ON A PROBLEM OF WU WEI CHAO

Zygfryd Kominek

Abstract. Answering a question posed by Wu Wei Chao [2], we determine all solutions $f: \mathbb{R} \rightarrow \mathbb{R}$ of the equation

$$
f\left(x^{2}+y+f(y)\right)=f(x)^{2}+2 y, \quad x, y \in \mathbb{R} .
$$

In volume 108 (No 10, December 2001) of the American Mathematical Monthly, Wu Wei Chao [2] posed the following problem: find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the functional equation

$$
\begin{equation*}
f\left(x^{2}+y+f(y)\right)=f(x)^{2}+2 y, \quad x, y \in \mathbb{R} . \tag{1}
\end{equation*}
$$

We will show that the only solution of (1) is an identity function i.e. $f(x)=x, x \in \mathbb{R}$. Our proof is based upon two lemmas.

Lemma 1. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a solution of the functional equation (1), then it is odd.

Proof. Firstly we shall show that

$$
\begin{equation*}
c:=f(0)=0 . \tag{2}
\end{equation*}
$$

By (1) we have

$$
\begin{equation*}
f(c)=c^{2} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
f\left(x^{2}+c\right)=f(x)^{2}, \quad x \in \mathbb{R} ; \tag{4}
\end{equation*}
$$

Received: 4.11.2002. Revised: 9.12.2002.
and

$$
\begin{equation*}
f\left(c+c^{2}\right)=c^{2}+2 c \tag{5}
\end{equation*}
$$

By virtue of (3) and (4), $f\left(c+c^{2}\right)=c^{4}$, which together with (5) implies

$$
\begin{equation*}
c\left(c^{3}-c-2\right)=0 \tag{6}
\end{equation*}
$$

Putting $x=0$ in (1), we get

$$
\begin{equation*}
f(y+f(y))=c^{2}+2 y, \quad y \in \mathbb{R} \tag{7}
\end{equation*}
$$

and whence $f(\mathbb{R})=\mathbb{R}$.
Let y_{0} be chosen such that $f\left(y_{0}\right)=0$. It follows from (7) that $0=c^{2}+2 y_{0}$ or, equivalently,

$$
\begin{equation*}
y_{0}=-\frac{c^{2}}{2} \tag{8}
\end{equation*}
$$

Putting y_{0} instead of x in (1), we obtain

$$
f\left(\frac{c^{4}}{4}+y+f(y)\right)=2 y, \quad y \in \mathbb{R}
$$

Therefore $f\left(\frac{c^{4}}{4}+c\right)=0$, and using (8) we get $c\left(c^{3}+2 c+4\right)=0$. According to (6), we infer that $c=0$, which finishes the proof of condition (2).

Putting $y=0$ in (1) and on account of (2), we get

$$
\begin{equation*}
f\left(x^{2}\right)=f(x)^{2}, \quad x \in \mathbb{R} \tag{9}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
f(u) \geqslant 0, \quad u \in[0, \infty) \tag{10}
\end{equation*}
$$

According to (9), we have the following alternative

$$
f(x)=f(-x) \quad \text { or } \quad f(-x)=-f(x), \quad x \in \mathbb{R}
$$

Assume that for some $z>0$ we have $f(z)=f(-z)$. It follows from (1) and (9) that

$$
\begin{equation*}
f\left(x^{2}-z+f(z)\right)=f\left(x^{2}\right)-2 z, \quad x \in \mathbb{R} \tag{11}
\end{equation*}
$$

Choose x such that $x^{2}=z \cdot$ By virtue of (10)

$$
0 \leqslant f(f(z))=f(z)-2 z
$$

Taking into account (11) with $x=0$ and using (2), we obtain

$$
f(-z+f(z))=-2 z
$$

and, therefore (cf. (10)) $f(z) \leqslant z$. Thus

$$
0 \leqslant f(z)-2 z \leqslant z-2 z=-z
$$

which means that $z \leqslant 0$. This contradicts our assumption that $z>0$ and proves that $f(-x)=-f(x)$ for each $x \in \mathbb{R}$. This ends the proof of Lemma 1 .

Lemma 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function fulfilling the equation (1). Then function $F: \mathbb{R} \rightarrow \mathbb{R}$ given by the formula $F(x):=f(x)+x, \quad x \in \mathbb{R}$, satisfies the following conditions:

$$
\begin{gather*}
F\left(x^{2}+F(y)\right)=F\left(x^{2}\right)+F(y)+2 y, \quad x, y \in \mathbb{R} ; \tag{13}\\
F((0, \infty))=(0, \infty) \quad \text { and } \quad F((-\infty, 0))=(-\infty, 0) .
\end{gather*}
$$

Proof. Condition (12) is a consequence of the definition of F and Lemma 1. Rewrite (1) in the form

$$
f\left(x^{2}+y+f(y)\right)+x^{2}+y+f(y)=f(x)^{2}+2 y+x^{2}+y+f(y), \quad x, y \in \mathbb{R} .
$$

By definition of F and on account of (9), we obtain (13). Now, let us put $y=-x^{2}$ in (13). Then, by (12) we get

$$
\begin{equation*}
F(u-F(u))=-2 u, \quad u \in \mathbb{R} \tag{15}
\end{equation*}
$$

and whence $F(\mathbb{R})=\mathbb{R}$. It follows from (10) and the definition of F that $\operatorname{sgn}(u)(u-F(u)) \leqslant 0$ for each $u \neq 0$. Thus, (14) follows directly from (15). The proof of Lemma 2 is completed.

Theorem. If $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the functional equation (1) then $f(x)=x$ for every $x \in \mathbb{R}$.

Proof. Let F be function defined in Lemma 2. It follows from (13) and (12) that

$$
F\left(x^{2}-F(y)\right)=F\left(x^{2}\right)-F(y)-2 y, \quad x, y \in \mathbb{R} .
$$

Summing up this equality and (13), we get

$$
F\left(x^{2}+F(y)\right)+F\left(x^{2}-F(y)\right)=2 F\left(x^{2}\right), \quad x, y \in \mathbb{R} .
$$

Since $F((0, \infty))=(0, \infty)$ (comp. (14), the above equality means that F satisfies Jensen's functional equation

$$
F\left(\frac{u+v}{2}\right)=\frac{F(u)+F(v)}{2}, \quad u, v \in(0, \infty)
$$

and therefore F, being bounded below on $(0, \infty)$, has to be of the following form

$$
F(u)=k u+b, \quad u \in(0, \infty),
$$

where $k, b \geqslant 0$ are constants (cf. [1], pages 315,316 , for example). Since F is odd and $F(0)=0, \quad b$ has to be equal to zero and $F(u)=k u$ for every $u \in \mathbb{R}$. Moreover, k has to be equal to 2, because F is a solution of (13). Now, our assertion follows immediately from the definition of F.

References

[1] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, Prace Naukowe Uniwersytetu Ślaskiego w Katowicach nr 489, Polish Scientific Publishers, Warszawa-Kraków-Katowice, 1985.
[2] Wu Wei Chao, Problem 10908, Amer. Math. Monthly, 108, 10 December (2001).

Institute of Mathematics
Silesian University
Bankowa 14
PL-40-007 Katowice
Poland
e-mail: zkominek@ux2.math.us.edu.pl

