' ON DIVISIBILITY OF THE NUMBERS
Ha(1), Ha(2) AND H,(3)

JAROSLAV SEIBERT, PAVEL TROJOVSKY

Abstract. We will deal with numbers given by the relation

(k+1)" ~ (Z)kz—nk—l

k3 '

where k is equal to 1, 2 or 3. These numbers arise from a generalization Bernoulli's
inequality. In this paper some results about divisibility and primality of the numbers
H,(1), Hy(2) and H,(3) are found. For example any positive integer n > 1 does not
divide H,(2) and n = 2mod 4 is the necessary condition for divisibility Ha(1) and
H,(3) by n > 2. In addition certain properties of their divisibility are used for finding
primes among these numbers.

H,(k) =

1. Introduction

Some properties of different types of numbers arising from terms in
Bernoulli’s inequality (14 2)® > 1 -+ na were dealt in our previous papers
[1], [2] and [3].

In [1] the numbers b, (denoted by 7, there) given by the relation

b,=2"-n-1,n€eN
were studied with respect to their divisibility and primality.

In [2] we dealt with a generalization of these numbers, concretely the
numbers in the form
(k+1)" —nk -1

bn(k) = L2 3
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where & was any positive integer and n any nonnegative integer. The main
results concerning divisibility of these numbers by 2 and 3 for arbitrary k
were derived. Some of them were used for testing of primality of the numbers
b (k) by computer.

In paper [3] some new results were shown about divisibility of the num-
bers b, (k). Specially we found a congruence for the numbers b, (al + b) un-
der (mod «) (Theorem 1 in [3]). Further we proved that any positive integer
n > 2 does not divide ,,(2) and b,,(4). But for arbitrary positive integer k > 1
there exists infinite number of integers n which divide M, (k) = U”—“,Z—_l
M, (k) are a natural generalization of Mersenne numbers 2 — 1 for any
positive integer k.

But it seems to be interesting to investigate a similar type of numbers
close to the terms of the generalization of Bernoulli’s inequality in the form

1+2)* 2 14 n2+ " 2%, In fact, these numbers H, (k) are given by the
5 g

following relation

(k+1)" - <72I> k2 —nk—1
k3 ’

where & is any positive integer and n is any nonnegative integer. In this
paper we deal with the numbers H,, (k) only for & = 1,2, 3. For example in
the case k = 1 we get the relation to the previous types of the numbers

Hp(1) = b, (1) - <’2’> :2‘“—22: (7;) =2"—1- 7-1—("22)- :

i=0

H,(k)=

Some results about their divisibility and primality are found. Specially
any positive integer n > 1 does not divide H,(2) and n congruent to
2 (mod 4) is the necessary condition for divisibility H,(1) and H,(3) by
n> 2.

In addition certain properties of their divisibility are used for finding
primes among these numbers.

2. The main results

THEOREM 1. If a positive integer n > 2 divides H,(1) or H,(3) then
n =2 (mod 4).

THEOREM 2. Let n > 1. Then

n fHyp(2) .
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3. Some lemmas and preliminary results

LEMMA 1. Let p be any prime and i, | be any nonnegative integers.
Then

(1) P 1) -1,
@) (p+1)" =1 _ [I(modp), p#2
pitl “10(modp), p=2,
fori 21
- %p (mod p?), p>=5,
(Ip+1)? —1 _
(3) —pi—-l)-l_—: l—lz+%la—2l4El+12 (modpz) , p=2
[-32 438 =1-61>+3° (mod p?), p=3.

PROOF. We use the binomial theorem
(lp+1)" =1+ (11 ) (in)' + (g ) (i) + <]; ) I+ ...+ ()"

therefore

(lp+1)" -

1 Z pi— (¢ =2
i :[+121_2__p+13(1) )¢: )[2

53 ) +...+l"i])7’i_"_1

and all assertions are clear after simplification. O

LEMMA 2. Let m be any nonnegative integer. Then

4m — 1 4m —1  3m?-m
= m (mod 3), 7 = 5 (mod 3) .

ProOF. For m = 0 the assertion is obvious and for m > 1 we use the
binomial theorem

4m _ m o_
1:(3+1; 1:3,,1_1_*_(771) sm_2+<m) gm=3 o ...

3 1 2

my .2 m fm
+<3>3 +(2)3+(1).
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Hence,

4m 1 m 4m — 1 m m
3 ( 1 > (mod 3) 3 < 5 ) + 3 (mod 3) .

LEMMA 3. Let m be any nonnegative integer. Then

am-1 (am- 2+ 4m 1 3+m_l 03)
5 3 3 6_m(mo .

ProoF. After simplification the assertion is a clear consequence of

Lemma 2 and the congruence md=m (mod 3). O

LEMMA 4. Let i be any positive integer. Then 3' J Hyi(3).
Proor. As

4n — (72")3'-’-—1 4n — <3;) -1
Hn(s): =

33 33 ’

then

; 3l
4% 1 - .
. ' 2 - 3 31+1(31+1 _ l)
3" [H3i(3) = 3 = 3Ty 1 —

Using the congruence
4¥ _1-7.3%1 =0 (mod 3'13) |
which follows from (3), we obtain

FTETI 1) 155y Lty =gl S

2 2 2 h 2

43 1 -

. .1 —3i-1 . .
it pgit3Z T — git? (mod 3”‘3)
5 = .
Hence Hs:i(3) = 3'! (mod 3%) and the assertion holds. ‘ 0
LEMMA 5. Let n = m3', where m, i are any positive integers,

m % 0 (mod 3). Then n [H,(3).
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Proor.
33.11,,5:(3) = 4™’ _1_77131-“&3"’_;*_1 = (3s+1)¥ —1—% (3"+1)2+7—§3i+1,
where we denote s = 4"13_1 (it is clear that s must be an integer). Thus
using (3) and Lemma 2
3% . H,3(3) = s -3+ — 652 . 87+1 4353 . 301 — 2;—2 (3"‘“)2 + %3”1 =
3i+2 (4'”32— 1 . (47”3_ 1)2 N (4”13_ 1)3 N %> = m 32 (mod 373
and H,,3:(3) = m3~! (mod 3'). O

LEMMA 6. Let n be any positive integer, 2 fn and 3 fn. Thenn [H,(3) .

PROOF. Suppose conversely that n | H,(3) for some positive inte-
ger n which is not divisible by 2 and 3. Such number n can be written

as n = pyl - py? - - - p%, where all a; are positive integers and for pri-
mes p; the relation 5 < p; < p2 < -+ < ps holds. It is easy to see that

| <32n> and we show that 4™ Z 1 (mod p1). If m is the order of the cyclic

group generated by 4 under multiplication (mod p;) then the congruence
4" =1 (mod p;) may be true iff m | n. As the congruence 4' = 1 (mod p;)
does not hold the number m has to be greater than 1. Therefore

2<m < p < py <0< ps. But by Lagrange Theorem m | p; — 1 be-
cause p; — 1 is the order of the group of the numbers relatively prime to p;
under multiplication (mod p;1). It means that m does not divide n, which
is a. contradiction. O

4. The proofs of the main theorems

Proor oF THEOREM 1.

(1) First consider the numbers H,,(1).

Let n be any odd positive integer, then = | (71.—2}-1> and n f2" -1
(see the proof in [1] or in [4], [5], [6] with a proof due to A. Schinzel). Hence
the fact that m has to be even follows easily from the relation

H,(1) =2"-1- (n -2}— 1). Suppose conversely that n = 2m and m is
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an even positive integer. Then

Hym(1) = 22" — 1 - (2"1,;“ 1) =4" — 1 —m(2m+1)

is an odd number, thus 2m J Hy,,(1). It means that if 2m | Hy,,(1) then m
must be odd. Hence if n | H,(1) then n =2 (mod 4).

(ii) The proof of the assertion for the numbers H,(3).

For an odd integer n the proof of the assertion is clear by Lemma 5 and
Lemma 6.

Let n = 2m, where m is an even integer. Then in an analogous way as
in (i) we can write

1 , 3.2m(6m —1 1, .
Hz,(3) = 57 (42”" -1- L(zm——)> = -2—7(42'” -1-3m(2:3m-1)).

It means that if 2m | Hy,,, (3), then m is odd because 2m [ Hypn (3). The proof
is complete. O

PRrROOF OF THEOREM 2.

Let n be a number such that n = 0 (mod 3). Then n does not divide
the number H,(2) = S—%ﬂ because 3 divides n and does not divide
3" — 1. Now let us assume that n Z 0 (mod 3) is odd. The number n can
be written as n = pi' - py*.--p%s, where «;, i = 1,2,...,s, are positive
integers and the primes 3 < p; < py < ... < p,. Suppose there exists
a number n such that n | H,(2). Thus p; | H,(2). As n | 3" — 1, then
p1 | 3" — 1, too. It means that 3* = 1 (mod pp), but we will show that
this congruence does not hold. The group of numbers relatively prime to p,
under multiplication (inod p1) has the order p; — 1. By Lagrange Theorem
m | p1 — 1, where m is the order of the cyclic subgroup generated by number
3 under multiplication (mod pp). Thus the last congruence can be true if
and only if m | n. But m has to be greater than 1, because the congruence
3 = 1 (mod p;) does not hold. It means that 2 < m < py; < pa < ... < ps
and m cannot divide n, which is a contradiction.

If n is even it can be written in the form n = 2% piip32 ... p% where
a;, t = 0,1,---,s, are positive integers, s is a nonnegative integer and the
primes 3 < p; < p3 < ... < ps. It is easy to see that 8 | 3" — 1. But this
relation is true for ap > 2. Then n | H,(2) only if 29+3 | 3" — 1 because
n | Z’T"z. We can write

37" _ 1 _ (320.0)7)‘1717)‘2‘2...7)‘:5 _ 1 —

i3

_ (32ao _ 1) ((32"0)7)‘1’1--'7);‘5—1 n (32110)])‘;1...]);5_2 TR 1)
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The term in the parentheses is odd (the sum of an odd number of odd
numbers) and the factor 32°° — 1 is not divisible by 2%0+3 with respect to
(3). But it means that n does not divide H,(2) for any even n =0 (mod 4).

Finally, suppose that n = 2 (mod 4). Then n = 2/, where [ = pJ* - - - p%s,
primes 3 < p; < py < --- < ps and @y, ¢ = 1,2, s, are positive integers.
We can write Hy(2) = 312007 _ 3%=1 2 g i possible to show that

21 3 93 I
p1 does not divide 3% — 1. Suppose conversely that 32" = 1 (mod p;) or
9! — 1 =0 (mod p;). But we can prove that this congruence is not true in
the same way as the proof was done for 3 — 1. The proof of Theorem 2 is
finished. O

5. Further results about divisibility of the numbers
H,(1) and H,(3)

LEMMA 7. Let i, k be positive integers such that k | (p+1)?" = 1. Then
PRI (p+ 1)7)'kj — 1 holds for all positive integers j.

Proor. For a fixed k we will prove the assertion by induction on j. The
assertion for j = 1 is a consequence of the fact that

p+0P 1=+ 1)7")k 1=
= (+1 -1) <((7’+ D) T ) 1) =

=(p+1)” - 1) <((p+ 1)'/"'>k_1 - 1> +oe <<(p+ 17 - 1) + 1»')

and using Lemma 1 the proof is finished since the term in the parentheses
is divisible by k.

Suppose that the assertion holds for a positive integer j and we will
show that it holds for j 4+ 1, too. We can write

Qi A

p+1"" = 1= (+1r) -1=

i IIRAN i i
= ((p+ 1" -1) (((PH)""') +o+ (1) +1> B

i s\ BL i
= (e ) (7)™ ) )
and it is easy to see that this number is divisible by ptt1gi+!, 0

LEMMA 8. Let p < 100000 be a prime and i a positive integer. Then the

relation p | 43" — 1, where i > t, holds only for the primes p (and starting
with the value t) in the following table:
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~

p ¢t P t P t
1 487 5 | 52489 8
1 1459 5 | 71119 4
19 2 2593 4 | 80191 6
73 2 | 17497 7 | 87211 3
163 4 | 39367 7 | 97687 6

Proor. The assertion can be proved by using Lagrange theorem about
the order of the cyclic subgroup. For example if p = 17 we get the con-
dition 43" = 22% = 1 (mod 17) and the smallest number e satisfying
the condition 2¢ = 1 (mod 17) is ¢ = 8. But as 8 J2 - 3% for any 7 then
17 J4% — 1 for any positive integer i. Further if p = 19 we get the condition
43" =223 =1 (mod 19) and the smallest number e satisfying the condition
2°=1 (mod 19) is ¢ = 18. And as 18 [ 2-3' for i > ¢, = 2, then 19 | 4% — 1
for any positive integer i > 2. As the proof can be done in the same way for
any prime p it is possible to use computer for it. O

THEOREM 3. Let ¢, k be any positive integers such that k | 4% — 1 and
J be any positive integer. If n = 2 - 3*k’ then

n| Hy(1) .
PROOF. Since
Hygipi (1) =4%% —1-3%i(2- 3k + 1),

divisibility by 2 is clear and divisibility by 3'k7 follows from Lemma 7 for
p=3. O

THEOREM 4. Let i be any nonnegative integer. If n = 2 - 5% then
n | H,(3) .

Proor. We can write

16° —1—3-5{(2-3-5/ —1)

Hys:(3) = -

and we get the assertion using Lemma 1 and clear divisibility by 2. a
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6. Remark on primality of the numbers H,(1), H,(2) and H,(3)

The following theoreins are the basis for our computer testing of prima-
lity of the numbers H, (1), H,(2) and H,(3).

THEOREM 5. Let n > 2 be any positive integer. Then

2| Hy(1) <= n=1,2 (mod 4) ,

3|H,(1) <= n=0,1,2 (mod 6) ,

5|Hy(1) <= n=0,1,2,4,13 (mod 20) ,

7| H.(1) <= n=0,1,2,6,11,19(mod 21) ,
)

11| Hy(1) <>n =0,1,2,7,10,31, 47,52,104 (mod 110) .

Proor. All cases can be proved in a similar way. Therefore we take only
the case of divisibility by 3. Suppose n = 0 (mod 6), thus n = 6m, where m
is a positive integer. Then
Hem(1)=2%" — 1 - 3m(6m + 1) = 64™ — 1 — 3m(6m + 1)
and 64™ — 1 is divisible by 3 for all positive integers m, which is obvious.
Similarly we can prove the cases n = 1,2 (mod 6).

Now suppose n = 3 (mod 6), thus n = 6m+3, where m is a nonnegative
integer. Then 3 does not divide

Hepia(1) = 28™%3 —1 — (3m + 2)(6m + 3)

as 3 | 6m+3 and 3 J25+3 — 1 which is obvious. We use the same procedure
for n = 4,5 (mod 6). O

THEOREM 6. Let n > 2 be any positive integer. Then

2| Hp(2) & n=0,1,2 (mod 4),

3|H,(2) <= n=1,2 (mod 3),
5| H,(2) < n=0,1,2,9,18 (mod:20)
7| Hn(2) <= n=0,1,2,11,13,17,26 (mod 42)
11| H,(2) <= n =0,1,2,21,42 (mod 55)
ProoF. The proof is similar to the proof of Theorem 5. O

4 Annales...
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THEOREM 7. Let n 2 2 be any positive integer. Then

2| H,(3) <= n=1,2 (mod 4),

3|H,(3) <= n=0,1,2 (mod 9),

5|H,(3) <= n=0,1,2 (mod 10),

7| H,(3) <= n=0,1,2,4,12,17 (mod 21),
11| H,(3) <= n=0,1,2,15,36(mod 55).

Proor. Again the proof is similar to the proof of Theorem 5. a

We used Theorem 5, Theorem 6 and Theorem 7 for the computer testing
of primality of the numbers H,(1), H,(2) and H,(3) in the following way.

The conditions of divisibility by the numbers 2, 3 and 5 lead to the fact
that every prime f,,(1) must be in the form

Heokt+4(1), Heor—20(1), Heox—s(1), Heor—-o(1), Heor+3(1), Heost+11(1)
or Heok23(1), every prime H,(2) in the form
Heor+3(2), Heort15(2), Heont27(2), Heort3o(2), Heorts1(2)

and every prime f,,(3) must be in the form

Hz10k43(3), Haor+4(3),  Hawont7(3),  Harorts(3),  Hators15(3),
Hy10k+16(3), Haion+23(3), Haiok+24(3), Haior+3s(3), Haiok+39(3), »
Hayor+43(3), Har0k444(3), Hatort4s(3), Harokes9(3), Hzionxer(3),
Hator468(3), Hatoks75(3), Hatont76(3), Harort+79(3), Harontsa(3),
Hj10k487(3), Hatok+8s(3), Harokxes(3), Howokte6(3), Harort103(3),
Haiok4104(3), Ha106-94(3), Haton-86(3), Harok-71(3), Haion-63(3),
Hator—62(3), Ha10k-54(3), Hatox-51(3), Har0k-42(3), Hai0x-34(3),

Ha106-31(3)-

We have found by computer that H4(1), His(1), Hiss(1), Hsss(1),
Hgrgs (1), Hau3(2), H4(3), H7(3) and Hg(3) are the only primes with the
index lesser than 10000.
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