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S P E R N E R T Y P E T H E O R E M S 
F O R G E N E R A L I Z E D DIVISORS 

ŠTEFAN PORUBSKÝ 

Abstract. The extensions of the well-known Sperner's result on antichains of sub­
sets of a given finite set for divisors of a positive integers are shown to hold also for 
sets of regular systems of divisors of elements of arithmetical semigroups. 

The original result (A; = 2 in the following result of P. Erdos) of E. Sper-
ner [12] on the maximal number of subsets of a given set no one of which is 
included in the other has been generalized in many directions. One of them 
proved by P. Erdos [3] says: 

// in T = {A\,..., An} C 2s, the power set of a set S of cardinality 
\S\ = t < oo, there is no chain of length k, then 

and this is sharp. 
One of the first novelties in these set generalizations has been brought 

(again the case k = 2 below) by De Bruijn, Van Ebbenhorst Tengbergen and 
Kruyswijk [2] who proved a corresponding result for subsets of divisors of a 
given positive integer. Motivated by a close connection between the subsets 
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1. Introduction 

n Ą sum of k — 1 largest binomial coefficients 
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of a finite sets and the subsets of divisors of a square-free positive integer 
various interesting links between both topic were found. E.g. Schonheim [11] 
proved: 

If in V = {hlt..., hn} C D(N), the set of all divisors of N = p"1 • • -pf', 
there is no chain of length k, then 

n sum of k — 1 largest numbers Ti(N) 

and this is sharp. 
Here d{n) denotes the degree of n, that is, the total number of prime 

divisors of n, and Tp(N) = #{h : h\N, d(h) = /?}. The reader is referred to 
[5] for more details about further generalizations and comments. 

In [10] the author proposed a further generalization in the sense that 
the positive integers were replaced by elements of an arithmetical semigroup 
and the sets of divisors by the so-called regular systems of divisors. To make 
the paper self-contained we repeat some basic definitions for the convenience 
of the reader in the next section. 

2. Regular systems of divisors 

Let G denote a free commutative semigroup relative to a multiplication 
operation denoted by juxtaposition, with identity element 1Q and with at 
most countably many generators PQ. Such a semigroup will be called (cf. [7]) 
arithmetical semigroup if in addition a real-valued norm | • | is defined 
on G such that 

(i) |1 G | = l , |a | > 1 for all a € G, 
(ii) \ab\ = |o| • \b\ for all a,beG, 

(iii) the set {a € G : \a\ ̂  x} is finite for all real numbers x. 
The elements of G are called generalized integers. The free semigroup 

structure of G substitutes the multiplicative structure of positive integers. 
The analytical part of the theory of arithmetical semigroups based on the 
existence of the norm mapping | • | will play rather peripheral role mainly 
because most of our reasoning will be based on the divisibility relation in­
duced by the multiplication in G where each element of G being uniquely 
repręsentable as a product of generators of G has only a finite number of 
divisors, what replaces requirement (iii) in our arguments. 

The standard terms like divisor are defined between generalized inte­
gers in the expected way, by saying that an element b 6 G divides a G G, in 
symbols b\a, if there exists a c 6 G such that a = be. The set of all divisors of 
a C.G will be denoted by D(a). The elements of the set PQ of all generators 
of G will be called primes. 
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Besides the set N of positive integers the most typical prototypes of 
arithmetical semigroups are: 

E X A M P L E 1. G — Gj<, the semigroup of all non-zero integral ideals in a 
given algebraic number field K of degree n = [K : Q] over rationals Q with 
the usual norm function |o| = card (£?/</a). 

E X A M P L E 2. G = A the category of all finite Abelian groups with the 
usual direct product operation and the norm |A| = card(A). Fundamental 
Theorem on finite Abelian groups shows that A is free and that the genera­
tors are the cyclic groups of prime-power order. 

It is well-known that if a and b are two ideals in a number field K 
then the relation a|b is equivalent to cob. Thus in this case any divisibility 
relation can be converted in turn to a set-inclusion form and vice verse. This 
remains true also for the factor-rings of algebraic integers with respect to 
a proper ideal. Thus the reformulation of the problem in the framework of 
arithmetical semigroups shows perhaps more naturally the mentioned con­
nections between the set-theoretic and divisor version. 

In the group case, if a finite Abelian group H = A x B is the direct 
product of groups A and £?, then A can be understood as a subgroup (and 
thus also a subset) of B. In the converse direction it is interesting to note 
that Kertezs [6] proved that every subgroup of a general group G is its direct 
factor if and only if G is the direct product of cyclic groups of prime order, 
that is if it is of squarefree order (and clearly Abelian), and we have again a 
formally different demonstration that De Bruijn et al. implies Sperner. 

In the introduction mentioned modification of the divisibility notion is 
due to Narkiewicz [9] who considered the case of G = N, the set of positive 
integers. Its extension to arithmetical semigroups is immediate: Let A be a 
mapping from the arithmetical semigroup G into the set of subsets of G such 
that A(a) is a subset of the set D(a) of all divisors of a € G. The system 

(1) {A{a):aeG} 

will be called the system of >t-divisors, the elements of A(a) are called 
the A—divisors of a. If d € A(a), we shall write d\^a to distinguish between 
the A—divisibility and the usual divisibility. 

The system of D-divisors is connected with the well-known Dirichlet 
convolution. The second most known example is the system of unitary divi­
sors defined by 

U(a) = {deG: d\a, {d, a/d) = 1G} 

and is connected with the so called unitary convolution (cf. [1]). 
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The system (1) will be called regular system of divisors (or regular 
system of A—divisors) provided: 
(a) d e A(a) => a/d € A(a) 
(b) if (a, 6) = 1G then A(ab) = A(a) • A(b), where A-B — {a'b' : a' € A, b' e 

B} 
(c) {1G, a} C A(a) for all a 
(d) the statement "d € A(a) and a e A(6)" is equivalent to "d e A(6) and 

a/d € A(6/d)" 
(e) for all prime powers pk, k 6 N, there exists a positive integer v such 

that 
A(pfc) = {lG,p",p 2" Prv = pk}, 

and moreover p v <E A(p 2 v), p 2 v € A(p 3 v), . . . , p^-1)" € A(pfc). 
Note that these conditions, as stated here, are not independent. 
The divisor v of k is called the type of pk and it will be denoted by 

*A(pfc) in what follows. 
The next result can be proved for general arithmetical semigroups using 

the same ideas as in [8, Corollary 4.2] for N. 

L E M M A 3. Let (1) be a regular system of divisors and p 6 PQ, and 
a ź P > 1 two integers. If A(pa)n A(p^) ^ {1G} then tA(pa) = tA{pfi), 
and A{pP) consists of the (/J/i^p 0) + 1) elements of the smallest norm in 
A(p«). 

An element a C G , o ^ 1G, is called A—primitive if A(a) = {1G, a}- The 
D-primitive elements are the primes p € P G , while the {/-primitive elements 
are the all powers pk,k € N, of prime elements p € P Q . An element m which 
is a product of distinct A-primitive elements will be called A-squarefree. 

C O R O L L A R Y 4. Ifpx is of type v, then pv is A-primitive. 

P R O O F . Would we have pa € A(pv) with 0 < a < v, i.e. pa € A(pv) 
and pv 6 A(px), then (d) implies that pa € A(pA) which is not true. Hence 
A(p") = {lG,pv}, as claimed. • 

Property (b) immediately implies that: 

L E M M A 5. If n € G is A-primitive then n = pa for some p G PG and 

Note that regular systems of A-divisors are completely determined by 
the sets A(pa) for all p € PG and all a ^ 1. On the other hand, a regular 
system of divisors is not uniquely determined by its primitive elements. There 
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are different systems of distinct regular systems of divisors having the same 
set of primitive elements (cf. [9, p. 87] or [8, p. 160]). 

L E M M A 6 ([8, Exercise 4.5]). Let A be a regular system of divisors. If p 
is a prime and pa is the highest power of p that divides an element m £ G 
then pa € A(m). Furthermore, if pP € A(m) then p13 G A(pa). 

P R O O F . The statements are direct consequences of properties (a) and (c). 
• 

If a, b 6 G then the A-greatest common divisor (a, V)A is the com­
mon A-divisor of a and b that is divisible by any other common A-divisor 
of a and b. Two elements a,b € G are A—relatively prime if, and only if, 
A(a)nA(b) = {lG). 

The next elementary result will be applied later: 

L E M M A 7. Let A be a regular system of divisors. If d\Am\m,2 and 
(mi,7712) = 1G then 

(d,mi)A(d, m2)A = d. 

P R O O F . Let pa be the highest power of a prime A-dividing d. Then 
(d) implies that pA,A'>Tlim2, and consequently p\mim2. Since (m 0,mi) = 1, 
either p\n%i or p\m,2. Let p\mi, and let pP be the highest power of p dividing 
mi. Clearly, p13 is also the highest power of p dividing mim2. Lemma 6 
shows that pa\AP13- Consequently, p a U m i , i.e. pa\A(d, mj)^, and the proof 
is finished. • 

R E M A R K 8. In the above lemma it is not possible to replace the con­
dition (mi,mj) = 1G by (mi,mj)^ = 1G- TO see this, take a power of 
a prime pa such that tA(pa) = v > 1. Then {P,P°'~1)A = 1G- Would 
be this not true, then {p,p )A — Vi i- e- ^ ( P a _ 1 ) = 1 a n d consequently 
pv € A(pa~1) and Lemma 3 implies the impossible equality ^(p" - 1 ) = 
tA(pa)- Thus if d = pv we have (J)V,P)A = 1G a n d a l s ° (PVJPv~1)A = l<5i i- e -
PVŹ(PV,P)A(PV,PV-1)A. 

3. A—degree and A—chains 

Unless contrary is stated A will always be supposed to be a regular 
systems of divisors. Let m € G. If 

(2) m = p^p^...px

k" 



32 Stefan Porubsky 

is the decomposition of m into primes, then the A-degree dA(m) of m ^ 1Q 
is defined by 

where tA{pk) is the type of pk, and dA(la) = 0. 

L E M M A 9. If a\Ab and b — ac, where c is A-primitive, then dA(b) = 
dA{a) + dA{c). 

P R O O F . If c is A-primitive then Lemma 5 implies c = pP for some p and 
/3 ^ 1, i.e. b = ap13. Since a € A(b), property (a) yields that p13 = b/a € A(6). 
If pa is the highest power dividing b then Lemma 6 shows that pP 6 A(pa). 
Property (a) applied to pP and pa implies pa~P € A(pa). 

If a — ft = 0 then the proof is finished. Suppose therefore that a > (5. 
Lemma 3 implies that tA(pa) divides each of the exponents a, f3 and a — 0 
and that tA(pa) = t^p0'13) = tA(pP). Consequently, for the contribution of 
powers of p to the degrees of a and 6, we get 

tA{pa) tA{pa) tA(P") tA{P°-p) tA{Ppy 

and the proof is finished. • 

Note that in the previous lemma the assumptions that b = ac and c is 
A-primitive does not imply that also a\Ab as the Remark 8 shows for b = pa 

and c = p provided tA(pa) > 1. 
An A—chain (of length h) is a sequence d\, . . . , d/, of elements of G 

such that di\Ad{+i for all 1 ̂  i < h. 

L E M M A 10. If a\Ab then there exists an A-chain a = d\, ..., dh = b of 
elements of G such that di+i/di is A-primitive for all 1 ̂  i < h. 

P R O O F . Let pa and p^ denote the highest power of a fixed prime p 
which divides a and b, resp. Lemma 6 shows that p13 6 A(b), and similarly 
pa € A(a). Since pa € A(a) and a € A{b), property (d) implies pa € A(b). 
Due to property (b) the relation pa € A(b) can hold only if pa £ A(p^). 
Lemma 3 shows that tA(pa) = tA(pP) provided both a,/3 are positive. If v 
denotes this common value and a < 0 then 

a, apv, ap2v,ap^~a 
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is the subchain of the constructed A-chain corresponding to the prime p 
dividing both a and b. If p / o, i.e. a = 0, then the construction above works 
with v — tyi(p^). If a = (3 the subchain corresponding to p is empty. • 

C O R O L L A R Y 11. If a\Ab then dA(d) ^ dA(b). More precisely, dA(b) = 
dA{a) + dA{b/a). 

Let r^^m) denote the number of A-divisors of TO of A-degree /?. For 
later convenience put TAtp(m) = 0 for /? < 0 or /? > dx(rra). This number sa­
tisfies many identities similar to those for binomial coefficients. For instance, 
if TO is A-squarefree then 

fdA(m)\ 
rAAm) = y p j-

The formula 

extends the well-known one (™) = 2 n i and actually says nothing else 
as that each A-divisor of TO has a degree. Another identity 

r 

(3) ^2 TAAda{™2))TA,r-p(da(mi)) = TA,r(da{mimi)) 
0=0 

provided (TOI,TOI) = 1 G and dA(mi) ^ dA(m,2) is the algebraic form of the 
fact that A-divisors of mimj of a given degree r are products of A-divisors 
of mi and TO2 of A-degrees summing up to the A-degree of TO1TO2. 

4. Symmetric A—chains 

An A-chain d\, . . . , <//, of A-divisors of TO € G will be called a sym­
metric A—chain if: 
(c) the A-degree of d\ equals the A-degree of m/d^, 

(cc) if h > 1 then the quotient is A-primitive for all 1 ̂  i < h. 
The notion of the symmetric chain was introduced by De Bruijn, van 

Ebbenhorst Tengbergen, and Kruyswijk in [2] for the case G = N and A = D. 
The next result as well as its proof technique goes back to the corresponding 
Theorem 2 in this paper. 

3 - Annales.., 
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T H E O R E M 12. The set of A-divisors of an element m e G can be com­
pletely divided into a number of disjoint symmetric A-chains. 

P R O O F . The proof can be done by induction on the number U ( j ( m ) 
of distinct prime divisors of m. Let m = mipx with p / m i and A(px) = 
{1G,PV,P2V, .. - ,prv = px}- The main ingredient of the proof is the construc­
tion of symmetric A-chains for m from those for m i . Given a symmetric 
A-chain d i , d2 > • • • i «0i of A-divisors of m i we can generate a sequence of 
disjoint symmetric A-chains for m as follows: 

d1,d1p",...,d1prv,d2p™,...,dhp™, 

d2, d2p\ d2plr-V\d3plr-V\ .... d h p ^ v 

etc. The last one being 
d r + i , . ..,dh 

if h ^ r + 1, or 
dh,...,dhp^+l-h> 

if h < r + 1. • 

The next result can be reconstructed using ideas of the proof of The­
orem 1 of [2]. Its connections to Theorem 19 are immediate. 

L E M M A 13. Let m € G. Then the number of symmetric A-chains in 
which the set of A-divisors of m splits is T v 4 ) ^ > ł ( m ) / 2 j ( 7 n ) -

C O R O L L A R Y 14. We have rAfi{m) ^ TAti(m) ^ rAt2(m) ^ ... < 
TA,[dA(m)/2i(m). 

L E M M A 15. If a symmetric A-chain contains an A-divisor of degree 
(s) s ^ d^(m)/2 then the chain under question contains at least dyi(m) — 2s 
other A-divisors of degree >' s, 
(ss) s ̂  d,4(m)/2 then the chain under question contains at least 2s — dA(m) 
other A-divisors of degree < s. 

P R O O F . Let our symmetric A-chain be ti,...,tk and let dA{t{) ^ s = 
dA{U) ^ dA{th) for some index i e {1, . . . , £ } • We know that the values 
dA[ti) increase by 1 when the index i increases by 1. Thus 
(s) the all terms of the chain of degree > s are those between tj+i and tk 
including the bounds. They are dA(tk) — dA(ti) in number. The condition 
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(c) implies that dA(tk) = dA(m) - d^ih), and since dA(ti) ^ dA(ti) = s, 
the result follows. ł) 
(ss) in this case all the terms of the chain of degree < s are those between 
ti and U-i including them. Their number is dA(t{) - dA(t\) = s — (dA(m) — 
dA{tk)) > 2s- dA(m). D 

An extension of another property of symmetric A-chains used in the 
proof of Lemma 13 leads to the following observation: 

L E M M A 16. Ift\ is the initial element of a symmetric A-chain of length 
h then h and dA(m) are of opposite parity and dA(ti) = (dA(m) + 1 — h)/2. 

P R O O F . The definition implies that if t\,..., th is a symmetric A-chain 
then dA{th) = dA(m) — dA(ti). On the other hand, we know that the values 
dA(ti) increase by 1 when the index i increases by 1. Thus dA(th.) = dA(ti) + 
h — 1, i.e. 2dA(ti) — dA(m) + 1 — h. Since the numbers occurring in the last 
equality are integers the statement follows. 

C O R O L L A R Y 17. If h is the length of a symmetric A-chain for m € G, 
then 

h e {dA(m) + 1, dA{m) - 1, dA{m) - 3, . . .} I~l N . 

To the proof only note that the largest length dA(m) + 1 is really re­
alizable and starts at 1Q and ends at m. If m = px then this is the only 
symmetric A-chain, which shows that not each h in the above interval is 
realizable. 

L E M M A 18. Let m € G. If h € N and dA{m) have the opposite parity, 
then the number of mutually disjoint symmetric A-chains of length h of the 
A-divisors of an element m € G is given by the formula 

TA,(dA(m)+l-h)l2{™) ~ TA,(dA(m)-l-h)/2(rn). 

P R O O F . We shall proceed by induction on dA(m). If dA(m) = 1 then 
m C. PQ and we have only one symmetric chain of length 2. Suppose that 
the formula of the lemma holds for all admissible h and for each m £ G with 
dA(m) < k and k > 1 a positive integer. Consider an m with dA{m) = k > 1. 

V The reason for the assumption s ̂  dA(m)/2 is that in the opposite case 
the statement of the lemma is empty for dA(m) — 2s is negative. 

3* 
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Let pk be the highest power of a prime dividing m and let v = tA(pk) 
be its type. Then k = rv, and let TO = npk. 

To count the number of mutually disjoint symmetric A-chains of length 
h we shall use the construction employed in the proof of Theorem 12. Suppose 
that we took a symmetric A-chain of length / for n. Taking into account the 
final remark in the proof of this theorem consider two possibilities / ^ r + 1 
or / < r + 1. In the first case the longest symmetric A-chain for m which we 
obtain using the procedure of the proof of Theorem 12 has length f + r, the 
next to the right has length / + r - 2, etc. and the shortest one has length 
/ — r, i.e. we obtain symmetrical A-chains for m having lengths 

f + r-2i for i = 0 , 1 , 2 , . . . , r. 

If / < r + 1 we get chains of length f + r, f + r - 2, . . . , r + 2 - / , i.e. 

r + f - 2 i for i = 0 , 1 , 2 , . . . , / - 1. 

Since /—1 < r in the later case, we can sum up both cases saying: with every 
symmetric A-chain of length / for n we can generate a symmetric A-chain 
for m of length 

h = f + r-2i 

for every i = 0 , 1 , . . . , r provided h ^ 0. In other words, if for h ^ 0 we have 

(4) / = h - r + 2i 

for some i € {0 ,1 , . . . , r}, then we can associate with each symmetric A-chain 
of length / for n a symmetric A-chain of length h for m. The induction 
hypothesis shows that the total number of symmetric A-chains for n is 

^,(«iA(n)+i-/)/a(n) - r ^ d ^ . i ^ j / j C n ) . 

Plugging (4) for / and summing up for i € {0 ,1 , . . . , r} we get 

(^4,(d/t(n)+l-('i-H-2.0))/2(rc) ~ TA^dA(n)-l-(h-r+2.0))/2 («)) 

+ {TA,(dA(n)+X-(h-r+2.1))/2{n) ~ TA,{dA(n)-l-(h-r+2.l))/2{n)) + ...+ 

+ {TA,(dA(n)+l-(h-r+2.r))/2{n) ~ T>l,(dJ4(n)-l-(/i-r+2.r))/2 ( « ) ) 

and the result follows for dA(n) + r = dA(m). • 

The above proof can be used to demonstrate the comment after Corol­
lary 17 once again: If m = Pilp%3, P\ ^ P2, vi = a n d u2 = *A(P2 3) 
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with vi > v2 then only lengths («i + 1) + «2, (̂ 2 +1) + «2 - 2,..., (t>i + 1) + 
v2 - 2v2 are realizable. This sequence does not contain the length 1. 

5. Sperner type theorems 

The preliminaries for the proof of next result are already behind us (cf. 
proof of [2, Theorem 1] for details). 

T H E O R E M 19. Let di,...,dh be a set of A-divisors of m € G with 
the property that no di is an A-divisor of a dj with i ^ j. Then h ^ 

TA,[dA(m)/2l(m)-

The next results were proved for G = N and A = D in [11, Theorem 2]. 
The presented proof follows the ideas used in that paper. If m is A-squarefree 
we get a result extending original Sperner's one and proved in [3] showing 
that the result is sharp. 

T H E O R E M 20. Let m € G and V — {d\,..., d/J be a set of A-divisors 
of m with the property that V has no A-subchain of length £+1. Then 

h ̂  sum of £ largest values of TAii(m). 

Since any set consisting of A-divisors of a fixed degree cannot contain 
an A-subchain, the set consisting of the all A-divisors of £ distinct degrees 
does not contain an A-chain of length £ + 1. 

P R O O F . First note the following two simple properties of TAtp(m): 
(i) if 0 ^ /3 ̂  dA(m) then TAip(™) = TAtdA(m)-p{m), and 
(ii) r^ )0(m) ^ TAti(m) ^ TA,2(m) ^ . . . ̂  TA>Mm)/2i(m). 

Property (i) follows immediately from Corollary 11 and (ii) is Corol­
lary 14. 

Properties (i) and (ii) imply that the £ largest values of rAtp(m) cor­
respond to a segment of consecutive values /3, say /3 = in , . . . , in + f- — 1> 
where 
(5) i 0 ̂  (dA{m)-£ + 2)/2. 

If the A-degree of each member of X> lies in the interval (io, io + £ — 1) 
we are done. Therefore suppose that the A-degree of at least one member 
in V lies outside this interval. We have two possibilities to consider: 



38 Stefan Porubsky 

a) The minimal degree j of elements in V satisfies j < io- Let Vj = 
{di,..., dfc} be the set of all elements of degree j in V. By Theorem 12 each 
element of Vj belongs to some symmetric A-chain. Moreover, each symme­
tric chain contains at most one member of Vj. Let Cv be the symmetric 
A-chain containing dv for each v = 1,..., k. 

Since j < io then j ^ (dA(m) —£)/2 due to (5), i.e. 

(6) j + e^ dA{m) - j. 

Lemma 15 (s) shows that each Cv contains at least dA(rn) — 2j divisors of 
degree > j. Since in a symmetric A-chain the degree of members increases 
by step 1 with the growing index, we have at least one member of degree 
3 + {dA{m) — 2j) = dA(m) — J in each Cv. Then (6) implies the existence 
of a member, say d'v of degree j + £ in Cv. The A-subchain of Cv starting 
with d„ and terminating in d'u has length t + 1 and it cannot be completely 
in V. Let d* be the element of this A-subchain not belonging to V of the 
smallest possible degree. Let V = (V \ Vj) U {dj,..., d*h}. Since j + I ^ 
io +Ć— 1, the A-degree of no member in V exceeds io +£— 1. On the other 
hand, the minimal A-degree of V is > j. Repeating this procedure we can 
construct a set of A-divisors having the same cardinality as the original one 
and satisfying the hypotheses of our theorem until the A-degree of its each 
member is at least io-

b) The minimal degree .;' of elements in V satisfies j > io + £ — 1. A 
similar reduction procedure based on Lemma 15 (ss) leads to a set V" of 
A-divisors of m each of which is of degree ^ i0 + t — 1 and simultaneously 
^ io- • 

T H E O R E M 21. Let m € G and m = m 1 m 2 where (mi,ro2) = la and 
dA(m\) ^ dA(ni2). Let V — {di, d 2 , . . . , d̂ } be a set of A-divisors of m 
such that for no {i,j} C {1,2,..., h} either 

(7) {di,m2)A = (dj,m2)A and (d;, mi)A\A(dj, mi)A 

or 

(8) (di, mx)A = {dj,m{)A and (d{, m2)A\A(dj, m2)A 

holds. Then 

(9) h < TA,\{dA(ml)+dA{,mi))l2\{^)-

P R O O F . We shall use Lemma 7 to classify the divisors in V in groups. 
Writing d; = (di, m{)A{du m2)A, i £ {l,...,h}, the grouping will be realized 
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with respect to the A-divisors (di,m2)A of TO2. We then append each such 
group to the corresponding A-divisor of mj after the all A-divisors of mj 
are split into symmetric A-chain. To the groups appended to A-divisors of 
each chain we then apply Theorem 20. That this theorem can be applied is 
guaranteed by the assumptions. More precisely: 

Let b2,b2, •••)&/ be an A-chain of A-divisors of m 2 . Define for 
i- 1,2,...,/ 

Gi - {(d, mi)A :deV, (d, m2)A = *>*}• 

Then (7) implies 

(10) for no h, k and i: gh,gk e Gi and gh\A9k-

Further, if x € Gi d Gj for i ^ j, then x = (d', mi)A and (d', TTI2)A — &i 
for some d' € V, and similarly x = (d", mi)^ and (d", TTI2)A = bj for some 
d" G X>. But (8) implies that either 6j / A^J or / A^ii what is impossible 
due to the fact that the 6's form an A-chain. That is, we have 

( U ) Gir\Gj = QforiźJ 

Finally, the denial of 

(12) U Gi cannot contain a chain of length / + 1 

would imply that two elements (d', mi)A and (d",mi)A of the chain in the 
same Gi contradict (7) since (d', m2)A = (d", m2)A = bi, i.e. (12) holds. 

To prove (9), as already indicated, partition the set of A-divisors of m2 

into disjoint symmetric A-chains. This can be done due to Theorem 12. If 
6 1 , . . . , 6/ is one such chain of length / associate to it sets Gi as described 
above. Since (12), Theorem 20 implies 

U Gi 
i—l 

^ sum of / largest values of ^,,(7712). 

If L consists of the positive terms of the decreasing sequence {dA(m2) + 

1, dA{m2) - 1, dA{m2) - 3,...}, then Corollary 17 and Lemma 18 give the 
estimate 

>o+'-l 
/ l ^ I I [ r A , ( ^ ( " » 2 ) + l - 0 / 2 ( M 2 ) - r > l , ( d A ( m 3 ) - l - 0 / 2 ( W 2 ) ] Yl T^Ami), 

l€L v=io 

where io is determined in (5). 
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For the sake of simplicity suppose that the numbers dA(mi) = 2 M i , 
dA(rn2) = 2 M 2 , / = 2 / i — 1 are even. The other cases can be checked along 
similar lines. Then the last double sum reduces to the form 

M2+I h-i 

/j = l v=l-li 

and this, due to the inner cancellations, to 

TA,Ma(m2)TA,Mi(ml) + ^2TAlMa-i{m2) {TAlMl-i{mi) + TAMl+i(ml)) • 
t=l 

Using the fact that TAj{m) = TVM„( m )_ j (m) , we get finally 

= y^^ , j ( m 2) r A,Af 1 +M a - j ( T "l ) + ^jAMi-i(m2)TA,Mx-M2+j(mi) 

3=0 j=l 

- r ^ . i ( m i m 2 ) ' 
i=o 

as claimed. • 

6. A—convex sets 

A set 5 of A-divisors of an m € G will be called A—convex whenever 

€ S, d2 £ S, di\Ad3\Ad2) => d3 € S. 

One of the conditions imposed on the regularity of an A-system of 
divisors (cf. [9] for more details) is that the Mobius function [iA of an 
A-convolution should assume only values 0 and —1 at prime powers.2) The 
value of \xA at a = p%1 ... p"r is defined by 

fiA(a) = < 
(1 

( " l ) r 

0 

if a = la, 
if each p"1 is A-primitive for every i, 
if some p"{ is not A-primitive. 

2) Note that, in the case of Dirichlet convolution, that is if A = D, the 
function \iA is the ordinary Mobius function, while in the case of unitary 
convolution it is one of the Liouville functions, namely o (-l)"(a\ where 
w(a) denotes the number of distinct prime divisors of a 6 G. 
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The notion of A-convexity has its origin in [2] where also the next result 
can be found (Theorem 3) if G = N and A = D. 

T H E O R E M 22. IfojG{m) stands for the number of different primes divi­
ding m eG, and S is a A-convex set of A-divisors of m, then 

des V L 2 J ' 

P R O O F . Since /i^(d) = 0 when d is not a product of A-primitive ele­
ments, we can limit our consideration only to the case when m is a product 
of distinct A-primitive elements. In this case u>G(m) = dA(m) and the car­
dinality T / i , L d A ( m ) / 2 j ( m ) of the set of A-divisors of m of degree u>G(m)/2 is 
equal to 

fuG(m)\ 
TA,{dA(m)l2\\m) = \ ^ « o ( m ) j j -

We saw in the proof of Lemma 13 that this is the number of A-chains into 
which the set of A-divisors of m can be divided. Let 

S = Si -f 52 + . . . + S T A A d A ( m y 3 i ( m ) , 

where S{ is the subset of the ith chain. However, when d runs over the 
elements of one chain then (iA{d) assumes the values +1 and —1 alternately. 
Hence, £ d g 5 fiA(d) € {0,-1,+1}. Finally, 

£ / * > ( < * ) 
des 

TA,\.dA{m)/2i(m) 

des> 
^ TA,\.dA(m)l2\{™). 

• 

7. Problem 

Regular systems of divisors have their origin in Narkiewicz's paper [9], 
where he investigated the question under which conditions a convolution of 
two arithmetical functions / , and g defined on the set of positive integers N 

( / ° </)(«)= £ / ( % © 
deAn 
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derived from a system A = {An; n € N} turns the set of arithmetical 
functions into a commutative ring with unity and prescribed properties of 
its inverse. 

Theorem 12 shows that the regular system of A-divisors possesses a 
symmetric chain partition. The question is whether this statement can be 
inverted: 

// the system of A-divisors of each element m € G possesses a symme­
tric chain partition then it is regular. 
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