ' ( l ) = 0, 

where t € [0,1], a > 1 and a,/?,7, S > 0. 
Let n be a natural number such that n > max(a, /?, 7,5). Then 

|*(uj + \Vlf + \v2\i + \v3\s) 

< l^ + < + \vi\n + \v2\n + \v3\n) 

< 5[4 + (wo + + M + |w3|)n] for v0 e [0,00). 

We put 

V>(«) = g(4 + un), g(v0) = l v $ , r(t) =t, m = j , r = 1, d0 = 20000, 

*o = |, M 0 = and A(t, s) = G 3 ( t , s) 

(where G 3 is defined by (2.25)). Then 

r _ 8r 8 39\/l3 + 48 1 
V>(r) ~~ 4 + r " ~ 5 162 + 192 ~~ ° 

and 
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1 — 7/1 

j jdoG 3(to,s) 

dG3 

dt 
(to,s) 

d2G3 

dt2 
(*o,s) 

d3Ga 

(to, s) 

= ± j | 2 0 0 0 0 G 3 ^ , s 
dG3 (1 
dt \2 

dt3 

d2G3 (\ 

[RM0\ . . . 
9 { - ^ o ~ ) T i s ) d S 

dt2 \2 

d3G3 (\ 
dt3 

sRads 
320000" 

> d0R = 20000.R 

for sufficiently large R. 
It is easy to check that the function 

f(t,v0,v1,v2,v3) = i t « + \Vlf + \v2p + \v3\s) 

fulfills all assumptions of Theorem 2.5. So the problem (2.34) has a positive solution 
x G C 4[0,1] with x(t) > 0 for t G (\, § ) . 

Notice the function 

f(t,v0,v1,v2,v3) = ^t(v0 + + \v2\ + \v3\) 

has not property (2.31). To see this let x be a solution of the problem 

(2.34)' 

Then 

Hence 

x^(t) = i t (x( t ) + \x'(t)\ + \x"(t)\ + \x"'(t)\) 

x(0) = x'(0) = x(l) = x ' ( l ) - 0, t G [0,1]. 

i 

x(t) = l - J G3(t,s)(x(s) + \x'(s)\ + \x"(s)\ + \x"'(s)\)sds. 

N U < gdWs. 

This together with |a < 1 yields x(t) = 0 for t G [0,1] and in consequence the 
problem (2.34)' has not positive solutions. So / does not satisfy (2.31). 

It is not difficult to verify that the function 

f(t,v0,vuv2,v3) = ±t(v§ + M " + |waP + |w3|') 

satisfies all assumptions of Theorem 2.5 with 

3 1 
k(t,s) = G4(t,s), M 0 = — , d 0 = 1280, m = -, 

l b 4 

« W = J i $(u) = ^(4 + u n ) , r = l ; a,/?,7,<5 > 0 and a > 1. 
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So the problem 

XW(t) = |t(s(t)» + \x'(t)f + \x'\t)V + \x"'(t)\s) 

x(0) = x"(0) = x( l ) = x"{l) = 0, x G [0,1] 

has a positive solution x G C 4[0,1] such that x(t) > 0 for t G (\, § ) . 
Proceeding analogously to problem (2.34) we can prove that the problems 

x"'(t) = \t(x(tr + \x'(t)f + \x"(t)p) 

x(0) = x ( l ) = x ' ( l ) = 0 , te [0,1], a,/3,7,<J>0, a > l 

and 

x"(t) + lt(x'(t) + \x'(t)f) = 0 

x(0) = x ( l ) = 0 , te [0,1]; a ) ( 3,7,5>0, a > 1 

have positive solutions x such that x(t) > 0 for t G (3, §)• 

Before formulating a next theorem we will introduce some notation. For p > 1, 
Lp[0,1] is the Banach space of functions x such that |x|p is Lebesgue integrable on 
[0,1] with the norm 

i w i ; = ( / K * ) r * Y -

The symbol W n _ 1 ' p [ 0 , l ] (n > 2) denotes the set of all functions x with x^" - 2 ) 
absolutely continuous and x ( n _ 1 ) G Lp[0,1]. For x G W™ - 1 ' p [0 ,1 ] we introduce the 
following norm 

l F l | n - l , p = SUp 
te[o,i] 

' + i ^ ( n - 1 ) i i ; -
»=0 

The space (W n _ 1 ' p [0,1], || • ||n-i,p) is the Banach space. We adopt the following 
convention y(t + r ) = 0 if t + T <£ [6,1] and y G Lp[0,1]. 

A function 

/:[0,1] x [0,oo) x (-co, o o ) " - 1 —• [0,oo) 

is a Caratheodory function provided: If / = f(t, z), then 

(i) the map z —• f(t, z) is continuous for almost all £ G [0,1], 

(ii) the map t —> f{t,z) is measurable for all z in [0, oo) x (—oo,oo) n _ 1 . 

If / is a Caratheodory function, by a solution to (1.1) we wil l mean a function 
x which has an absolutely continuous (n — 2)st derivative such that x satisfies the 
integral equation (1.1) almost everywhere in [0,1]. 

3 Annales 
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T H E O R E M 2.10. Assume that conditions (2.1)-(2.2), (2.5) are satisfied andp, q 
are such that p, q > 1 and ^ +1 = 1. Suppose the following conditions are satisfied: 

(2.35) there exist k* G C[0,1], Ę G L p[0,1] and M > 0 such that 

(a) k*(t) > 0 /or a.e. t G [0,1], 

(b) fej(s) > 0 and J^1 fcj(s) ds > 0 /or i = 0 , 1 , . . . , n — 1 and a.e. s G [0,1], 

(c) Mk*(t)ki(s) < I I < ki(s) for i = 0 , l , . . . , n - l ; t 6 [0,1] and 
a.e. s G [0,1], 

(d) the map (t,s) —• g t n-i k(t, s) is measurable, 

(2.36) /: [0,1] x [0,oo) x (—oo,oo) n _ 1 —> [0, oo) is a Caratheodory function and 
there exist nonnegative functions Pj G Lq[0,1] and a constant pn > 0 with 

n - 2 

f(t,V0,Vi,...,Vn-i) < ^Tpi(t)\Vi\ +Pn-l(t) +Pn|v„_l|? 
i=0 

/or j = 0 , 1 , . . . , n — 1 and a.e. t G [0,1], 

(2.37) / ( t , u 0 , u i , •••,«„-!) < #(t>o + + . - . + K - i | ) for a.e. t G [0,1] and 
(uo, u i , . . . , vn-i) G [0, oo) x (—oo, o o ) n _ 1 with [0, oo) —> [0, oo) contin­
uous and nondecreasing and $?(u) > 0 for u > 0, 

(2.38) there exists cp G C[0,1] with 

\\9(x + \x'\ + ... + \x<n-V I) ||* < <p(\\x\\n„Up) for all x G W ^ - ^ O , 1], 

(2.39) / ( t , t ) 0 , u i , . . . , u „ - i ) > g(v0) for a.e. t£ [0,1] and all (v0, vi,..., u n _x) G 
[0,oo) x (—co,oo) n _ 1 with g: [0,oo) —• [0, oo) continuous and nondecreas­
ing and g(u) > 0 for u > 0, 

(2.40) there exists r > 0 with 

<p(r) >(6+||fc„_i||;), 

where 
n-2 

b = 2_] S U P 
i=o *e[o,i] 

(2.41) t/iere exist R > 0 and to G [0,1] suc/i that R> r, k*(t0) > 0, d(t0) > 0 and 

i 

R< j d(t0)g{RMk*(s)d{s)) k(to, s) + 
dk 
dt (*o,s) 

+ ...+ 
a 1 in—1 

ds. 
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Then (1.1) has a solution x G W^^O, 1] with x(t) > 0 for a.e. t G [0,1]. 

P R O O F . Let a(t) = Md(t)k*(t) and let 

K = {u£ Wn-l*[0,1] : u(t) - d(t) [\u'(t)\ + ... + I i i * " - 1 ^ ) ! ] > a W I M I n - i , P 

for a.e. t G [0,1]}. 

Clearly i f is a cone of W^^O, 1]. Let 

!)! = {«£ Wn~l>P[0, 1] : ||u||„-i,P < r} , 

Q2 = {u G W ^ - ^ I O , 1] : I M U - i . p < R} 

and let 

Let 

be denned by 

Then 

/•(*,u(s)) = f(s,u(s),u'(s),...,u^(s)). 

A-.Kn (n2 \ no — » r - ' ^ o , 1] 

i 

Ar ( t ) = y fc(t,s)/*(s,a:(s))ds. 

i 
(2.42) | ( A r ) ( n _ 1 ) ( * ) | < Jkn(s)r(s,x(s))ds 

o 

and 

\Ax(t) + \(Axy(t)\ + ... + \(Ax)(»-2Ht)\ 

(2.43) / | S ( M ) /*(*,*(«))<**< £ /fci(*)r(«,x(*))d». 
i=0 ^ I i - 0 £ 

From relations (2.42)-(2.43), (2.37)-(2.38) and Holder's inequality it follows 

n - l 

I I A C||„_ 1 i P <E / ( * . * ( * ) ) < * » < f^\\ki\\;\\r(sM*)K 

(2.44) i = 0 o i = 0 

< E v ( i i ^ i i n - i , p ) i i f c i i i ; 
i=0 

Note that A is well denned and A is a bounded operator. Now we will prove 
A: K n (H2 \ AO —» ff. If x G i f n (n2 \ nO and t G [0,1], then (2.35), (2.5), 

3* 
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(2.44) imply 

Ax(t) - d{t) [\{Ax)'{t)\ + ... + K A r ) ^ - 1 ^ ) ! ] 

> d(t) J 

o 

dk 
+ ...+ 

gn-l 
Tk(t,s) 

gtn-l V ) ) 
f*(s,x(s)) ds 

> d{t)Mk*(t) 
n - l J. 
£ / M 
i=o i 

s)f*(s,x(s))ds 

> Md(t)k'(t)\\Ax\\n_liP > o(t)||AB||n_i,p. 

Thus Ax G K and A: K n (f22 \ fil) —» #• Now we wil l prove that A 
is a continuous operator. It is enought to show that the Niemytzki operator 
H: Wn~l*[0,1] —• L 9[0,1] defined by 

Hx(t)=f(t,x(t),x'(t),...,x^-1\t)) 

is continuous. The proof of the continuity of H is similar to the proof of Theorem 1.2 
in [6]. Let {x„} be a sequence of elements of W n _ 1 ' p [ 0 , 1 ] converging to x in 
Wn~l'p\0,1]. Then there exists a subsequence { x i " - 1 ) ( t ) } such that 

l im = 5 ( n - 1 ) ( t ) 
A—too 

for a.e. t G [0,1]. 

Moreover, there exists a function g G L p[0,1] satisfying the following condition 

< 9(t) for a.e. t € [0,1] 

([6], Lemma 2.1). Hence by (2.36) we conclude that there exists a function h G 
L^O, 1] such that 

\f(t,x(t),x'(t),... ^ - " ( i ) ) - f{t,xVx{t)XM (t))\<h(t) 

for a.e. t G [0,1]. 
From the Lebesgue dominated convergence theorem it follows that the Niemytz­
ki operator H is continuous at the point x. We next show that A is completely 
continuous. Let Q be a bounded set in ( W n _ 1 ' p [ 0 , 1 ] , || • || n _i ] P ) . Then, by virtue of 
(2.44) we have A(Q) is bounded in ( W n _ 1 ' p [ 0 , 1 ] , || • ||„_i,p). We need to prove that 
A(Q) is relatively compact. We wil l use the Arzela-Ascoli and the Riesz theorems. 
In fact, let yv G A(Q) i.e. 

yv - A{xv), xv G f2. 

Since A(£l) is bounded in ( W n _ 1 ' p [ 0 , 1 ] , || • ||n-i,P) there exist subsequences { x ^ } 
and {y9J} of sequences { x ^ } and {yi^} uniformly convergent to x^ and 
respectively for j = 0 , 1 , . . . , n—2. Without loss of generality we can assume that the 
sequences {x^} and {y^} are uniformly convergent to x ^ and yV\ respectively. 

We wil l prove that there exists a subsequence {y^™ - 1^} of the sequence 
such that 
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l im - y\\* = 0, where y € U>[Q, 1]. 
A—»oo " "f 

In fact, for fixed r > 0, we have by the Holder inequality and the Fubini theorem 
that 

i 

J I (Axv)^(t + r) - {Axvfn~V(t)\p dt 
o 

- J ( j \ d ^ k { t + T ' s ) ~ d ^ k { t ' s ) P d s ) d t J (j\r(s^(s))\9ds)'dt 

0 ^ 0 ' 0 ^ 0 ' 
1 / 1 „ \ 

< (<p(\\Xr\\n-ltP))* J I J _ f c ( i + T , * ) - ^ j - f c ( M ) dt\ds. 

Now using the fact that translates of IP functions are continuous in norm we 
see that 

i 

J\(Ax)ln-V(t + T) - (Ax)(n-1\t)\pdt -> 0 
o 

as T —> 0 uniformly. From the Riesz compactness criteria it follows that there 
exists a subsequence {yil~^} of the sequence {y^1^} convergent in Lp[0,1] to a 
function y 6 L p [0,1]. It is easy to notice that ( y ( 0 ) ) ( n _ 1 ) ( * ) = V{t) for a.e. t 6 [0,1]. 
So A(£l) is relatively compact, i.e. A is completely continuous. Next we show that 

(2.45) WMU-1.P < I M U - i * for x € K n O l i . 

Let x e K n d f i i , so ||x||n_i : P = r and x(t) > a(t)r for a.e. £ e [0,1]. The 
relation (2.37)-(2.40), (2.42)-(2.44) yield 

(2.46) £ | ( A c ) W ( * ) | < M I I * l l n - i , p ) 
j=0 

and 

(2.47) 52\(Ax)<»(t)\ + \\(Ax)^-% < V(\\x\\n-hp)(b+ \\kn^\\;) < r. 
3=0 

Now, taking into account the relations (2.46)-(2.47) and (2.40) we get 

||-Aa;||n-i,p < ||a;||„-i,p. 

So (2.45) holds. We finally show that 

(2.48) P x | | n - i , P > \\x\\n-i,P for x G K n df t 2 • 

To see this let x € i f nć?fł 2, s ° H^-l ln—i,p = -R and x(t) > a(£).R for a.e. £ £ [0,1], 
Thus for a.e. t e [0,1] we have 
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||Ar||n_liP > Ax(t0) - d(t0)[|(Ac)'(t0)| + • • • + |(Ar)("-ł)(t0)| ] 

1 \dk 
> d(t0) J k(t0,s) + 

dt + ...+ g(x(s))ds. 

This together with (2.41) yields 

||Ax||„_i,p > R = ||x||n_iiP. 

Thus (2.48) holds. Now Theorem 1.1 implies A has a fixed point x € Kn(f22 Wi) 
i.e. x(t) > a(t)r for a.e. t G [0,1]. This proves Theorem 2.10. • 
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