# SPERNER TYPE THEOREMS FOR GENERALIZED DIVISORS 

## Štefan Porubský


#### Abstract

The extensions of the well-known Sperner's result on antichains of subsets of a given finite set for divisors of a positive integers are shown to hold also for sets of regular systems of divisors of elements of arithmetical semigroups.


## 1. Introduction

The original result ( $k=2$ in the following result of P. Erdős) of E. Sperner [12] on the maximal number of subsets of a given set no one of which is included in the other has been generalized in many directions. One of them proved by P. Erdős [3] says:

If in $\mathcal{F}=\left\{A_{1}, \ldots, A_{n}\right\} \subset 2^{S}$, the power set of a set $S$ of cardinality $|S|=t<\infty$, there is no chain of length $k$, then

$$
n \leqslant \text { sum of } k-1 \text { largest binomial coefficients }\binom{t}{i}
$$

and this is sharp.
One of the first novelties in these set generalizations has been brought (again the case $k=2$ below) by De Bruijn, Van Ebbenhorst Tengbergen and Kruyswijk [2] who proved a corresponding result for subsets of divisors of a given positive integer. Motivated by a close connection between the subsets

Received: 22.10.2002.
AMS (1991) subject classification: Primary 05A05, 11B75, 11 N80.
Key words and phrases: generalized integer, arithnetical semigroup, Narkiewicz's regular system of divisors, Sperner system, symmetric chain.

The author was supported by the Grant Agency of the Czech Republic, Grant \# 201/01/0471.
of a finite sets and the subsets of divisors of a square-free positive integer various interesting links between both topic were found. E.g. Schönheim [11] proved:

If in $\mathcal{D}=\left\{h_{1}, \ldots, h_{n}\right\} \subset D(N)$, the set of all divisors of $N=p_{1}^{\alpha_{1}} \cdots p_{t}^{\alpha_{1}}$, there is no chain of length $k$, then

$$
n \leqslant \text { sum of } k-1 \text { largest numbers } \tau_{i}(N)
$$

and this is sharp.
Here $d(n)$ denotes the degree of $n$, that is, the total number of prime divisors of $n$, and $\tau_{\beta}(N)=\#\{h: h \mid N, d(h)=\beta\}$. The reader is referred to [5] for more details about further generalizations and comments.

In [10] the author proposed a further generalization in the sense that the positive integers were replaced by elements of an arithmetical semigroup and the sets of divisors by the so-called regular systems of divisors. To make the paper self-contained we repeat some basic definitions for the convenience of the reader in the next section.

## 2. Regular systems of divisors

Let $G$ denote a free commutative semigroup relative to a multiplication operation denoted by juxtaposition, with identity element $1_{G}$ and with at most countably many generators $P_{G}$. Such a semigroup will be called (cf. [7]) arithmetical semigroup if in addition a real-valued norm $|\cdot|$ is defined on $G$ such that
(i) $\left|1_{G}\right|=1,|a|>1$ for all $a \in G$,
(ii) $|a b|=|a| \cdot|b|$ for all $a, \dot{b} \in G$,
(iii) the set $\{a \in G:|a| \leqslant x\}$ is finite for all real numbers $x$.

The elements of $G$ are called generalized integers. The free semigroup structure of $G$ substitutes the multiplicative structure of positive integers. The analytical part of the theory of arithmetical semigroups based on the existence of the norm mapping $|\cdot|$ will play rather peripheral role mainly because most of our reasoning will be based on the divisibility relation induced by the multiplication in $G$ where each element of $G$ being uniquely representable as a product of generators of $G$ has only a finite number of divisors, what replaces requirement (iii) in our arguments.

The standard terms like divisor are defined between generalized integers in the expectec way, by saying that an element $b \in G$ divides $a \in G$, in symbols $b \mid a$, if there exists a $c \in G$ such that $a=b c$. The set of all divisors of $a \in G$ will be denoted by $D(a)$. The elements of the set $P_{G}$ of all generators of $G$ will be called primes.

Besides the set $\mathbb{N}$ of positive integers the most typical prototypes of arithmetical semigroups are:

Example 1. $G=G_{K}$, the semigroup of all non-zero integral ideals in a given algebraic number field $K$ of degree $n=[K: \mathbb{Q}]$ over rationals $\mathbb{Q}$ with the usual norm function $|\mathfrak{a}|=\operatorname{card}\left(\mathcal{O}_{K} / \mathfrak{a}\right)$.

Example 2. $G=\mathcal{A}$ the category of all finite Abelian groups with the usual direct product operation and the norm $|A|=\operatorname{card}(A)$. Fundamental Theorem on finite Abelian groups shows that $\mathcal{A}$ is free and that the generators are the cyclic groups of prime-power order.

It is well-known that if $\mathfrak{a}$ and $\mathfrak{b}$ are two ideals in a number field $K$ then the relation $\mathfrak{a} \mid \mathfrak{b}$ is equivalent to $\mathfrak{a} \supset \mathfrak{b}$. Thus in this case any divisibility relation can be converted in turn to a set-inclusion form and vice verse. This remains true also for the factor-rings of algebraic integers with respect to a proper ideal. Thus the reformulation of the problem in the framework of arithmetical semigroups shows perhaps more naturally the mentioned connections between the set-theoretic and divisor version.

In the group case, if a finite Abelian group $H=A \times B$ is the direct product of groups $A$ and $B$, then $A$ can be understood as a subgroup (and thus also a subset) of $B$. In the converse direction it is interesting to note that Kertézs [6] proved that every subgroup of a general group $G$ is its direct factor if and only if $G$ is the direct product of cyclic groups of prime order, that is if it is of squarefree order (and clearly Abelian), and we have again a formally different demonstration that De Bruijn et al. implies Sperner.

In the introduction mentioned modification of the divisibility notion is due to Narkiewicz [9] who considered the case of $G=\mathbb{N}$, the set of positive integers. Its extension to arithmetical semigroups is immediate: Let $A$ be a mapping from the arithmetical semigroup $G$ into the set of subsets of $G$ such that $A(a)$ is a subset of the set $D(a)$ of all divisors of $a \in G$. The system

$$
\begin{equation*}
\{A(a): a \in G\} \tag{1}
\end{equation*}
$$

will be called the system of $A$-divisors, the elements of $A(a)$ are called the $A$-divisors of $a$. If $d \in A(a)$, we shall write $\left.d\right|_{A} a$ to distinguish between the $A$-divisibility and the usual divisibility.

The system of $D$-divisors is connected with the well-known Dirichlet convolution. The second most known example is the system of unitary divisors defined by

$$
U(a)=\left\{d \in G: d \mid a,(d, a / d)=1_{G}\right\}
$$

and is connected with the so called unitary convolution (cf. [1]).

The system (1) will be called regular system of divisors (or regular system of $A$-divisors) provided:
(a) $d \in A(a) \Rightarrow a / d \in A(a)$
(b) if $(a, b)=1_{G}$ then $A(a b)=A(a) \cdot A(b)$, where $A \cdot B=\left\{a^{\prime} b^{\prime}: a^{\prime} \in A, b^{\prime} \in\right.$ $B$ \}
(c) $\left\{1_{G}, a\right\} \subset A(a)$ for all $a$
(d) the statement " $d \in A(a)$ and $a \in A(b)$ " is equivalent to " $d \in A(b)$ and $a / d \in A(b / d) "$
(e) for all prime powers $p^{k}, k \in \mathbb{N}$, there exists a positive integer $v$ such that

$$
A\left(p^{k}\right)=\left\{1_{G}, p^{v}, p^{2 v}, \ldots, p^{r v}=p^{k}\right\}
$$

and moreover $p^{v} \in A\left(p^{2 v}\right), p^{2 v} \in A\left(p^{3 v}\right), \ldots, p^{(r-1) v} \in A\left(p^{k}\right)$.
Note that these conditions, as stated here, are not independent.
The divisor $v$ of $k$ is called the type of $p^{k}$ and it will be denoted by $t_{A}\left(p^{k}\right)$ in what follows.

The next result can be proved for general arithmetical semigroups using the same ideas as in [8, Corollary 4.2] for $\mathbb{N}$.

Lemma 3. Let (1) be à regular system of divisors and $p \in P_{G}$, and $\alpha \geqslant \beta \geqslant 1$ two integers. If $A\left(p^{\alpha}\right) \cap A\left(p^{\beta}\right) \neq\left\{1_{G}\right\}$ then $t_{A}\left(p^{\alpha}\right)=t_{A}\left(p^{\beta}\right)$, and $A\left(p^{\beta}\right)$ consists of the $\left(\beta / t_{A}\left(p^{\alpha}\right)+1\right)$ elements of the smallest norm in $A\left(p^{\alpha}\right)$.

An element $a \in G, a \neq 1_{G}$, is called $A$-primitive if $A(a)=\left\{1_{G}, a\right\}$. The $D$-primitive elements are the primes $p \in P_{G}$, while the $U$-primitive elements are the all powers $p^{k}, k \in \mathbb{N}$, of prime elements $p \in P_{G}$. An element $m$ which is a product of distinct $A$-primitive elements will be called $\mathbf{A}$-squarefree.

Corollary 4. If $p^{\lambda}$ is of type $v$, then $p^{v}$ is A-primitive.
Proof. Would we have $p^{\alpha} \in A\left(p^{v}\right)$ with $0<\alpha<v$, i.e. $p^{\alpha} \in A\left(p^{v}\right)$ and $p^{v} \in A\left(p^{\lambda}\right)$, then (d) implies that $p^{\alpha} \in A\left(p^{\lambda}\right)$ which is not true. Hence $A\left(p^{v}\right)=\left\{1_{G}, p^{v}\right\}$, as claimed.

Property (b) immediately implies that:

Lemma 5. If $n \in G$ is $A$-primitive then $n=p^{\alpha}$ for some $p \in P_{G}$ and $\alpha \geqslant 1$.

Note that regular systems of $A$-divisors are completely determined by the sets $A\left(p^{\alpha}\right)$ for all $p \in P_{G}$ and all $\alpha \geqslant 1$. On the other hand, a regular system of divisors is not uniquely determined by its primitive elements. There
are different systems of distinct regular systems of divisors having the same set of primitive elements (cf. [9, p. 87] or [8, p. 160]).

Lemma 6 ([8, Exercise 4.5]). Let $A$ be a regular system of divisors. If $p$ is a prime and $p^{\alpha}$ is the highest power of $p$ that divides an element $m \in G$ then $p^{\alpha} \in A(m)$. Furthermore, if $p^{\beta} \in A(m)$ then $p^{\beta} \in A\left(p^{\alpha}\right)$.

Proof. The statements are direct consequences of properties (a) and (c).

If $a, b \in G$ then the $A$-greatest common divisor $(a, b)_{A}$ is the common $A$-divisor of $a$ and $b$ that is divisible by any other common $A$-divisor of $a$ and $b$. Two elements $a, b \in G$ are $A$-relatively prime if, and only if, $A(a) \cap A(b)=\left\{1_{G}\right\}$.

The next elementary result will be applied later:

Lemma 7. Let $A$ be a regular system of divisors. If $\left.d\right|_{A} m_{1} m_{2}$ and $\left(m_{1}, m_{2}\right)=1_{G}$ then

$$
\left(d, m_{1}\right)_{A}\left(d, m_{2}\right)_{A}=d
$$

Proof. Let $p^{\alpha}$ be the highest power of a prime $A$-dividing $d$. Then (d) impiies tnat $p^{\alpha}{ }_{1}{ }_{A} m_{1} m_{2}$, and consequenty $p_{1}^{\prime} m_{1} m_{2}$. Since $\left(m_{a}, m_{1}\right)=1$, either $p \mid m_{1}$ or $p \mid m_{2}$. Let $p \mid m_{1}$, and let $p^{\beta}$ be the highest power of $p$ dividing $m_{1}$. Clearly, $p^{\beta}$ is also the highest power of $p$ dividing $m_{1} m_{2}$. Lemma 6 shows that $\left.p^{\alpha}\right|_{A} p^{\beta}$. Consequently, $\left.p^{\alpha}\right|_{A} m_{1}$, i.e. $\left.p^{\alpha}\right|_{A}\left(d, m_{1}\right)_{A}$, and the proof is finished.

REMARK 8. In the above lemma it is not possible to replace the condition $\left(m_{1}, m_{2}\right)=1_{G}$ by $\left(m_{1}, m_{2}\right)_{A}=1_{G}$. To see this, take a power of a prime $p^{\alpha}$ such that $t_{A}\left(p^{\alpha}\right)=v>1$. Then $\left(p, p^{\alpha-1}\right)_{A}=1_{G}$. Would be this not true, then $\left(p, p^{\alpha}\right)_{A}=p$, i.e. $t_{A}\left(p^{\alpha-1}\right)=1$ and consequently $p^{v} \in A\left(p^{\alpha-1}\right)$ and Lemma 3 implies the impossible equality $t_{A}\left(p^{\alpha-1}\right)=$ $t_{A}\left(p^{\alpha}\right)$. Thus if $d=p^{v}$ we have $\left(p^{v}, p\right)_{A}=1_{G}$ and also $\left(p^{v}, p^{v-1}\right)_{A}=1_{G}$, i.e. $p^{v} \neq\left(p^{v}, p\right)_{A}\left(p^{v}, p^{v-1}\right)_{A}$.

## 3. A-degree and $A$-chains

Unless contrary is stated $A$ will always be supposed to be a regular systems of divisors. Let $m \in G$. If

$$
\begin{equation*}
m=p_{1}^{\lambda_{1}} p_{2}^{\lambda_{2}} \ldots p_{k}^{\lambda_{k}} \tag{2}
\end{equation*}
$$

is the decomposition of $m$ into primes, then the A-degree $d_{A}(m)$ of $m \neq 1_{G}$ is defined by

$$
d_{A}(m)=\sum_{i=1}^{k} \frac{\lambda_{i}}{t_{A}\left(p_{i}^{\lambda_{i}}\right)},
$$

where $t_{A}\left(p^{k}\right)$ is the type of $p^{k}$, and $d_{A}\left(1_{G}\right)=0$.

Lemma 9. If $\left.a\right|_{A} b$ and $b=a c$, where $c$ is $A$-primitive, then $d_{A}(b)=$ $d_{A}(a)+d_{A}(c)$.

Proof. If $c$ is $A$-primitive then Lemma 5 implies $c=p^{\beta}$ for some $p$ and $\beta \geqslant 1$, i.e. $b=a p^{\beta}$. Since $a \in A(b)$, property (a) yields that $p^{\beta}=b / a \in A(b)$. If $p^{\alpha}$ is the highest power dividing $b$ then Lemma 6 shows that $p^{\beta} \in A\left(p^{\alpha}\right)$. Property (a) applied to $p^{\beta}$ and $p^{\alpha}$ implies $p^{\alpha-\beta} \in A\left(p^{\alpha}\right)$.

If $\alpha-\beta=0$ then the proof is finished. Suppose therefore that $\alpha>\beta$. Lemma 3 implies that $t_{A}\left(p^{\alpha}\right)$ divides each of the exponents $\alpha, \beta$ and $\alpha-\beta$ and that $t_{A}\left(p^{\alpha}\right)=t_{A}\left(p^{\alpha-\beta}\right)=t_{A}\left(p^{\beta}\right)$. Consequently, for the contribution of powers of $p$ to the degrees of $a$ and $b$, we get

$$
\frac{\alpha}{t_{A}\left(p^{\alpha}\right)}=\frac{\alpha-\beta}{t_{A}\left(p^{\alpha}\right)}+\frac{\beta}{t_{A}\left(p^{\alpha}\right)}=\frac{\alpha-\beta}{t_{A}\left(p^{\alpha-\beta}\right)}+\frac{\beta}{t_{A}\left(p^{\beta}\right)}
$$

and the proof is finished.
Note that in the previous lemma the assumptions that $b=a c$ and $c$ is $A$-primitive does not imply that also $\left.a\right|_{A} b$ as the Remark 8 shows for $b=p^{\alpha}$ and $c=p$ provided $t_{A}\left(p^{\alpha}\right)>1$.

An A-chain (of length $h$ ) is a sequence $d_{1}, \ldots, d_{h}$ of elements of $G$ such that $\left.d_{i}\right|_{A} d_{i+1}$ for all $1 \leqslant i<h$.

Lemma 10. If $\left.a\right|_{A} b$ then there exists an $A$-chain $a=d_{1}, \ldots, d_{h}=b$ of elements of $G$ such that $d_{i+1} / d_{i}$ is A-primitive for all $1 \leqslant i<h$.

Proof. Let $p^{\alpha}$ and $p^{\beta}$ denote the highest power of a fixed prime $p$ which divides $a$ and $b$, resp. Lemma 6 shows that $p^{\beta} \in A(b)$, and similarly $p^{\alpha} \in A(a)$. Since $p^{\alpha} \in A(a)$ and $a \in A(b)$, property (d) implies $p^{\alpha} \in A(b)$. Due to property (b) the relation $p^{\alpha} \in A(b)$ can hold only if $p^{\alpha} \in A\left(p^{\beta}\right)$. Lemma 3 shows that $t_{A}\left(p^{\alpha}\right)=t_{A}\left(p^{\beta}\right)$ provided both $\alpha, \beta$ are positive. If $v$ denotes this common value and $\alpha<\beta$ then

$$
a, a p^{v}, a p^{2 v}, \ldots, a p^{\beta-\alpha}
$$

is the subchain of the constructed $A$-chain corresponding to the prime $p$ dividing both $a$ and $b$. If $p\rangle a$, i.e. $\alpha=0$, then the construction above works with $v=t_{A}\left(p^{\beta}\right)$. If $\alpha=\beta$ the subchain corresponding to $p$ is empty.

Corollary 11. If $\left.a\right|_{A} b$ then $d_{A}(a) \leqslant d_{A}(b)$. More precisely, $d_{A}(b)=$ $d_{A}(a)+d_{A}(b / a)$.

Let $\tau_{A, \beta}(m)$ denote the number of $A$-divisors of $m$ of $A$-degree $\beta$. For later convenience put $\tau_{A, \beta}(m)=0$ for $\beta<0$ or $\beta>d_{A}(m)$. This number satisfies many identities similar to those for binomial coefficients. For instance, if $m$ is $A$-squarefree then

$$
\tau_{A, \beta}(m)=\binom{d_{A}(m)}{\beta}
$$

The formula

$$
\sum_{i=0}^{d_{A}(m)} \tau_{A, i}(m)=\prod_{i=1}^{k}\left(\frac{\lambda_{i}}{t_{A}\left(p_{i}^{\lambda_{i}}\right)}+1\right)
$$

extends the well-known one $\sum_{i=1}^{n}\binom{n}{i}=2^{n}$, and actually says nothing else as that each $A$-divisor of $m$ has a degree. Another identity

$$
\begin{equation*}
\sum_{\beta=0}^{r} \tau_{A, \beta}\left(d_{a}\left(m_{2}\right)\right) \tau_{A, r-\beta}\left(d_{a}\left(m_{1}\right)\right)=\tau_{A, r}\left(d_{a}\left(m_{1} m_{2}\right)\right) \tag{3}
\end{equation*}
$$

provided $\left(m_{1}, m_{1}\right)=1_{G}$ and $d_{A}\left(m_{1}\right) \geqslant d_{A}\left(m_{2}\right)$ is the algebraic form of the fact that $A$-divisors of $m_{1} m_{2}$ of a given degree $r$ are products of $A$-divisors of $m_{1}$ and $m_{2}$ of $A$-degrees summing up to the $A$-degree of $m_{1} m_{2}$.

## 4. Symmetric $A$-chains

An $A$-chain $d_{1}, \ldots, d_{h}$ of $A$-divisors of $m \in G$ will be called a symmetric $\mathbf{A}$-chain if:
(c) the $A$-degree of $d_{1}$ equals the $A$-degree of $m / d_{h}$,
(cc) if $h>1$ then the quotient $d_{i+1} / d_{i}$ is $A$-primitive for all $1 \leqslant i<h$.

The notion of the symmetric chain was introduced by De Bruijn, van Ebbenhorst Tengbergen, and Kruyswijk in [2] for the case $G=\mathbb{N}$ and $A=D$. The next result as well as its proof technique goes back to the corresponding Theorem 2 in this paper.

Theorem 12. The set of $A$-divisors of an element $m \in G$ can be completely divided into a number of disjoint symmetric A-chains.

Proof. The proof can be done by induction on the number $\omega_{G}(m)$ of distinct prime divisors of $m$. Let $m=m_{1} p^{\lambda}$ with $p \ m_{1}$ and $A\left(p^{\lambda}\right)=$ $\left\{1_{G}, p^{v}, p^{2 v}, \ldots, p^{r v}=p^{\lambda}\right\}$. The main ingredient of the proof is the construction of symmetric $A$-chains for $m$ from those for $m_{1}$. Given a symmetric $A$-chain $d_{1}, d_{2}, \ldots, d_{h}$ of $A$-divisors of $m_{1}$ we can generate a sequence of disjoint symmetric $A$-chains for $m$ as follows:

$$
\begin{gathered}
d_{1}, d_{1} p^{v}, \ldots, d_{1} p^{r v}, d_{2} p^{r v}, \ldots, d_{h} p^{r v} \\
d_{2}, d_{2} p^{v}, \ldots, d_{2} p^{(r-1) v}, d_{3} p^{(r-1) v}, \ldots, d_{h} p^{(r-1) v}
\end{gathered}
$$

etc. The last one being

$$
d_{r+1}, \ldots, d_{h}
$$

if $h \geqslant r+1$, or

$$
d_{h}, \ldots, d_{h} p^{(r+1-h) v}
$$

if $h \leqslant r+1$.
The next result can be reconstructed using ideas of the proof of Theorem 1 of [2]. Its connections to Theorem 19 are immediate.

Lemma 13. Let $m \in G$. Then the number of symmetric $A$-chains in which the set of A-divisors of $m$ splits is $\tau_{\left.A, \mid d_{A}(m) / 2\right\rfloor}(m)$.

Corollary 14. We have $\tau_{A, 0}(m) \leqslant \tau_{A, 1}(m) \leqslant \tau_{A, 2}(m) \leqslant \ldots \leqslant$ $\tau_{A,\left\lfloor d_{A}(m) / 2\right\rfloor}(m)$.

Lemma 15. If a symmetric A-chain contains an A-divisor of degree $(s) s \leqslant d_{A}(m) / 2$ then the chain under question contains at least $d_{A}(m)-2 s$ other $A$-divisors of degree $>s$, ( $s s$ ) $s \geqslant d_{A}(m) / 2$ then the chain under question contains at least $2 s-d_{A}(m)$ other $A$-divisors of degree $<s$.

Proof. Let our symmetric $A$-chain be $t_{1}, \ldots, t_{k}$ and let $d_{A}\left(t_{1}\right) \leqslant s=$ $d_{A}\left(t_{i}\right) \leqslant d_{A}\left(t_{h}\right)$ for some index $i \in\{1, \ldots, k\}$. We know that the values $d_{A}\left(t_{i}\right)$ increase by 1 when the index $i$ increases by 1 . Thus
(s) the all terms of the chain of degree $>s$ are those between $t_{i+1}$ and $t_{k}$ including the bounds. They are $d_{A}\left(t_{k}\right)-d_{A}\left(t_{i}\right)$ in number. The condition
(c) implies that $d_{A}\left(t_{k}\right)=d_{A}(m)-d_{A}\left(t_{1}\right)$, and since $d_{A}\left(t_{1}\right) \leqslant d_{A}\left(t_{i}\right)=s$, the result follows. ${ }^{1)}$
(ss) in this case all the terms of the chain of degree $<s$ are those between $t_{1}$ and $t_{i-1}$ including them. Their number is $d_{A}\left(t_{i}\right)-d_{A}\left(t_{1}\right)=s-\left(d_{A}(m)-\right.$ $\left.d_{A}\left(t_{k}\right)\right) \geqslant 2 s-d_{A}(m)$.

An extension of another property of symmetric $A$-chains used in the proof of Lemma 13 leads to the following observation:

Lemma 16. If $t_{1}$ is the initial element of a symmetric $A$-chain of length $h$ then $h$ and $d_{A}(m)$ are of opposite parity and $d_{A}\left(t_{1}\right)=\left(d_{A}(m)+1-h\right) / 2$.

Proof. The definition implies that if $t_{1}, \ldots, t_{h}$ is a symmetric $A$-chain then $d_{A}\left(t_{h}\right)=d_{A}(m)-d_{A}\left(t_{1}\right)$. On the other hand, we know that the values $d_{A}\left(t_{i}\right)$ increase by 1 when the index $i$ increases by 1 . Thus $d_{A}\left(t_{h}\right)=d_{A}\left(t_{1}\right)+$ $h-1$, i.e. $2 d_{A}\left(t_{1}\right)=d_{A}(m)+1-h$. Since the numbers occurring in the last equality are integers the statement follows.

Corollary 17. If $h$ is the length of a symmetric A-chain for $m \in G$, then

$$
h \in\left\{d_{A}(m)+1, d_{A}(m)-1, d_{A}(m)-3, \ldots\right\} \cap \mathbb{N}
$$

To the proof only note that the largest length $d_{A}(m)+1$ is really realizable and starts at $1_{G}$ and ends at $m$. If $m=p^{\lambda}$ then this is the only symmetric $A$-chain, which shows that not each $h$ in the above interval is realizable.

Lemma 18. Let $m \in G$. If $h \in \mathbb{N}$ and $d_{A}(m)$ have the opposite parity, then the number of mutually disjoint symmetric A-chains of length $h$ of the A-divisors of an element $m \in G$ is given by the formula

$$
\tau_{A,\left(d_{A}(m)+1-h\right) / 2}(m)-\tau_{A,\left(d_{A}(m)-1-h\right) / 2}(m) .
$$

Proof. We shall proceed by induction on $d_{A}(m)$. If $d_{A}(m)=1$ then $m \in P_{G}$ and we have only one symmetric chain of length 2 . Suppose that the formula of the lemma holds for all admissible $h$ and for each $m \in G$ with $d_{A}(m)<k$ and $k>1$ a positive integer. Consider an $m$ with $d_{A}(m)=k>1$.

[^0]Let $p^{k}$ be the highest power of a prime dividing $m$ and let $v=t_{A}\left(p^{k}\right)$ be its type. Then $k=r v$, and let $m=n p^{k}$.

To count the number of mutually disjoint symmetric $A$-chains of length $h$ we shall use the construction employed in the proof of Theorem 12. Suppose that we took a symmetric $A$-chain of length $f$ for $n$. Taking into account the final remark in the proof of this theorem consider two possibilities $f \geqslant r+1$ or $f<r+1$. In the first case the longest symmetric $A$-chain for $m$ which we obtain using the procedure of the proof of Theorem 12 has length $f+r$, the next to the right has length $f+r-2$, etc. and the shortest one has length $f-r$, i.e. we obtain symmetrical $A$-chains for $m$ having lengths

$$
f+r-2 i \quad \text { for } \quad i=0,1,2, \ldots, r .
$$

If $f<r+1$ we get chains of length $f+r, f+r-2, \ldots, r+2-f$, i.e.

$$
r+f-2 i \quad \text { for } \quad i=0,1,2, \ldots, f-1
$$

Since $f-1<r$ in the later case, we can sum up both cases saying: with every symmetric $A$-chain of length $f$ for $n$ we can generate a symmetric $A$-chain for $m$ of length

$$
h=f+r-2 i
$$

for every $i=0,1, \ldots, r$ provided $h \geqslant 0$. In other words, if for $h \geqslant 0$ we have

$$
\begin{equation*}
f=h-r+2 i \tag{4}
\end{equation*}
$$

for some $i \in\{0,1, \ldots, r\}$, then we can associate with each symmetric $A$-chain of length $f$ for $n$ a symmetric $A$-chain of length $h$ for $m$. The induction hypothesis shows that the total number of symmetric $A$-chains for $n$ is

$$
\tau_{A,\left(d_{A}(n)+1-f\right) / 2}(n)-\tau_{A,\left(d_{A}(n)-1-f\right) / 2}(n) .
$$

Plugging (4) for $f$ and summing up for $i \in\{0,1, \ldots, r\}$ we get

$$
\begin{aligned}
& \left(\tau_{A,\left(d_{A}(n)+1-(h-r+2.0)\right) / 2}(n)-\tau_{A,\left(d_{A}(n)-1-(h-r+2.0)\right) / 2}(n)\right) \\
& \quad+\left(\tau_{A,\left(d_{A}(n)+1-(h-r+2.1)\right) / 2}(n)-\tau_{A,\left(d_{A}(n)-1-(h-r+2.1)\right) / 2}(n)\right)+\ldots+ \\
& \quad+\left(\tau_{A,\left(d_{A}(n)+1-(h-r+2 . r)\right) / 2}(n)-\tau_{A,\left(d_{A}(n)-1-(h-r+2 . r)\right) / 2}(n)\right)
\end{aligned}
$$

and the result follows for $d_{A}(n)+r=d_{A}(m)$.
The above proof can be used to demonstrate the comment after Corollary 17 once again: If $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}, p_{1} \neq p_{2}, v_{1}=t_{A}\left(p_{1}^{\alpha_{1}}\right)$ and $v_{2}=t_{A}\left(p_{2}^{\alpha_{2}}\right)$
with $v_{1}>v_{2}$ then only lengths $\left(v_{1}+1\right)+v_{2},\left(v_{2}+1\right)+v_{2}-2, \ldots,\left(v_{1}+1\right)+$ $v_{2}-2 v_{2}$ are realizable. This sequence does not contain the length 1 .

## 5. Sperner type theorems

The preliminaries for the proof of next result are already behind us (cf. proof of [2, Theorem 1] for details).

Theorem 19. Let $d_{1}, \ldots, d_{h}$ be a set of A-divisors of $m \in G$ with the property that no $d_{i}$ is an A-divisor of a $d_{j}$ with $i \neq j$. Then $h \leqslant$ $\tau_{A,\left\lfloor d_{A}(m) / 2\right\rfloor}(m)$.

The next results were proved for $G=\mathbb{N}$ and $A=D$ in [11, Theorem 2]. The presented proof follows the ideas used in that paper. If $m$ is $A$-squarefree we get a result extending original Sperner's one and proved in [3] showing that the result is sharp.

Theorem 20. Let $m \in G$ and $\mathcal{D}=\left\{d_{1}, \ldots, d_{h}\right\}$ be a set of A-divisors of $m$ with the property that $\mathcal{D}$ has no $A$-subchain of length $\ell+1$. Then

$$
h \leqslant \text { sum of } \ell \text { largest values of } \tau_{A, i}(m) .
$$

Since any set consisting of $A$-divisors of a fixed degree cannot contain an $A$-subchain, the set consisting of the all $A$-divisors of $\ell$ distinct degrees does not contain an $A$-chain of length $\ell+1$.

Proof. First note the following two simple properties of $\tau_{A, \beta}(m)$ :
(i) if $0 \leqslant \beta \leqslant d_{A}(m)$ then $\tau_{A, \beta}(m)=\tau_{A, d_{A}(m)-\beta}(m)$, and
(ii) $\tau_{A, 0}(m) \leqslant \tau_{A, 1}(m) \leqslant \tau_{A, 2}(m) \leqslant \ldots \leqslant \tau_{A,\left[d_{A}(m) / 2\right\rfloor}(m)$.

Property (i) follows immediately from Corollary 11 and (ii) is Corollary 14.

Properties (i) and (ii) imply that the $\ell$ largest values of $\tau_{A, \beta}(m)$ correspond to a segment of consecutive values $\beta$, say $\beta=i_{0}, \ldots, i_{0}+\ell-1$, where

$$
\begin{equation*}
i_{0} \leqslant\left(d_{A}(m)-\ell+2\right) / 2 . \tag{5}
\end{equation*}
$$

If the $A$-degree of each member of $\mathcal{D}$ lies in the interval $\left\langle i_{0}, i_{0}+\ell-1\right\rangle$ we are done. Therefore suppose that the $A$-degree of at least one member in $\mathcal{D}$ lies outside this interval. We have two possibilities to consider:
a) The minimal degree $j$ of elements in $\mathcal{D}$ satisfies $j<i_{0}$. Let $\mathcal{D}_{j}=$ $\left\{d_{1}, \ldots, d_{k}\right\}$ be the set of all elements of degree $j$ in $\mathcal{D}$. By Theorem 12 each element of $\mathcal{D}_{j}$ belongs to some symmetric $A$-chain. Moreover, each symmetric chain contains at most one member of $\mathcal{D}_{j}$. Let $C_{v}$ be the symmetric $A$-chain containing $d_{v}$ for each $v=1, \ldots, k$.

Since $j<i_{0}$ then $j \leqslant\left(d_{A}(m)-\ell\right) / 2$ due to (5), i.e.

$$
\begin{equation*}
j+\ell \leqslant d_{A}(m)-j \tag{6}
\end{equation*}
$$

Lemma 15 (s) shows that each $C_{v}$ contains at least $d_{A}(m)-2 j$ divisors of degree $>j$. Since in a symmetric $A$-chain the degree of members increases by step 1 with the growing index, we have at least one member of degree $j+\left(d_{A}(m)-2 j\right)=d_{A}(m)-j$ in each $C_{v}$. Then (6) implies the existence of a member, say $d_{v}^{\prime}$ of degree $j+\ell$ in $C_{v}$. The $A$-subchain of $C_{v}$ starting with $d_{v}$ and terminating in $\dot{d}_{v}^{\prime}$ has length $\ell+1$ and it cannot be completely in $\mathcal{D}$. Let $d_{v}^{*}$ be the element of this $A$-subchain not belonging to $\mathcal{D}$ of the smallest possible degree. Let $\mathcal{D}^{\prime}=\left(\mathcal{D} \backslash \mathcal{D}_{j}\right) \cup\left\{d_{1}^{*}, \ldots, d_{h}^{*}\right\}$. Since $j+\ell \leqslant$ $i_{0}+\ell-1$, the $A$-degree of no member in $\mathcal{D}^{\prime}$ exceeds $i_{0}+\ell-1$. On the other hand, the minimal $A$-degree of $\mathcal{D}^{\prime}$ is $>j$. Repeating this procedure we can construct a set of $A$-divisors having the same cardinality as the original one and satisfying the hypotheses of our theorem until the $A$-degree of its each member is at least $i_{0}$.
b) The minimal degree $j$ of elements in $\mathcal{D}$ satisfies $j>i_{0}+\ell-1$. A similar reduction procedure based on Lemma 15 (ss) leads to a set $\mathcal{D}^{\prime \prime}$ of $A$-divisors of $m$ each of which is of degree $\leqslant i_{0}+\ell-1$ and simultaneously $\geqslant i_{0}$.

Theorem 21. Let $m \in G$ and $m=m_{1} m_{2}$ where $\left(m_{1}, m_{2}\right)=1_{G}$ and $d_{A}\left(m_{1}\right) \geqslant d_{A}\left(m_{2}\right)$. Let $\mathcal{D}=\left\{d_{1}, d_{2}, \ldots, d_{h}\right\}$ be a set of A-divisors of $m$ such that for no $\{i, j\} \subset\{1,2, \ldots, h\}$ either

$$
\begin{equation*}
\left(d_{i}, m_{2}\right)_{A}=\left(d_{j}, m_{2}\right)_{A} \quad \text { and }\left.\quad\left(d_{i}, m_{1}\right)_{A}\right|_{A}\left(d_{j}, m_{1}\right)_{A} \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(d_{i}, m_{1}\right)_{A}=\left(d_{j}, m_{1}\right)_{A} \quad \text { and }\left.\quad\left(d_{i}, m_{2}\right)_{A}\right|_{A}\left(d_{j}, m_{2}\right)_{A} \tag{8}
\end{equation*}
$$

holds. Then

$$
\begin{equation*}
h \leqslant \tau_{A,\left\lfloor\left(d_{A}\left(m_{1}\right)+d_{A}\left(m_{2}\right)\right) / 2\right\rfloor}(m) . \tag{9}
\end{equation*}
$$

Proof. We shall use Lemma 7 to classify the divisors in $\mathcal{D}$ in groups. Writing $d_{i}=\left(d_{i}, m_{1}\right)_{A}\left(d_{i}, m_{2}\right)_{A}, i \in\{1, \ldots, h\}$, the grouping will be realized
with respect to the $A$-divisors $\left(d_{i}, m_{2}\right)_{A}$ of $m_{2}$. We then append each such group to the corresponding $A$-divisor of $m_{2}$ after the all $A$-divisors of $m_{2}$ are split into symmetric $A$-chain. To the groups appended to $A$-divisors of each chain we then apply Theorem 20. That this theorem can be applied is guaranteed by the assumptions. More precisely:

Let $b_{2}, b_{2}, \ldots, b_{l}$ be an $A$-chain of $A$-divisors of $m_{2}$. Define for $i=1,2, \ldots, l$

$$
\mathcal{G}_{i}=\left\{\left(d, m_{1}\right)_{A}: d \in \mathcal{D},\left(d, m_{2}\right)_{A}=b_{i}\right\} .
$$

Then (7) implies
for no $h, k$ and $i: g_{h}, g_{k} \in \mathcal{G}_{i}$ and $\left.g_{h}\right|_{A} g_{k}$.
Further, if $x \in \mathcal{G}_{i} \cap \mathcal{G}_{j}$ for $i \neq j$, then $x=\left(d^{\prime}, m_{1}\right)_{A}$ and $\left(d^{\prime}, m_{2}\right)_{A}=b_{i}$ for some $d^{\prime} \in \mathcal{D}$, and similarly $x=\left(d^{\prime \prime}, m_{1}\right)_{A}$ and $\left(d^{\prime \prime}, m_{2}\right)_{A}=b_{j}$ for some $d^{\prime \prime} \in \mathcal{D}$. But (8) implies that either $b_{i} \chi_{A} b_{j}$ or $b_{j} \chi_{A} b_{i}$, what is impossible due to the fact that the $b$ 's form an $A$-chain. That is, we have

$$
\begin{equation*}
\mathcal{G}_{i} \cap \mathcal{G}_{j}=\emptyset \text { for } i \neq j \tag{11}
\end{equation*}
$$

Finally, the denial of

$$
\begin{equation*}
\bigcup_{i=1}^{l} \mathcal{G}_{i} \text { cannot contain a chain of length } l+1 \tag{12}
\end{equation*}
$$

would imply that two elements $\left(d^{\prime}, m_{1}\right)_{A}$ and $\left(d^{\prime \prime}, m_{1}\right)_{A}$ of the chain in the same $\mathcal{G}_{i}$ contradict (7) since ( $\left.d^{\prime}, m_{2}\right)_{A}=\left(d^{\prime \prime}, m_{2}\right)_{A}=b_{i}$, i.e. (12) holds.

To prove (9), as already indicated, partition the set of $A$-divisors of $m_{2}$ into disjoint symmetric $A$-chains. This can be done due to Theorem 12. If $b_{1}, \ldots, b_{l}$ is one such chain of length $l$ associate to it sets $\mathcal{G}_{i}$ as described above. Since (12), Theorem 20 implies

$$
\left|\bigcup_{i=1}^{l} \mathcal{G}_{i}\right| \leqslant \text { sum of } l \text { largest values of } \tau_{A, i}\left(m_{2}\right) .
$$

If $L$ consists of the positive terms of the decreasing sequence $\left\{d_{A}\left(m_{2}\right)+\right.$ $\left.1, d_{A}\left(m_{2}\right)-1, d_{A}\left(m_{2}\right)-3, \ldots\right\}$, then Corollary 17 and Lemma 18 give the estimate

$$
h \leqslant \sum_{l \in L}\left[\tau_{A,\left(d_{A}\left(m_{2}\right)+1-l\right) / 2}\left(m_{2}\right)-\tau_{A,\left(d_{A}\left(m_{2}\right)-1-l\right) / 2}\left(m_{2}\right)\right] \sum_{v=i_{0}}^{i_{0}+l-1} \tau_{A, v}\left(m_{1}\right),
$$

where $i_{0}$ is determined in (5).

For the sake of simplicity suppose that the numbers $d_{A}\left(m_{1}\right)=2 M_{1}$, $d_{A}\left(m_{2}\right)=2 M_{2}, l=2 l_{1}-1$ are even. The other cases can be checked along similar lines. Then the last double sum reduces to the form

$$
\sum_{l_{1}=1}^{M_{2}+1}\left[\tau_{A, M_{2}-l_{1}+1}\left(m_{2}\right)-\tau_{A, M_{2}-l_{1}}\left(m_{2}\right)\right] \sum_{v=1-l_{1}}^{l_{1}-1} \tau_{A, v}\left(m_{1}\right)
$$

and this, due to the inner cancellations, to

$$
\tau_{A, M_{2}}\left(m_{2}\right) \tau_{A, M_{1}}\left(m_{1}\right)+\sum_{i=1}^{M_{2}} \tau_{A, M_{2}-i}\left(m_{2}\right)\left(\tau_{A, M_{1}-i}\left(m_{1}\right)+\tau_{A, M_{1}+i}\left(m_{1}\right)\right)
$$

Using the fact that $\tau_{A, j}(m)=\tau_{A, d_{A}(m)-j}(m)$, we get finally

$$
\begin{aligned}
& =\sum_{j=0}^{M_{2}} \tau_{A, j}\left(m_{2}\right) \tau_{A, M_{1}+M_{2}-j}\left(m_{1}\right)+\sum_{j=1}^{M_{2}} \tau_{A, M_{2}-j}\left(m_{2}\right) \tau_{A, M_{1}-M_{2}+j}\left(m_{1}\right) \\
& =\sum_{j=0}^{M_{1}+M_{2}} \tau_{A, j}\left(m_{1} m_{2}\right)
\end{aligned}
$$

as claimed.

## 6. A-convex sets

A set $S$ of $A$-divisors of an $m \in G$ will be called A-convex whenever

$$
\left(d_{1} \in S, d_{2} \in S,\left.\left.d_{1}\right|_{A} d_{3}\right|_{A} d_{2}\right) \quad \Rightarrow \quad d_{3} \in S
$$

One of the conditions imposed on the regularity of an $A$-system of divisors (cf. [9] for more details) is that the Möbius function $\mu_{A}$ of an
 value of $\mu_{A}$ at $a=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$ is defined by

$$
\mu_{A}(a)= \begin{cases}1 & \text { if } a=1_{G}, \\ (-1)^{r} & \text { if each } p_{i}^{\alpha_{i}} \text { is } A \text {-primitive for every } i, \\ 0 & \text { if some } p_{i}^{\alpha_{i}} \text { is not } A \text {-primitive. }\end{cases}
$$

2) Note that, in the case of Dirichlet convolution, that is if $A=D$, the function $\mu_{A}$ is the ordinary Möbius function, while in the case of unitary convolution it is one of the Liouville functions, namely $a \mapsto(-1)^{\omega(a)}$, where $\omega(a)$ denotes the number of distinct prime divisors of $a \in G$.

The notion of $A$-convexity has its origin in [2] where also the next result can be found (Theorem 3) if $G=\mathbb{N}$ and $A=D$.

Theorem 22. If $\omega_{G}(m)$ stands for the number of different primes dividing $m \in G$, and $S$ is a A-convex set of A-divisors of $m$, then

$$
\left|\sum_{d \in S} \mu_{A}(d)\right| \leqslant\binom{\omega_{G}(m)}{\left\lfloor\frac{\omega_{G}(m)}{2}\right\rfloor} .
$$

Proof. Since $\mu_{A}(d)=0$ when $d$ is not a product of $A$-primitive elements, we can limit our consideration only to the case when $m$ is a product of distinct $A$-primitive elements. In this case $\omega_{G}(m)=d_{A}(m)$ and the cardinality $\tau_{A,\left\lfloor d_{A}(m) / 2\right\rfloor}(m)$ of the set of $A$-divisors of $m$ of degree $\omega_{G}(m) / 2$ is equal to

$$
\tau_{A,\left\lfloor d_{A}(m) / 2\right\rfloor}(m)=\binom{\omega_{G}(m)}{\left\lfloor\frac{\omega_{G}(m)}{2}\right\rfloor} .
$$

We saw in the proof of Lemma 13 that this is the number of $A$-chains into which the set of $A$-divisors of $m$ can be divided. Let

$$
S=S_{1}+S_{2}+\ldots+S_{\tau_{A,\left(d_{A}(m) / 2\right\rfloor}(m)}
$$

where $S_{i}$ is the subset of the $i$ th chain. However, when $d$ runs over the elements of one chain then $\dot{\mu}_{A}(d)$ assumes the values +1 and -1 alternately. Hence, $\sum_{d \in S} \mu_{A}(d) \in\{0,-1,+1\}$. Finally,

$$
\left|\sum_{d \in S} \mu_{A}(d)\right| \leqslant \sum_{i=:}^{\tau_{A,\left\lfloor d_{A}(m) / 23\right.}(m)}\left|\sum_{d \in S_{i}} \mu_{A}(d)\right| \leqslant \tau_{A,\left\lfloor d_{A}(m) / 2\right\rfloor}(m) .
$$

## 7. Problem

Regular systems of divisors have their origin in Narkiewicz's paper [9], where he investigated the question under which conditions a convolution of two arithmetical functions $f$, and $g$ defined on the set of positive integers $\mathbb{N}$

$$
(f \circ g)(n)=\sum_{d \in A_{n}} f(d) g\left(\frac{n}{d}\right)
$$

derived from a system $A=\left\{A_{n} ; n \in N\right\}$ turns the set of arithmetical functions into a commutative ring with unity and prescribed properties of its inverse.

Theorem 12 shows that the regular system of $A$-divisors possesses a symmetric chain partition. The question is whether this statement can be inverted:

If the system of $A$-divisors of each element $m \in G$ possesses a symmetric chain partition then it is regular.

## References

[1] E. Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. 74 (1960), 66-80.
[2] N. G. De Bruijn, C. van Ebbenhorst Tengbergen and D. Kruyswijk, On the set of divisors of a number, Nieuw Arch. Wisk. 23 (1952), 191-193.
[3] P. Erdoss, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51 (1945), 898-902.
[4] P. Erdös, J. Schönheim, On the set of non pairwise coprime divisors of a number, in "Combinatorial Theory and its Applications" Vol. 1, pp. 369-376, Coll. Math. Soc. J. Bolayi 2 (P. Erdös, A. Rényi, V.T. Sós eds.), North-Holland, Amsterdam - London 1970.
[5] P. Erdön and J. Schönheim, Sets versus divisors, in "Combinatorics, Paul Erdös is Fighty" Vol. 2, pp. 193-212, Bolayi Society Mathematical Studies, 2 (Keazthely, 1993), Budapest 1996.
[6] A. Kertesz, On groups every subgroup of which is a direct summand, Publ. Math. 2 (1951), 74-75.
[7] J. Knopfmacher, Abstract Analytic Number Theory, North-Holland Mathematical Library Vol. 12, North-Holland \& American Elsevier, Amsterdam-Oxford-New York 1975.
[8] P. J. McCarthy, Introduction to Arithmetical Functions, Springer Verlag, New York 1986.
[9] W. Narkiewicz, On a class of arithmetical convolutions, Coll. Math. 10 (1963), 81-94.
[10] S. Porubský, Sets of regular systems of divisors of a generalized integer, Ann. Math. Sil. 12 (1998), 149-156.
[11] J. Schönheim, A generalization of results of P. Erdös, G. Katona and D.J. Kleitman concerning Sperner's theorem, J. Combin. Theory 11 (1971), 111-117.
[12] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Zeit. 27 (1928), 544-548.

Institute of Computer Science
Academy of Sciences of the Czech Republic
Pod Vodárenskou vĚží 2
18207 Prague 8
Czech Republic
e-mail: stefan.porubskyecs.cas.cz


[^0]:    1) The reason for the assumption $s \leqslant d_{A}(m) / 2$ is that in the opposite case the statement of the lemma is empty for $d_{A}(m)-2 s$ is negative.
