
E X I S T E N C E O F P O S I T I V E S O L U T I O N S 
O F S O M E I N T E G R A L E Q U A T I O N S 

J A N L I G Ę Z A 

Abstract. We study the existence of positive solutions of the integral equation 

l 
x(t) = J k(t,s)f(s,x(s),x'{s),...,x(n-1)(s))ds, n>2 

o 

in both C n _ 1[0,1] and Wn _ 1'P[0,1] spaces, where p > 1. The Krasnosielskii fixed 
point theorem on cone is used. 

1. Introduction 

In analyzing nonlinear phenomena many mathematical models give rise to prob
lems for which only nonnegative solutions make sense. This paper deals with exis
tence of positive solutions of the integral equations of the form 

i 
(1.1) x(t) = Jk(t,s)f(s,x(s),x'(s),...,x(n-V(s))ds, n > 2. 

o 
Throughout this article fc is nonnegative. The literature on positive solutions 

is for the most part devoted to (1.1) when / is not dependent on derivatives of 
the function x (see [l]-[5]). Existence in this paper will be established using Kras
nosielskii's fixed point theorem in a cone, which we state here for the convenience 
of the reader. 

T H E O R E M 1.1. (K. Deimling [4], D . Guo [5]). Let E = (E, \\ • ||) be a Banach 
space and let K C E be a cone in E. Assume Six and ^2 are bounded open subsets 
of E with 0 6 fii and fli C H2 and let A: K n (f&2 \ fil) — * K be continuous and 
completely continuous. In addition suppose either 
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\\Au\\ < \\u\\ foruGKn dfli and \\Au\\ > \\u\\ for u e K n dQ.2 

or 

\\Au\\ > ||u|| forueKndtox and \\Au\\ < \\u\\ forue KndQ,2 

hold. Then A has a fixed point in K D (Q2 \ f^i)-

2. Main results 

In this section we present some results for the integral equation (1.1). 

T H E O R E M 2.1. Suppose the following conditions are satisfied: 

(2.1) k: [0,1] x [0,1] —• [0, 00), ^ (I = 0 , 1 , . . . , n — 2) exist and are continuous 
on [0,1] x [0,1], 

(2.2) there exists a"a t '„ f cJi ' j ) for all t € [0,1] and a.e. s € [0,1], 

(2.3) there exist k* <E C[0,1], Ę € L^O, 1] and M > 0 swc/i (feat 

(a) jfc*(t) > 0 /or a.e. t 6 [0,1], 

(b) fci(s) > 0 and j ' 1 fc,(s) ds > 0 /or i = 0 , 1 , . . . , n — 1 and a.e. s £ [0,1], 

(c) Mk*{t)ki{s) < | 0 ( t , s ) | < fcj(s) /or i = 0 , 1 , . . . , n - 1; * € [0,1] and 
a.e. s € [0,1], 

(2.4) the map 
in— 1 

dtn 
-fc(M) 

is continuous from [0,1] £0 L1^, 1], 

(2.5) t/iere exists a function d € C[0,1] wit/i d(t) > 0 for a.e. t e [0,1] such that 

\dk. 
k(t, s) - d{t) 

> d(t) k(t,s) + 

+ . . .+ 
dk, . 

dn~lk 

+ ...+ gtn-l V ' > 

(2.6) /:[0,1] x [0,oo) x ( - o o . o o ) " - 1 

function il>(u) such that 

for all t € [0,1] and a.e. s € [0,1], 

—• [0,00) is continuous and there exists a 

f(t, v0, vi,.. .,vn-i) < tp(v0 + \vi\ + ... + K - i I) 

on [0,1] x [0,oo) x (-00, o o ) 7 1 - 1 , where i/>:[0,00) —• [0,00) is continuous, 
nondecreasing and tp(u) > 0 f°r u> 0, 
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(2.7) there exists r > 0 with 

n - l j. 

>J2 sup \ 
dlk(t,s) 

^ TTo *6[0,1J dt* 
ds, 

(2.8) f(t,v0,vi,... ,vn-i) > g(v0) for 

( t ,Uo,Wl . - - - ,Wn-l ) G [0,1] x [0,oo) x ( - o o , o o ) n _ 1 

with g: [0, oo) —> [0, oo) continuous and nondecreasing and g(u) > 0 for 
u>0, 

(2.9) there exist R > 0 and t0 € [0,1] such that R> r, k*(t0) > 0, d(tQ) > 0 and 

i 

i ? < J(k(t0,s) + 
0 

d(t0)g(RMd{s)k*(s))ds. 

Then (1.1) /ios a positive solution x £ CjJ ̂  witfi x(t) > 0 /or a.e. £ 6 [0,1]. 

P R O O F . Let 

M „ - i = sup [\u{t)\ + \u'(t)\ + ... + \u^-l\t)\], E = (C7"-1[0,l],||-||n-i) 
*e[o,i] 

and 

K={u£ C " - 1 ^ , 1] : u(t)-d(t)[ \u'(t)\ +...+ l ^ - ^ W l ] >Md(t)fc'(t)||ti||n-i 
for t e [0,1]}. 

Clearly K is a cone of E. Let 

O i = {u e C " - 1 ^ 1] : ||u||n_i < r}, fi2 = { « € C " - 1 ^ , 1] : ||u||n_i < fl} 

and f*(s,u(s)) = / ( * , « ( * ) . « ' ( * ) . •••. u ( n _ 1 ) (*)) - Now, let A:K n ( f i 2 \ Hi) —• 
C7 n - 1 [0 , l ] be defined by 

(2.10) Ax(t) = J k(t,s)f*(s,x(s))ds. 

First we show A:KC\ ( f i 2 \ fix) —• i f . If x € K n ( f l a \ fii) and t e [0,1], then 
relations (2.1), (2.5) imply 

Ax{t) -d(t)[\(Ax)'(t)\ + ... + \(Ax)^)(t)\] 

r 1 

= J k(t,s)f*(s,x(s))ds-d(t) J 
d-^r{s,x{s))ds 

dk dn~l \ 
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+ . . .+ / §^1-k(t,s)f*(s,x(s))ds 

1 

> d(t) J k(t,s) + 
dk 
dt 

(t,s) + ...+ 
gn-l 

T: r * ( M ) /*(s,x(s)) ds 

and this together with (2.3) yields 

\\Ax\U-i > Ax(t) - d(t) [\(Ax)'(t)\ + ... + ^ ^ ( t ) ] } 

(2.11) 
>d(t)yJ2Mk*{t) J Jfc«(a)/'(s,x(a))dsj. 

On the other hand (2.3) implies 

(2.12) 
n-1 i 

i=o i 

Taking into account (2.11) —(2.12) we conclude that 

Ax(t) - d(t) [ \(Ax)'(t)\ + ... + {(AxY^it)]} > M d ( t ) * * (t)||Ac||»-i. 

Consequently Ax G K so A: K n (Q2 \ Oi ) —> K. We now show 

(2.13) WMU-i < ||x||„_i for x € K n a j l j . 

To see this let x € I f n d f t i . Then ||x||„_i = r and x(t) > Md(t)k*(t)r for 
t e [0,1]. Also for t G [0,1] we have 

nf\(Ax^{t)\<j:J dJ%s) 

i=0 i=0 n 

f*(s,x(s)) ds. 

This together with (2.6)-(2.7) yields 

||Ar||„_i < V ( I N n - i ) 2 sup / w ( t , s ) 
V ^ t€[o,i] i ol

ds] <r= ||x||„_i, 

so (2.13) holds. Next we show 

(2.14) ||Ar||n_i > ||x||n_i for x G K n 9fi 2 • 

To see it let x e n dQ.2. Then we get ||x||n_i = i? and x(t) > RMd(t)k*(t) 
for ( G [0,1]. Now with t0 as in (2.9) we have 

file:////Ax/U-i
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||^||n_1 > Ax(t0) - d(t0) [\(Ax)'(t0)\ + • • • + \(Ax)^(to) 
i 

/
dk 9 n _ 1 

k(t0,s)+ -^(t0,s) + ...+ Q£-[k(to 

o 
i 

/

dk dn~l 

k(t0,s)+ -^(to,s) + ...+ ^—[k(to 

o 
This together with (2.8)-(2.9) yields 

i 
\\Ax\\n-i > d(t0) Jg(RMd(s)k*(s)) 

gn-l 

,s) f*(s,x(s))ds 

,s) g(x(s))ds. 

dk 

k(t0,s)+ -fo(to,s) 

ds> R— ||x|L_i. Hence we obtain (2.14). B y (2.3)-(2.4) and the Arzela-Ascoli theorem we conclude 
that A:K (~l (f22 \ f̂ i) -—* K is continuous and compact. Theorem 1.1 implies A 
has a fixed point x e K n (H2 \ fii), i.e. r < ||x||„_i < R and x(t) > Md(t)k*{t)r 
for t S [0,1]. This completes the proof of Theorem 2.1. • 

REMARK 2.2. To illustrate the applicability of Theorem 2.1 we consider the 
following boundary value problems: 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

x"(t) + f(t,x(t),x'(t)) = 0 
x(0) = x ( l ) = 0, 

x"'(t) = f(t,x(t),x'(t),x"(t)) 
x(0) = x ( l ) = x ' ( l ) = 0, 

XW(t) = f(t,x(t),x'(t),x"(t),x'"(t)) 
x(0) = x'(0) = x ( l ) = x ' ( l ) = 0, 

= f(t._v(f\.T.'(f\.T."(i\.r"'(t)) 

{ 
(x^{t) = f{t,x{t),x>(t),x"{t),x">{ 
\ x(0) = x"(0) = x ( l ) = x" ( l ) = 0. 

Of course the problems (2.15)-(2.18) are equivalent to the problem of deter
mining the fixed point of the operators T* of the form: 

i 
(2.19) T1(x)(t) = JGl(t,s)f(s,x(s),x'(s))ds, 

o 
i 

(2.20) T2(x)(t) = J G2(t, s)f(s, x(a), x'(s), x"(s)) ds, 

(2.21) T 3 ( x ) ( 0 = jG3(t,s)f(s,x(s),x'(s),x"(s),x"'(s))ds, 
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(2.22) Ti(x)(t) = jG4(t,s)f(s,x(s),x'(s),x"(s),x"'(s))ds, 

where the Green functions Gi are defined as follows 

f t ( l - s ) , 0 < t < s < l 
\ s ( l - t ) , 0 < * < * < 1, 

t(l - s)(2s - st - t) 

(2.23) .Gi(t,s) 

(2.24) G2(t,s) 
s2(l-t)2 

( (s-l)H2(-2st-t + 3s) 

0 < t < s < 1 

0 < s < t < 1, 

(2.25) G 3 ( M ) = < 
s 2 [ ( -2s + 3)t 3 + 3i 2 (s - 2) + 3i - s] 

0 < t < s < 1 

0 < s <t < 1, 

(2.26) G 4 ( t , s ) = ^ 

f ( s - l ) [ t 3 + t s ( s - 2 ) ] 
6 

t 3 s - Zst2 + t(s3 + 2s) - s3 

0 < ( < s < 1 

0 < s < t < 1. 

REMARK 2.3. There are many functions k(t,s) that satisfy condition (2.5). It 
is not difficult to check that the function 

d(t) = { 

t 1-t 

min 

min 

min 

t + 2' 3-t 

l - t \ 2 t2(l-t) 

if k(t,s) = Gi(t, s) 

if k(t,s) = G2(t,s) 

if k(t,s) = G3(t,s) 

iik(t,s) = Gi(t, s) 

3 - t ) ' 2* + 12 
t3(l-t) {l-t)3t 

75 ' 75 

t(l-t)2 t2{l-t) 
20 20 

(with t £ [0,1]) fulfills condition (2.5). It is easy to see that the functions Gj(t,s) 
do not satisfy (2.3)(c) for j = 1,2,3,4. 

We wil l give later on a theorem on the existence of positive solutions of the 
problems (2.16)-(2.18). 

EXAMPLE 2.4. Consider the problem 

(2.27) j 
x"(t) + (x(t) + \x'(t) | ) 2 - 0 
z(0)=:r/(0), x ( l ) = - x ' ( l ) . 

The problem (2.27) is equivalent to the problem of determining the fixed point 
of the operator T5 of the form 
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Ts(x)(t) = J G5(t,s)(x(s) + \x'(s)\)2ds, 

where the Green function G5 is defined as follows 

( (2-*)(! + *) 

G ^ ' S ) = » ( 2 - . ) ( ! + * ) 

0 < s < t < 1 

0 < t < s < 1. 

F ix t 0 = i d(«) = i M = i , fc*(t) = 1, fco(s) = fci(a) = | and ^(«) = 
w 2 for t € [0,1] and u G [0,00). Clearly 

and 

g(RMd(s)k*{s)) = R2M2d2(s)k*2(s) = —R2 

: / [ * G - ) 

a c 5 (I 

R2 

1024 

at V 2 

dG5 (\ 

g(RMd(s)k*(s))ds 

+ dt 12' 
ds> R 

for sufficiently large R. Next we claim (2.7) holds for r = \. To see this notice that 

i 1 
sup / Gb(t,s)ds+ sup / -^-(t,s) 

t€[o,i] J te[o,i] J a t 

9 r 
ds = - < 

8 ~ ip{r) 
2. 

So (2.7) holds. Thus all conditions of Theorem 2.1 are satisfied and the problem 
(2.27) has a positive solution x G C2[0,1] with x(t) > 0 for t G (0,1) . 

It is possible to obtain another existence results for (1.1) if we change some 
conditions on the nonlinearity / and some of the conditions on the kernel k. 

In the sequel, we will assume that gf„-i (t, s) is continuous with respect to (t, s) 
on triangles 0 < t < s < 1 and 0 < s < t < 1. B y f ^ r ( s + 0 , s) ( f - ^ r ( s - 0 , s)) 
we will denote the right-hand (the left-hand) side derivative of order n — 1 of k at 
(s,s). 

T H E O R E M 2.5. Let conditions (2.1), (2.6)-(2.7) be satisfied. Moreover, we as
sume that 

(2.28) g t n-i k is continuous with respect to (t,s) on triangles 0 < t < s < 1 and 
0 < s < t < 1, 

(2.29) there exist constants do > 1, Mo > 0 and m 6 (0 , 5 ) suc/i t/iat 
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(a) 

dok(t, s) 
dk 
dt 

(t,s) + ...+ r ( M ) 

> k(s,s) + 
dk 
dt 

(s,s) + ...+ 
d m - l 

dt" 
^k(s-0,s) 

(b) 

for t £ [m, 1 — m], s £ [O,1] and t < s 

d0k(t,s)-(^ ^(t,s) + ...+ 

>k(s,s) + \ — (s,s)\ + ...+ 

dn-xk, . 

£ n - l 

/or £ G [m, 1 — m], s G [0,1] and s <t, 

(c) 

k(s,s) + 
dk 

(s,s) 
dt 

> M0 (k(t, s) + 

+ ...+ 

dk 

dn~lk, n . 
r(s-0,s) 

dt 
(t,s) + ...+ 

& n— 1 
^k(t,a) 

for t € [0,1], s € [0,1] and t < s, 

+ - + a ^ s + 0 ' s ) J 
(d) 

<?fc 
fc(s, s) + 

> M0 ( k(t, s) + 

for t G [0,1], s G [0,1] and s < t, 

(2.30) there exist r G C[m, 1 — m] and g G C[0, co) such that r > 0 on [m, 1 — m], 

[0, co) —• [0, co), g is nondecreasing, g(ń) > 0 for n > 0 and 

/ ( i , v 0 , " i , •.., w n _i) > r(t)g(v0) for t G [m, 1 - m] 

and ( u 0 , u i , . . . , u „ _ i ) G [0,oo) x (—cc, o o ) n _ 1 , 
(2.31) there exist numbers R > 0 and to G [wi, 1 — m] with R> r and 

1—m 

doR < J d0k(t0,s) 
dk 
di (to,s) 

+ ...+ 
gn-l 

9 ( - J — ) T(S) ds. 
V do 

Tften (1.1) Zias a positive solution x £ Cn 1[0,1] swc/i tftat m i n t 6 [ m ) i _ m ] dox(t) > 
M0r. 
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P R O O F . Let 

K = ( t i € Cn~l[0,1] : u(t) > 0, min [d 0u(t) - (\u'{t)\ + ... + |u(n- ł)(t)|) 
L [m, 1—m] 

> M0||w||„-i}. 

Clearly K is a cone of E. Let Qi, Cl2, f*(s,x(s)), and A be denned as in the 
proof of Theorem 2.1. First we show A: Kn(Tl2\Cli) —*K. Let x G Jfn ( fk\fti) , 
s € [0,1] and t G [m, 1 — m]. Then relations (2.1), (2.29) imply 

d0Ax(t) - [ |(Ac)'(t)| + • • • + K A r ) ^ - 1 ^ * ) ! ] 

dok(t, s) -/ 
0 
t 

1 
0 

+ 

at 
(t,s) + ...+ 

dn~lk, x 

&(s, s) 
at 

(s,s) + ...+ 
dn~1k 
a t ^ r ( s + 0 ' s ) 

/ k(s,s) + 
dk 
at 

(s,s) + ...+ 
d^k, n . 
a ^ r ( s - ° ' s ) 

f*(s,x(s))ds 

f*(s,x(s))ds 

f*(s,x(s)) ds. 

On the other hand, by (2.29) we get for s,t € [0,1] 
t 

I k(s,s) + 

i 

•/ 
t 

t 

>M0J 

dk 
at (s,s) + . . .+ 

dn_1k 
a t ^ r ( s + 0 ' s ) 

k(s,s) + 

k(t,s) + 

dk 
dt 

dk 
dt 

(s,s) 

(t,s) 

+ ...+ 

+ . . .+ 

r (« - 0 , s ) 
a t " - 1 v ; 

a t ^ r ^ s ) 

+ M ( &(t, s) + 
a_fc 
at 

( t , s ) + ...+ 

f*(s,x(s))ds 

f*(s,x(s))ds 

f*(s,x(s))ds 

f*(s,x(s))ds 
dn-xk,- x 

d i ^ { t ' 3 ) 

> M0[\Ax(i)\ + \(Ax)'(t)\ + ... + \(Ax)<n-»®\]. 

Thus 

min [doAc(t) - (|(Ar)'(t)| + . . . + \(Ax)^(t)\] > MoWAx^ 

and in consequence A(K) C K. We now show 

(2.32) ||Ac||n_i < ||x||„_i for x G K n dSlx. 

To see this let x G K n a ^ . Then ||x||„_i = r and d 0 x(t) > M 0 r for t G 
[m, 1 - m]. Also for t G [0,1] we have 
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S K A T O W I <x; / ns,X(s))ds 

/ n _ 1 f dik 

V ̂  *€I0.1] i 9 t 

ds V ( l k l l n - i ) < r = ||x|| n _i. 

Thus (2.32) holds. Next we show 

(2.33) ||Ac||n-i > ||a:||„_i for x £ K n d f t 2 • 

To see it let x £ K n d9.2 • Then we get ||x||„-i = R and d0x(t) > M0R for 
t£[m,l-m}. B y (2.30)-(2.31) we have 

d 0||Ac|| n_i 
> d0Ax(t0) - [ \(Ax)'(t0)\ + ... + j (Ax) (t0) I ] 

f r / dk dn k \ > J ^d0k(t0,s)-^—(t0,s)+...+ ^ZT(to,s)j 
m 

1 — m , v i 

/

r ( dk dn k \ 

\d0k(to,s)-(—(to,s) +...+ ^zr(to,s) j 

f*(s,x(s)) ds 

(RMo 
\ d0 

T(S) ds 

> doR = do||a;||n-i • 

Thus (2.33) holds. The standard arguments show that the operator A is con
tinuous and compact. Theorem 1.1 implies A has a fixed point x £ K n (Cl2 \ Sli) 
i.e. r < ||x||n-i < R and dox(t) > Mor for t £ [m, 1 — m]. This completes the proof 
of Theorem 2.5. • 

COROLLARY 2.6. Let assumptions (2.1), (2.6), (2.28)-(2.31) 6e satisfied. More
over, let there exists r > 0 iwt/i > a, where 

n - l 

a = Y"] sup 
i=o t.'e[o,i) 

9*fc(t,s) 

Tften (1.1) has a positive solution x £ Cn 1[0,1] with m i n t € [ m i l _ m ] d o z ( 0 > M 0 r . 

REMARK 2.7. It is not difficult to verify that the following constants 

iik(t,s)i=Gi(t,s) 

if k(t, s)=G2(t,s) 
Mo={ 

( 1 
2' 
1 
6' 
l_ 

16' 

and do = 
if fc(i, s) = G 3 ( t , s) 

12, if A;(t,s) = Gi(t,s) 
144, if fc(t,s) = G2(t,s) 

20000, if fc(t,s) = G 3 ( t , s ) 
1280, if k(t, s) = G 4 ( t , s) 

- , iik(t,s)=Gi(t,s) 

satisfy condition (2.29) with m= \. 
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R E M A R K 2.8. Let i e {1,2,3,4} and let functions G{ be denned by relations 
(2.15)-(2.18). It is not difficult to check that: 

sup Gi (t, s) + sup 
t,s€[0,l] t,sG[0,l] 

sup G2(t, s)+ sup 
t,s€[0,l] t,s£[0,l] 

sup G3(t, s)+ sup 
*,*6[o,i] t,se[o,i] 

at 

dG2 

dt 

dG3 

dt 

(t,s) 

(t,s) 

(t,s) 

39VT3 + 48 1 
162 + 192' 

sup G4(t,s)+ sup 
t,«€[0,l] t,se[o,i] 

_ 61 -v/3 
~ 48 + 27 ' 

dG4 

dt 

5 
4 ' 

+ sup 
t,«e[o,i] 

+ sup 
t,se[o,i] 

+ sup 
t,s€[0,l] 

d2G2(t,s) 
dt2 

d2G3 

i ( 5 V 5 - 6 ) , 

dt2 

d2GA 

(t,a) 

dt2 
(t,s) 

+ sup 
t,s€[0,l] 

+ sup 
t,s€[0,l| 

dt3 

0 3 G 4 

(t,s) 

dt3 
(t,s) 

R E M A R K 2.9. Consider the following boundary value problem 

(2.34) 
*<4>(i) = \t(x(t)a + \x'(t)f + |i"(t)p + \x"'(t)\s) 

x(0) = x'(0) = x( l ) = x ' ( l ) = 0, 

where t € [0,1], a > 1 and a,/?,7, S > 0. 
Let n be a natural number such that n > max(a, /?, 7,5). Then 

|*(uj + \Vlf + \v2\i + \v3\s) 

< l^ + < + \vi\n + \v2\n + \v3\n) 

< 5[4 + (wo + + M + |w3|)n] for v0 e [0,00). 

We put 

V>(«) = g(4 + un), g(v0) = l v $ , r(t) =t, m = j , r = 1, d0 = 20000, 

*o = |, M 0 = and A(t, s) = G 3 ( t , s) 

(where G 3 is defined by (2.25)). Then 

r _ 8r 8 39\/l3 + 48 1 
V>(r) ~~ 4 + r " ~ 5 162 + 192 ~~ ° 

and 
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1 — 7/1 

j jdoG 3(to,s) 

dG3 

dt 
(to,s) 

d2G3 

dt2 
(*o,s) 

d3Ga 

(to, s) 

= ± j | 2 0 0 0 0 G 3 ^ , s 
dG3 (1 
dt \2 

dt3 

d2G3 (\ 

[RM0\ . . . 
9 { - ^ o ~ ) T i s ) d S 

dt2 \2 

d3G3 (\ 
dt3 

sRads 
320000" 

> d0R = 20000.R 

for sufficiently large R. 
It is easy to check that the function 

f(t,v0,v1,v2,v3) = i t « + \Vlf + \v2p + \v3\s) 

fulfills all assumptions of Theorem 2.5. So the problem (2.34) has a positive solution 
x G C 4[0,1] with x(t) > 0 for t G (\, § ) . 

Notice the function 

f(t,v0,v1,v2,v3) = ^t(v0 + + \v2\ + \v3\) 

has not property (2.31). To see this let x be a solution of the problem 

(2.34)' 

Then 

Hence 

x^(t) = i t (x( t ) + \x'(t)\ + \x"(t)\ + \x"'(t)\) 

x(0) = x'(0) = x(l) = x ' ( l ) - 0, t G [0,1]. 

i 

x(t) = l - J G3(t,s)(x(s) + \x'(s)\ + \x"(s)\ + \x"'(s)\)sds. 

N U < gdWs. 

This together with |a < 1 yields x(t) = 0 for t G [0,1] and in consequence the 
problem (2.34)' has not positive solutions. So / does not satisfy (2.31). 

It is not difficult to verify that the function 

f(t,v0,vuv2,v3) = ±t(v§ + M " + |waP + |w3|') 

satisfies all assumptions of Theorem 2.5 with 

3 1 
k(t,s) = G4(t,s), M 0 = — , d 0 = 1280, m = -, 

l b 4 

« W = J i $(u) = ^(4 + u n ) , r = l ; a,/?,7,<5 > 0 and a > 1. 
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So the problem 

XW(t) = |t(s(t)» + \x'(t)f + \x'\t)V + \x"'(t)\s) 

x(0) = x"(0) = x( l ) = x"{l) = 0, x G [0,1] 

has a positive solution x G C 4[0,1] such that x(t) > 0 for t G (\, § ) . 
Proceeding analogously to problem (2.34) we can prove that the problems 

x"'(t) = \t(x(tr + \x'(t)f + \x"(t)p) 

x(0) = x ( l ) = x ' ( l ) = 0 , te [0,1], a,/3,7,<J>0, a > l 

and 

x"(t) + lt(x'(t) + \x'(t)f) = 0 

x(0) = x ( l ) = 0 , te [0,1]; a ) ( 3,7,5>0, a > 1 

have positive solutions x such that x(t) > 0 for t G (3, §)• 

Before formulating a next theorem we will introduce some notation. For p > 1, 
Lp[0,1] is the Banach space of functions x such that |x|p is Lebesgue integrable on 
[0,1] with the norm 

i w i ; = ( / K * ) r * Y -

The symbol W n _ 1 ' p [ 0 , l ] (n > 2) denotes the set of all functions x with x^" - 2 ) 
absolutely continuous and x ( n _ 1 ) G Lp[0,1]. For x G W™ - 1 ' p [0 ,1 ] we introduce the 
following norm 

l F l | n - l , p = SUp 
te[o,i] 

' + i ^ ( n - 1 ) i i ; -
»=0 

The space (W n _ 1 ' p [0,1], || • ||n-i,p) is the Banach space. We adopt the following 
convention y(t + r ) = 0 if t + T <£ [6,1] and y G Lp[0,1]. 

A function 

/:[0,1] x [0,oo) x (-co, o o ) " - 1 —• [0,oo) 

is a Caratheodory function provided: If / = f(t, z), then 

(i) the map z —• f(t, z) is continuous for almost all £ G [0,1], 

(ii) the map t —> f{t,z) is measurable for all z in [0, oo) x (—oo,oo) n _ 1 . 

If / is a Caratheodory function, by a solution to (1.1) we wil l mean a function 
x which has an absolutely continuous (n — 2)st derivative such that x satisfies the 
integral equation (1.1) almost everywhere in [0,1]. 

3 Annales 
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T H E O R E M 2.10. Assume that conditions (2.1)-(2.2), (2.5) are satisfied andp, q 
are such that p, q > 1 and ^ +1 = 1. Suppose the following conditions are satisfied: 

(2.35) there exist k* G C[0,1], Ę G L p[0,1] and M > 0 such that 

(a) k*(t) > 0 /or a.e. t G [0,1], 

(b) fej(s) > 0 and J^1 fcj(s) ds > 0 /or i = 0 , 1 , . . . , n — 1 and a.e. s G [0,1], 

(c) Mk*(t)ki(s) < I I < ki(s) for i = 0 , l , . . . , n - l ; t 6 [0,1] and 
a.e. s G [0,1], 

(d) the map (t,s) —• g t n-i k(t, s) is measurable, 

(2.36) /: [0,1] x [0,oo) x (—oo,oo) n _ 1 —> [0, oo) is a Caratheodory function and 
there exist nonnegative functions Pj G Lq[0,1] and a constant pn > 0 with 

n - 2 

f(t,V0,Vi,...,Vn-i) < ^Tpi(t)\Vi\ +Pn-l(t) +Pn|v„_l|? 
i=0 

/or j = 0 , 1 , . . . , n — 1 and a.e. t G [0,1], 

(2.37) / ( t , u 0 , u i , •••,«„-!) < #(t>o + + . - . + K - i | ) for a.e. t G [0,1] and 
(uo, u i , . . . , vn-i) G [0, oo) x (—oo, o o ) n _ 1 with [0, oo) —> [0, oo) contin
uous and nondecreasing and $?(u) > 0 for u > 0, 

(2.38) there exists cp G C[0,1] with 

\\9(x + \x'\ + ... + \x<n-V I) ||* < <p(\\x\\n„Up) for all x G W ^ - ^ O , 1], 

(2.39) / ( t , t ) 0 , u i , . . . , u „ - i ) > g(v0) for a.e. t£ [0,1] and all (v0, vi,..., u n _x) G 
[0,oo) x (—co,oo) n _ 1 with g: [0,oo) —• [0, oo) continuous and nondecreas
ing and g(u) > 0 for u > 0, 

(2.40) there exists r > 0 with 

<p(r) >(6+||fc„_i||;), 

where 
n-2 

b = 2_] S U P 
i=o *e[o,i] 

(2.41) t/iere exist R > 0 and to G [0,1] suc/i that R> r, k*(t0) > 0, d(t0) > 0 and 

i 

R< j d(t0)g{RMk*(s)d{s)) k(to, s) + 
dk 
dt (*o,s) 

+ ...+ 
a 1 in—1 

ds. 
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Then (1.1) has a solution x G W^^O, 1] with x(t) > 0 for a.e. t G [0,1]. 

P R O O F . Let a(t) = Md(t)k*(t) and let 

K = {u£ Wn-l*[0,1] : u(t) - d(t) [\u'(t)\ + ... + I i i * " - 1 ^ ) ! ] > a W I M I n - i , P 

for a.e. t G [0,1]}. 

Clearly i f is a cone of W^^O, 1]. Let 

!)! = {«£ Wn~l>P[0, 1] : ||u||„-i,P < r} , 

Q2 = {u G W ^ - ^ I O , 1] : I M U - i . p < R} 

and let 

Let 

be denned by 

Then 

/•(*,u(s)) = f(s,u(s),u'(s),...,u^(s)). 

A-.Kn (n2 \ no — » r - ' ^ o , 1] 

i 

Ar ( t ) = y fc(t,s)/*(s,a:(s))ds. 

i 
(2.42) | ( A r ) ( n _ 1 ) ( * ) | < Jkn(s)r(s,x(s))ds 

o 

and 

\Ax(t) + \(Axy(t)\ + ... + \(Ax)(»-2Ht)\ 

(2.43) / | S ( M ) /*(*,*(«))<**< £ /fci(*)r(«,x(*))d». 
i=0 ^ I i - 0 £ 

From relations (2.42)-(2.43), (2.37)-(2.38) and Holder's inequality it follows 

n - l 

I I A C||„_ 1 i P <E / ( * . * ( * ) ) < * » < f^\\ki\\;\\r(sM*)K 

(2.44) i = 0 o i = 0 

< E v ( i i ^ i i n - i , p ) i i f c i i i ; 
i=0 

Note that A is well denned and A is a bounded operator. Now we will prove 
A: K n (H2 \ AO —» ff. If x G i f n (n2 \ nO and t G [0,1], then (2.35), (2.5), 

3* 
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(2.44) imply 

Ax(t) - d{t) [\{Ax)'{t)\ + ... + K A r ) ^ - 1 ^ ) ! ] 

> d(t) J 

o 

dk 
+ ...+ 

gn-l 
Tk(t,s) 

gtn-l V ) ) 
f*(s,x(s)) ds 

> d{t)Mk*(t) 
n - l J. 
£ / M 
i=o i 

s)f*(s,x(s))ds 

> Md(t)k'(t)\\Ax\\n_liP > o(t)||AB||n_i,p. 

Thus Ax G K and A: K n (f22 \ fil) —» #• Now we wil l prove that A 
is a continuous operator. It is enought to show that the Niemytzki operator 
H: Wn~l*[0,1] —• L 9[0,1] defined by 

Hx(t)=f(t,x(t),x'(t),...,x^-1\t)) 

is continuous. The proof of the continuity of H is similar to the proof of Theorem 1.2 
in [6]. Let {x„} be a sequence of elements of W n _ 1 ' p [ 0 , 1 ] converging to x in 
Wn~l'p\0,1]. Then there exists a subsequence { x i " - 1 ) ( t ) } such that 

l im = 5 ( n - 1 ) ( t ) 
A—too 

for a.e. t G [0,1]. 

Moreover, there exists a function g G L p[0,1] satisfying the following condition 

< 9(t) for a.e. t € [0,1] 

([6], Lemma 2.1). Hence by (2.36) we conclude that there exists a function h G 
L^O, 1] such that 

\f(t,x(t),x'(t),... ^ - " ( i ) ) - f{t,xVx{t)XM (t))\<h(t) 

for a.e. t G [0,1]. 
From the Lebesgue dominated convergence theorem it follows that the Niemytz
ki operator H is continuous at the point x. We next show that A is completely 
continuous. Let Q be a bounded set in ( W n _ 1 ' p [ 0 , 1 ] , || • || n _i ] P ) . Then, by virtue of 
(2.44) we have A(Q) is bounded in ( W n _ 1 ' p [ 0 , 1 ] , || • ||„_i,p). We need to prove that 
A(Q) is relatively compact. We wil l use the Arzela-Ascoli and the Riesz theorems. 
In fact, let yv G A(Q) i.e. 

yv - A{xv), xv G f2. 

Since A(£l) is bounded in ( W n _ 1 ' p [ 0 , 1 ] , || • ||n-i,P) there exist subsequences { x ^ } 
and {y9J} of sequences { x ^ } and {yi^} uniformly convergent to x^ and 
respectively for j = 0 , 1 , . . . , n—2. Without loss of generality we can assume that the 
sequences {x^} and {y^} are uniformly convergent to x ^ and yV\ respectively. 

We wil l prove that there exists a subsequence {y^™ - 1^} of the sequence 
such that 
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l im - y\\* = 0, where y € U>[Q, 1]. 
A—»oo " "f 

In fact, for fixed r > 0, we have by the Holder inequality and the Fubini theorem 
that 

i 

J I (Axv)^(t + r) - {Axvfn~V(t)\p dt 
o 

- J ( j \ d ^ k { t + T ' s ) ~ d ^ k { t ' s ) P d s ) d t J (j\r(s^(s))\9ds)'dt 

0 ^ 0 ' 0 ^ 0 ' 
1 / 1 „ \ 

< (<p(\\Xr\\n-ltP))* J I J _ f c ( i + T , * ) - ^ j - f c ( M ) dt\ds. 

Now using the fact that translates of IP functions are continuous in norm we 
see that 

i 

J\(Ax)ln-V(t + T) - (Ax)(n-1\t)\pdt -> 0 
o 

as T —> 0 uniformly. From the Riesz compactness criteria it follows that there 
exists a subsequence {yil~^} of the sequence {y^1^} convergent in Lp[0,1] to a 
function y 6 L p [0,1]. It is easy to notice that ( y ( 0 ) ) ( n _ 1 ) ( * ) = V{t) for a.e. t 6 [0,1]. 
So A(£l) is relatively compact, i.e. A is completely continuous. Next we show that 

(2.45) WMU-1.P < I M U - i * for x € K n O l i . 

Let x e K n d f i i , so ||x||n_i : P = r and x(t) > a(t)r for a.e. £ e [0,1]. The 
relation (2.37)-(2.40), (2.42)-(2.44) yield 

(2.46) £ | ( A c ) W ( * ) | < M I I * l l n - i , p ) 
j=0 

and 

(2.47) 52\(Ax)<»(t)\ + \\(Ax)^-% < V(\\x\\n-hp)(b+ \\kn^\\;) < r. 
3=0 

Now, taking into account the relations (2.46)-(2.47) and (2.40) we get 

||-Aa;||n-i,p < ||a;||„-i,p. 

So (2.45) holds. We finally show that 

(2.48) P x | | n - i , P > \\x\\n-i,P for x G K n df t 2 • 

To see this let x € i f nć?fł 2, s ° H^-l ln—i,p = -R and x(t) > a(£).R for a.e. £ £ [0,1], 
Thus for a.e. t e [0,1] we have 
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||Ar||n_liP > Ax(t0) - d(t0)[|(Ac)'(t0)| + • • • + |(Ar)("-ł)(t0)| ] 

1 \dk 
> d(t0) J k(t0,s) + 

dt + ...+ g(x(s))ds. 

This together with (2.41) yields 

||Ax||„_i,p > R = ||x||n_iiP. 

Thus (2.48) holds. Now Theorem 1.1 implies A has a fixed point x € Kn(f22 Wi) 
i.e. x(t) > a(t)r for a.e. t G [0,1]. This proves Theorem 2.10. • 
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