Prace Naukowe Uniwersytetu Śląskiego nr 2142, Katowice

ON A PROBLEM OF WU WEI CHAO

Zygfryd Kominek

Abstract. Answering a question posed by Wu Wei Chao [2], we determine all solutions $f : \mathbb{R} \to \mathbb{R}$ of the equation

$$f(x^2 + y + f(y)) = f(x)^2 + 2y, \qquad x, y \in \mathbb{R}.$$

In volume 108 (No 10, December 2001) of the American Mathematical Monthly, Wu Wei Chao [2] posed the following problem: find all functions $f: \mathbb{R} \to \mathbb{R}$ satisfying the functional equation

(1)
$$f(x^2 + y + f(y)) = f(x)^2 + 2y, \quad x, y \in \mathbb{R}.$$

We will show that the only solution of (1) is an identity function i.e. $f(x) = x, x \in \mathbb{R}$. Our proof is based upon two lemmas.

LEMMA 1. If $f : \mathbb{R} \to \mathbb{R}$ is a solution of the functional equation (1), then it is odd.

PROOF. Firstly we shall show that

(2)
$$c := f(0) = 0.$$

By (1) we have

$$(3) f(c) = c^2;$$

(4)
$$f(x^2+c) = f(x)^2, \qquad x \in \mathbb{R};$$

Received: 4.11.2002. Revised: 9.12.2002.

2 – Annales...

and

(5)
$$f(c+c^2) = c^2 + 2c.$$

By virtue of (3) and (4), $f(c+c^2) = c^4$, which together with (5) implies

(6)
$$c(c^3-c-2)=0.$$

Putting x = 0 in (1), we get

(7)
$$f(y+f(y))=c^2+2y, \quad y\in\mathbb{R},$$

and whence $f(\mathbb{R}) = \mathbb{R}$.

Let y_0 be chosen such that $f(y_0) = 0$. It follows from (7) that $0 = c^2 + 2y_0$ or, equivalently,

$$y_0 = -\frac{c^2}{2}$$

Putting y_0 instead of x in (1), we obtain

$$f(\frac{c^4}{4}+y+f(y))=2y, \qquad y\in\mathbb{R}.$$

Therefore $f(\frac{c^4}{4}+c) = 0$, and using (8) we get $c(c^3+2c+4) = 0$. According to (6), we infer that c = 0, which finishes the proof of condition (2).

Putting y = 0 in (1) and on account of (2), we get

(9)
$$f(x^2) = f(x)^2, \qquad x \in \mathbb{R}.$$

This implies that

(10)
$$f(u) \ge 0, \quad u \in [0,\infty).$$

According to (9), we have the following alternative

$$f(x) = f(-x)$$
 or $f(-x) = -f(x)$, $x \in \mathbb{R}$.

Assume that for some z > 0 we have f(z) = f(-z). It follows from (1) and (9) that

(11)
$$f(x^2 - z + f(z)) = f(x^2) - 2z, \quad x \in \mathbb{R}.$$

Choose x such that $x^2 = z$. By virtue of (10)

$$0\leqslant f(f(z))=f(z)-2z.$$

Taking into account (11) with x = 0 and using (2), we obtain

$$f(-z+f(z))=-2z,$$

and, therefore (cf. (10)) $f(z) \leq z$. Thus

$$0\leqslant f(z)-2z\leqslant z-2z=-z,$$

which means that $z \leq 0$. This contradicts our assumption that z > 0 and proves that f(-x) = -f(x) for each $x \in \mathbb{R}$. This ends the proof of Lemma 1.

LEMMA 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a function fulfilling the equation (1). Then function $F : \mathbb{R} \to \mathbb{R}$ given by the formula F(x) := f(x) + x, $x \in \mathbb{R}$, satisfies the following conditions:

$$(12) F is odd;$$

(13)
$$F(x^2 + F(y)) = F(x^2) + F(y) + 2y, \quad x, y \in \mathbb{R}$$

(14)
$$F((0,\infty)) = (0,\infty)$$
 and $F((-\infty,0)) = (-\infty,0)$.

PROOF. Condition (12) is a consequence of the definition of F and Lemma 1. Rewrite (1) in the form

$$f(x^{2} + y + f(y)) + x^{2} + y + f(y) = f(x)^{2} + 2y + x^{2} + y + f(y), \quad x, y \in \mathbb{R}.$$

By definition of F and on account of (9), we obtain (13). Now, let us put $y = -x^2$ in (13). Then, by (12) we get

(15)
$$F(u-F(u)) = -2u, \qquad u \in \mathbb{R},$$

and whence $F(\mathbb{R}) = \mathbb{R}$. It follows from (10) and the definition of F that $\operatorname{sgn}(u)(u - F(u)) \leq 0$ for each $u \neq 0$. Thus, (14) follows directly from (15). The proof of Lemma 2 is completed.

THEOREM. If $f : \mathbb{R} \to \mathbb{R}$ satisfies the functional equation (1) then f(x) = x for every $x \in \mathbb{R}$.

PROOF. Let F be function defined in Lemma 2. It follows from (13) and (12) that

$$F(x^2 - F(y)) = F(x^2) - F(y) - 2y, \qquad x, y \in \mathbb{R}.$$

Summing up this equality and (13), we get

$$F(x^{2} + F(y)) + F(x^{2} - F(y)) = 2F(x^{2}), \qquad x, y \in \mathbb{R}.$$

Since $F((0,\infty)) = (0,\infty)$ (comp. (14), the above equality means that F satisfies Jensen's functional equation

$$F\left(\frac{u+v}{2}\right)=\frac{F(u)+F(v)}{2}, \qquad u,v\in(0,\infty),$$

and therefore F, being bounded below on $(0, \infty)$, has to be of the following form

$$F(u) = ku + b, \qquad u \in (0,\infty),$$

where $k, b \ge 0$ are constants (cf. [1], pages 315, 316, for example). Since F is odd and F(0) = 0, b has to be equal to zero and F(u) = ku for every $u \in \mathbb{R}$. Moreover, k has to be equal to 2, because F is a solution of (13). Now, our assertion follows immediately from the definition of F.

References

- M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, Prace Naukowe Uniwersytetu Śląskiego w Katowicach nr 489, Polish Scientific Publishers, Warszawa-Kraków-Katowice, 1985.
- [2] Wu Wei Chao, Problem 10908, Amer. Math. Monthly, 108, 10 December (2001).

Institute of Mathematics Silesian University Bankowa 14 PL-40-007 Katowice Poland

e-mail: zkominek@ux2.math.us.edu.pl