Prace Naukowe Uniwersytetu Śląskiego nr 2142, Katowice

SPERNER TYPE THEOREMS FOR GENERALIZED DIVISORS

ŠTEFAN PORUBSKÝ

Abstract. The extensions of the well-known Sperner's result on antichains of subsets of a given finite set for divisors of a positive integers are shown to hold also for sets of regular systems of divisors of elements of arithmetical semigroups.

1. Introduction

The original result (k = 2 in the following result of P. Erdős) of E. Sperner [12] on the maximal number of subsets of a given set no one of which is included in the other has been generalized in many directions. One of them proved by P. Erdős [3] says:

If in $\mathcal{F} = \{A_1, \ldots, A_n\} \subset 2^S$, the power set of a set S of cardinality $|S| = t < \infty$, there is no chain of length k, then

$$n \leqslant sum \ of \ k-1 \ largest \ binomial \ coefficients inom{t}{i}$$

and this is sharp.

One of the first novelties in these set generalizations has been brought (again the case k=2 below) by De Bruijn, Van Ebbenhorst Tengbergen and Kruyswijk [2] who proved a corresponding result for subsets of divisors of a given positive integer. Motivated by a close connection between the subsets

Received: 22.10.2002.

AMS (1991) subject classification: Primary 05A05, 11B75, 11N80.

Key words and phrases: generalized integer, arithmetical semigroup, Narkiewicz's regular system of divisors, Sperner system, symmetric chain.

The author was supported by the Grant Agency of the Czech Republic, Grant # 201/01/0471.

of a finite sets and the subsets of divisors of a square-free positive integer various interesting links between both topic were found. E.g. Schönheim [11] proved:

If in $\mathcal{D} = \{h_1, \ldots, h_n\} \subset D(N)$, the set of all divisors of $N = p_1^{\alpha_1} \cdots p_t^{\alpha_t}$, there is no chain of length k, then

$$n \leqslant sum \ of \ k-1 \ largest \ numbers \ \tau_i(N)$$

and this is sharp.

Here d(n) denotes the degree of n, that is, the total number of prime divisors of n, and $\tau_{\beta}(N) = \#\{h : h|N, d(h) = \beta\}$. The reader is referred to [5] for more details about further generalizations and comments.

In [10] the author proposed a further generalization in the sense that the positive integers were replaced by elements of an arithmetical semigroup and the sets of divisors by the so-called regular systems of divisors. To make the paper self-contained we repeat some basic definitions for the convenience of the reader in the next section.

2. Regular systems of divisors

Let G denote a free commutative semigroup relative to a multiplication operation denoted by juxtaposition, with identity element 1_G and with at most countably many generators P_G . Such a semigroup will be called (cf. [7]) arithmetical semigroup if in addition a real-valued norm $|\cdot|$ is defined on G such that

- (i) $|1_G| = 1, |a| > 1$ for all $a \in G$,
- (ii) $|ab| = |a| \cdot |b|$ for all $a, b \in G$,
- (iii) the set $\{a \in G : |a| \le x\}$ is finite for all real numbers x.

The elements of G are called **generalized integers**. The free semigroup structure of G substitutes the multiplicative structure of positive integers. The analytical part of the theory of arithmetical semigroups based on the existence of the norm mapping $|\cdot|$ will play rather peripheral role mainly because most of our reasoning will be based on the divisibility relation induced by the multiplication in G where each element of G being uniquely representable as a product of generators of G has only a finite number of divisors, what replaces requirement (iii) in our arguments.

The standard terms like **divisor** are defined between generalized integers in the expected way, by saying that an element $b \in G$ divides $a \in G$, in symbols b|a, if there exists a $c \in G$ such that a = bc. The set of all divisors of $a \in G$ will be denoted by D(a). The elements of the set P_G of all generators of G will be called **primes**.

Besides the set N of positive integers the most typical prototypes of arithmetical semigroups are:

EXAMPLE 1. $G = G_K$, the semigroup of all non-zero integral ideals in a given algebraic number field K of degree $n = [K : \mathbb{Q}]$ over rationals \mathbb{Q} with the usual norm function $|\mathfrak{a}| = \operatorname{card}(\mathcal{O}_K/\mathfrak{a})$.

EXAMPLE 2. $G = \mathcal{A}$ the category of all finite Abelian groups with the usual direct product operation and the norm $|A| = \operatorname{card}(A)$. Fundamental Theorem on finite Abelian groups shows that \mathcal{A} is free and that the generators are the cyclic groups of prime-power order.

It is well-known that if \mathfrak{a} and \mathfrak{b} are two ideals in a number field K then the relation $\mathfrak{a}|\mathfrak{b}$ is equivalent to $\mathfrak{a}\supset\mathfrak{b}$. Thus in this case any divisibility relation can be converted in turn to a set-inclusion form and vice verse. This remains true also for the factor-rings of algebraic integers with respect to a proper ideal. Thus the reformulation of the problem in the framework of arithmetical semigroups shows perhaps more naturally the mentioned connections between the set-theoretic and divisor version.

In the group case, if a finite Abelian group $H = A \times B$ is the direct product of groups A and B, then A can be understood as a subgroup (and thus also a subset) of B. In the converse direction it is interesting to note that Kertézs [6] proved that every subgroup of a general group G is its direct factor if and only if G is the direct product of cyclic groups of prime order, that is if it is of squarefree order (and clearly Abelian), and we have again a formally different demonstration that De Bruijn et al. implies Sperner.

In the introduction mentioned modification of the divisibility notion is due to Narkiewicz [9] who considered the case of $G = \mathbb{N}$, the set of positive integers. Its extension to arithmetical semigroups is immediate: Let A be a mapping from the arithmetical semigroup G into the set of subsets of G such that A(a) is a subset of the set D(a) of all divisors of $a \in G$. The system

$$\{A(a): a \in G\}$$

will be called the **system of** A-divisors, the elements of A(a) are called the A-divisors of a. If $d \in A(a)$, we shall write $d|_A a$ to distinguish between the A-divisibility and the usual divisibility.

The system of D-divisors is connected with the well-known Dirichlet convolution. The second most known example is the system of unitary divisors defined by

$$U(a) = \{d \in G : d|a, (d, a/d) = 1_G\}$$

and is connected with the so called unitary convolution (cf. [1]).

The system (1) will be called **regular system of divisors** (or **regular system of** A-divisors) provided:

- (a) $d \in A(a) \Rightarrow a/d \in A(a)$
- (b) if $(a, b) = 1_G$ then $A(ab) = A(a) \cdot A(b)$, where $A \cdot B = \{a'b' : a' \in A, b' \in B\}$
- (c) $\{1_G, a\} \subset A(a)$ for all a
- (d) the statement " $d \in A(a)$ and $a \in A(b)$ " is equivalent to " $d \in A(b)$ and $a/d \in A(b/d)$ "
- (e) for all prime powers p^k , $k \in \mathbb{N}$, there exists a positive integer v such that

$$A(p^k) = \{1_G, p^v, p^{2v}, \dots, p^{rv} = p^k\},\$$

and moreover $p^{v} \in A(p^{2v}), p^{2v} \in A(p^{3v}), \ldots, p^{(r-1)v} \in A(p^{k}).$

Note that these conditions, as stated here, are not independent.

The divisor v of k is called the **type of** p^k and it will be denoted by $t_A(p^k)$ in what follows.

The next result can be proved for general arithmetical semigroups using the same ideas as in [8, Corollary 4.2] for \mathbb{N} .

LEMMA 3. Let (1) be a regular system of divisors and $p \in P_G$, and $\alpha \geqslant \beta \geqslant 1$ two integers. If $A(p^{\alpha}) \cap A(p^{\beta}) \neq \{1_G\}$ then $t_A(p^{\alpha}) = t_A(p^{\beta})$, and $A(p^{\beta})$ consists of the $(\beta/t_A(p^{\alpha}) + 1)$ elements of the smallest norm in $A(p^{\alpha})$.

An element $a \in G$, $a \neq 1_G$, is called A-primitive if $A(a) = \{1_G, a\}$. The D-primitive elements are the primes $p \in P_G$, while the U-primitive elements are the all powers p^k , $k \in \mathbb{N}$, of prime elements $p \in P_G$. An element m which is a product of distinct A-primitive elements will be called A-squarefree.

COROLLARY 4. If p^{λ} is of type v, then p^{ν} is A-primitive.

PROOF. Would we have $p^{\alpha} \in A(p^{\nu})$ with $0 < \alpha < \nu$, i.e. $p^{\alpha} \in A(p^{\nu})$ and $p^{\nu} \in A(p^{\lambda})$, then (d) implies that $p^{\alpha} \in A(p^{\lambda})$ which is not true. Hence $A(p^{\nu}) = \{1_G, p^{\nu}\}$, as claimed.

Property (b) immediately implies that:

LEMMA 5. If $n \in G$ is A-primitive then $n = p^{\alpha}$ for some $p \in P_G$ and $\alpha \geqslant 1$.

Note that regular systems of A-divisors are completely determined by the sets $A(p^{\alpha})$ for all $p \in P_G$ and all $\alpha \geqslant 1$. On the other hand, a regular system of divisors is not *uniquely* determined by its primitive elements. There

are different systems of distinct regular systems of divisors having the same set of primitive elements (cf. [9, p. 87] or [8, p. 160]).

LEMMA 6 ([8, Exercise 4.5]). Let A be a regular system of divisors. If p is a prime and p^{α} is the highest power of p that divides an element $m \in G$ then $p^{\alpha} \in A(m)$. Furthermore, if $p^{\beta} \in A(m)$ then $p^{\beta} \in A(p^{\alpha})$.

PROOF. The statements are direct consequences of properties (a) and (c).

If $a, b \in G$ then the A-greatest common divisor $(a, b)_A$ is the common A-divisor of a and b that is divisible by any other common A-divisor of a and b. Two elements $a, b \in G$ are A-relatively prime if, and only if, $A(a) \cap A(b) = \{1_G\}$.

The next elementary result will be applied later:

LEMMA 7. Let A be a regular system of divisors. If $d|_{A}m_{1}m_{2}$ and $(m_{1}, m_{2}) = 1_{G}$ then

$$(d, m_1)_A (d, m_2)_A = d.$$

PROOF. Let p^{α} be the highest power of a prime A-dividing d. Then (d) implies that $p^{\alpha}|_{A}m_{1}m_{2}$, and consequently $p|_{m_{1}m_{2}}$. Since $(m_{a}, m_{1}) = 1$, either $p|_{m_{1}}$ or $p|_{m_{2}}$. Let $p|_{m_{1}}$, and let p^{β} be the highest power of p dividing m_{1} . Clearly, p^{β} is also the highest power of p dividing $m_{1}m_{2}$. Lemma 6 shows that $p^{\alpha}|_{A}p^{\beta}$. Consequently, $p^{\alpha}|_{A}m_{1}$, i.e. $p^{\alpha}|_{A}(d, m_{1})_{A}$, and the proof is finished.

REMARK 8. In the above lemma it is not possible to replace the condition $(m_1, m_2) = 1_G$ by $(m_1, m_2)_A = 1_G$. To see this, take a power of a prime p^{α} such that $t_A(p^{\alpha}) = v > 1$. Then $(p, p^{\alpha-1})_A = 1_G$. Would be this not true, then $(p, p^{\alpha})_A = p$, i.e. $t_A(p^{\alpha-1}) = 1$ and consequently $p^{\nu} \in A(p^{\alpha-1})$ and Lemma 3 implies the impossible equality $t_A(p^{\alpha-1}) = t_A(p^{\alpha})$. Thus if $d = p^{\nu}$ we have $(p^{\nu}, p)_A = 1_G$ and also $(p^{\nu}, p^{\nu-1})_A = 1_G$, i.e. $p^{\nu} \neq (p^{\nu}, p)_A(p^{\nu}, p^{\nu-1})_A$.

3. A-degree and A-chains

Unless contrary is stated A will always be supposed to be a regular systems of divisors. Let $m \in G$. If

$$(2) m = p_1^{\lambda_1} p_2^{\lambda_2} \dots p_k^{\lambda_k}$$

is the decomposition of m into primes, then the **A-degree** $d_A(m)$ of $m \neq 1_G$ is defined by

$$d_A(m) = \sum_{i=1}^k \frac{\lambda_i}{t_A(p_i^{\lambda_i})},$$

where $t_A(p^k)$ is the type of p^k , and $d_A(1_G) = 0$.

LEMMA 9. If $a|_A b$ and b = ac, where c is A-primitive, then $d_A(b) = d_A(a) + d_A(c)$.

PROOF. If c is A-primitive then Lemma 5 implies $c = p^{\beta}$ for some p and $\beta \geqslant 1$, i.e. $b = ap^{\beta}$. Since $a \in A(b)$, property (a) yields that $p^{\beta} = b/a \in A(b)$. If p^{α} is the highest power dividing b then Lemma 6 shows that $p^{\beta} \in A(p^{\alpha})$. Property (a) applied to p^{β} and p^{α} implies $p^{\alpha-\beta} \in A(p^{\alpha})$.

If $\alpha - \beta = 0$ then the proof is finished. Suppose therefore that $\alpha > \beta$. Lemma 3 implies that $t_A(p^{\alpha})$ divides each of the exponents α , β and $\alpha - \beta$ and that $t_A(p^{\alpha}) = t_A(p^{\alpha-\beta}) = t_A(p^{\beta})$. Consequently, for the contribution of powers of p to the degrees of a and b, we get

$$\frac{\alpha}{t_A(p^{\alpha})} = \frac{\alpha - \beta}{t_A(p^{\alpha})} + \frac{\beta}{t_A(p^{\alpha})} = \frac{\alpha - \beta}{t_A(p^{\alpha - \beta})} + \frac{\beta}{t_A(p^{\beta})},$$

and the proof is finished.

Note that in the previous lemma the assumptions that b = ac and c is A-primitive does not imply that also $a|_A b$ as the Remark 8 shows for $b = p^{\alpha}$ and c = p provided $t_A(p^{\alpha}) > 1$.

An **A-chain** (of length h) is a sequence d_1, \ldots, d_h of elements of G such that $d_i|_A d_{i+1}$ for all $1 \leq i < h$.

LEMMA 10. If $a|_A b$ then there exists an A-chain $a = d_1, \ldots, d_h = b$ of elements of G such that d_{i+1}/d_i is A-primitive for all $1 \leq i < h$.

PROOF. Let p^{α} and p^{β} denote the highest power of a fixed prime p which divides a and b, resp. Lemma 6 shows that $p^{\beta} \in A(b)$, and similarly $p^{\alpha} \in A(a)$. Since $p^{\alpha} \in A(a)$ and $a \in A(b)$, property (d) implies $p^{\alpha} \in A(b)$. Due to property (b) the relation $p^{\alpha} \in A(b)$ can hold only if $p^{\alpha} \in A(p^{\beta})$. Lemma 3 shows that $t_A(p^{\alpha}) = t_A(p^{\beta})$ provided both α, β are positive. If v denotes this common value and $\alpha < \beta$ then

$$a, ap^{v}, ap^{2v}, \ldots, ap^{\beta-\alpha}$$

is the subchain of the constructed A-chain corresponding to the prime p dividing both a and b. If $p \nmid a$, i.e. $\alpha = 0$, then the construction above works with $v = t_A(p^{\beta})$. If $\alpha = \beta$ the subchain corresponding to p is empty. \square

COROLLARY 11. If $a|_A b$ then $d_A(a) \leq d_A(b)$. More precisely, $d_A(b) = d_A(a) + d_A(b/a)$.

Let $\tau_{A,\beta}(m)$ denote the number of A-divisors of m of A-degree β . For later convenience put $\tau_{A,\beta}(m)=0$ for $\beta<0$ or $\beta>d_A(m)$. This number satisfies many identities similar to those for binomial coefficients. For instance, if m is A-squarefree then

$$au_{A,eta}(m) = egin{pmatrix} d_A(m) \ eta \end{pmatrix}.$$

The formula

$$\sum_{i=0}^{d_A(m)} \tau_{A,i}(m) = \prod_{i=1}^k \left(\frac{\lambda_i}{t_A(p_i^{\lambda_i})} + 1 \right),$$

extends the well-known one $\sum_{i=1}^{n} {n \choose i} = 2^n$, and actually says nothing else as that each A-divisor of m has a degree. Another identity

(3)
$$\sum_{\beta=0}^{r} \tau_{A,\beta}(d_a(m_2)) \tau_{A,r-\beta}(d_a(m_1)) = \tau_{A,r}(d_a(m_1m_2))$$

provided $(m_1, m_1) = 1_G$ and $d_A(m_1) \ge d_A(m_2)$ is the algebraic form of the fact that A-divisors of $m_1 m_2$ of a given degree r are products of A-divisors of m_1 and m_2 of A-degrees summing up to the A-degree of $m_1 m_2$.

4. Symmetric A-chains

An A-chain d_1, \ldots, d_h of A-divisors of $m \in G$ will be called a symmetric A-chain if:

(c) the A-degree of d_1 equals the A-degree of m/d_h ,

(cc) if h > 1 then the quotient d_{i+1}/d_i is A-primitive for all $1 \le i < h$.

The notion of the symmetric chain was introduced by De Bruijn, van Ebbenhorst Tengbergen, and Kruyswijk in [2] for the case $G = \mathbb{N}$ and A = D. The next result as well as its proof technique goes back to the corresponding Theorem 2 in this paper.

THEOREM 12. The set of A-divisors of an element $m \in G$ can be completely divided into a number of disjoint symmetric A-chains.

PROOF. The proof can be done by induction on the number $\omega_G(m)$ of distinct prime divisors of m. Let $m=m_1p^{\lambda}$ with $p \not\mid m_1$ and $A(p^{\lambda})=\{1_G,p^v,p^{2v},\ldots,p^{rv}=p^{\lambda}\}$. The main ingredient of the proof is the construction of symmetric A-chains for m from those for m_1 . Given a symmetric A-chain d_1,d_2,\ldots,d_h of A-divisors of m_1 we can generate a sequence of disjoint symmetric A-chains for m as follows:

$$d_1, d_1 p^{v}, \ldots, d_1 p^{rv}, d_2 p^{rv}, \ldots, d_h p^{rv},$$

$$d_2, d_2 p^{v}, \ldots, d_2 p^{(r-1)v}, d_3 p^{(r-1)v}, \ldots, d_h p^{(r-1)v}$$

etc. The last one being

$$d_{r+1},\ldots,d_h$$

if $h \geqslant r+1$, or

$$d_h,\ldots,d_hp^{(r+1-h)v}$$

if
$$h \leqslant r+1$$
.

The next result can be reconstructed using ideas of the proof of Theorem 1 of [2]. Its connections to Theorem 19 are immediate.

LEMMA 13. Let $m \in G$. Then the number of symmetric A-chains in which the set of A-divisors of m splits is $\tau_{A,\lfloor d_A(m)/2\rfloor}(m)$.

COROLLARY 14. We have $\tau_{A,0}(m) \leqslant \tau_{A,1}(m) \leqslant \tau_{A,2}(m) \leqslant \ldots \leqslant \tau_{A,\lfloor d_A(m)/2 \rfloor}(m)$.

LEMMA 15. If a symmetric A-chain contains an A-divisor of degree (s) $s \leq d_A(m)/2$ then the chain under question contains at least $d_A(m) - 2s$ other A-divisors of degree > s,

(ss) $s \ge d_A(m)/2$ then the chain under question contains at least $2s - d_A(m)$ other A-divisors of degree < s.

PROOF. Let our symmetric A-chain be t_1, \ldots, t_k and let $d_A(t_1) \leq s = d_A(t_i) \leq d_A(t_h)$ for some index $i \in \{1, \ldots, k\}$. We know that the values $d_A(t_i)$ increase by 1 when the index i increases by 1. Thus

(s) the all terms of the chain of degree > s are those between t_{i+1} and t_k including the bounds. They are $d_A(t_k) - d_A(t_i)$ in number. The condition

- (c) implies that $d_A(t_k) = d_A(m) d_A(t_1)$, and since $d_A(t_1) \leq d_A(t_i) = s$, the result follows. 1)
- (ss) in this case all the terms of the chain of degree < s are those between t_1 and t_{i-1} including them. Their number is $d_A(t_i) d_A(t_1) = s (d_A(m) d_A(t_k)) \ge 2s d_A(m)$.

An extension of another property of symmetric A-chains used in the proof of Lemma 13 leads to the following observation:

LEMMA 16. If t_1 is the initial element of a symmetric A-chain of length h then h and $d_A(m)$ are of opposite parity and $d_A(t_1) = (d_A(m) + 1 - h)/2$.

PROOF. The definition implies that if t_1, \ldots, t_h is a symmetric A-chain then $d_A(t_h) = d_A(m) - d_A(t_1)$. On the other hand, we know that the values $d_A(t_i)$ increase by 1 when the index *i* increases by 1. Thus $d_A(t_h) = d_A(t_1) + h - 1$, i.e. $2d_A(t_1) = d_A(m) + 1 - h$. Since the numbers occurring in the last equality are integers the statement follows.

COROLLARY 17. If h is the length of a symmetric A-chain for $m \in G$, then

$$h \in \{d_A(m) + 1, d_A(m) - 1, d_A(m) - 3, \ldots\} \cap \mathbb{N}.$$

To the proof only note that the largest length $d_A(m) + 1$ is really realizable and starts at 1_G and ends at m. If $m = p^{\lambda}$ then this is the only symmetric A-chain, which shows that not each h in the above interval is realizable.

LEMMA 18. Let $m \in G$. If $h \in \mathbb{N}$ and $d_A(m)$ have the opposite parity, then the number of mutually disjoint symmetric A-chains of length h of the A-divisors of an element $m \in G$ is given by the formula

$$\tau_{A,(d_A(m)+1-h)/2}(m) - \tau_{A,(d_A(m)-1-h)/2}(m).$$

PROOF. We shall proceed by induction on $d_A(m)$. If $d_A(m) = 1$ then $m \in P_G$ and we have only one symmetric chain of length 2. Suppose that the formula of the lemma holds for all admissible h and for each $m \in G$ with $d_A(m) < k$ and k > 1 a positive integer. Consider an m with $d_A(m) = k > 1$.

¹⁾ The reason for the assumption $s \leq d_A(m)/2$ is that in the opposite case the statement of the lemma is empty for $d_A(m) - 2s$ is negative.

Let p^k be the highest power of a prime dividing m and let $v = t_A(p^k)$ be its type. Then k = rv, and let $m = np^k$.

To count the number of mutually disjoint symmetric A-chains of length h we shall use the construction employed in the proof of Theorem 12. Suppose that we took a symmetric A-chain of length f for n. Taking into account the final remark in the proof of this theorem consider two possibilities $f \geqslant r+1$ or f < r+1. In the first case the longest symmetric A-chain for m which we obtain using the procedure of the proof of Theorem 12 has length f+r, the next to the right has length f+r-2, etc. and the shortest one has length f-r, i.e. we obtain symmetrical A-chains for m having lengths

$$f + r - 2i$$
 for $i = 0, 1, 2, ..., r$.

If f < r+1 we get chains of length f+r, f+r-2, ..., r+2-f, i.e.

$$r + f - 2i$$
 for $i = 0, 1, 2, ..., f - 1$.

Since f-1 < r in the later case, we can sum up both cases saying: with every symmetric A-chain of length f for n we can generate a symmetric A-chain for m of length

$$h = f + r - 2i$$

for every i = 0, 1, ..., r provided $h \geqslant 0$. In other words, if for $h \geqslant 0$ we have

$$(4) f = h - r + 2i$$

for some $i \in \{0, 1, ..., r\}$, then we can associate with each symmetric A-chain of length f for n a symmetric A-chain of length h for m. The induction hypothesis shows that the total number of symmetric A-chains for n is

$$\tau_{A,(d_A(n)+1-f)/2}(n) - \tau_{A,(d_A(n)-1-f)/2}(n).$$

Plugging (4) for f and summing up for $i \in \{0, 1, ..., r\}$ we get

$$(\tau_{A,(d_{A}(n)+1-(h-r+2.0))/2}(n) - \tau_{A,(d_{A}(n)-1-(h-r+2.0))/2}(n))$$

$$+ (\tau_{A,(d_{A}(n)+1-(h-r+2.1))/2}(n) - \tau_{A,(d_{A}(n)-1-(h-r+2.1))/2}(n)) + \dots +$$

$$+ (\tau_{A,(d_{A}(n)+1-(h-r+2.r))/2}(n) - \tau_{A,(d_{A}(n)-1-(h-r+2.r))/2}(n))$$

and the result follows for $d_A(n) + r = d_A(m)$.

The above proof can be used to demonstrate the comment after Corollary 17 once again: If $m=p_1^{\alpha_1}p_2^{\alpha_2}$, $p_1\neq p_2$, $v_1=t_A(p_1^{\alpha_1})$ and $v_2=t_A(p_2^{\alpha_2})$

with $v_1 > v_2$ then only lengths $(v_1 + 1) + v_2, (v_2 + 1) + v_2 - 2, \ldots, (v_1 + 1) + v_2 - 2v_2$ are realizable. This sequence does not contain the length 1.

5. Sperner type theorems

The preliminaries for the proof of next result are already behind us (cf. proof of [2, Theorem 1] for details).

THEOREM 19. Let d_1, \ldots, d_h be a set of A-divisors of $m \in G$ with the property that no d_i is an A-divisor of a d_j with $i \neq j$. Then $h \leq \tau_{A,\lfloor d_A(m)/2 \rfloor}(m)$.

The next results were proved for $G = \mathbb{N}$ and A = D in [11, Theorem 2]. The presented proof follows the ideas used in that paper. If m is A-squarefree we get a result extending original Sperner's one and proved in [3] showing that the result is sharp.

THEOREM 20. Let $m \in G$ and $\mathcal{D} = \{d_1, \ldots, d_h\}$ be a set of A-divisors of m with the property that \mathcal{D} has no A-subchain of length $\ell + 1$. Then

$$h \leqslant sum of \ \ell \ largest \ values \ of \ \tau_{A,i}(m)$$
.

Since any set consisting of A-divisors of a fixed degree cannot contain an A-subchain, the set consisting of the all A-divisors of ℓ distinct degrees does not contain an A-chain of length $\ell+1$.

PROOF. First note the following two simple properties of $\tau_{A,\beta}(m)$:

(i) if $0 \leqslant \beta \leqslant d_A(m)$ then $\tau_{A,\beta}(m) = \tau_{A,d_A(m)-\beta}(m)$, and

(ii) $\tau_{A,0}(m) \leqslant \tau_{A,1}(m) \leqslant \tau_{A,2}(m) \leqslant \ldots \leqslant \tau_{A,\lfloor d_A(m)/2 \rfloor}(m)$.

Property (i) follows immediately from Corollary 11 and (ii) is Corollary 14.

Properties (i) and (ii) imply that the ℓ largest values of $\tau_{A,\beta}(m)$ correspond to a segment of consecutive values β , say $\beta = i_0, \ldots, i_0 + \ell - 1$, where

(5)
$$i_0 \leqslant (d_A(m) - \ell + 2)/2.$$

If the A-degree of each member of \mathcal{D} lies in the interval $\langle i_0, i_0 + \ell - 1 \rangle$ we are done. Therefore suppose that the A-degree of at least one member in \mathcal{D} lies outside this interval. We have two possibilities to consider:

a) The minimal degree j of elements in \mathcal{D} satisfies $j < i_0$. Let $\mathcal{D}_j = \{d_1, \ldots, d_k\}$ be the set of all elements of degree j in \mathcal{D} . By Theorem 12 each element of \mathcal{D}_j belongs to some symmetric A-chain. Moreover, each symmetric chain contains at most one member of \mathcal{D}_j . Let C_v be the symmetric A-chain containing d_v for each $v = 1, \ldots, k$.

Since $j < i_0$ then $j \leq (d_A(m) - \ell)/2$ due to (5), i.e.

$$(6) j+\ell \leqslant d_A(m)-j.$$

Lemma 15 (s) shows that each C_v contains at least $d_A(m)-2j$ divisors of degree > j. Since in a symmetric A-chain the degree of members increases by step 1 with the growing index, we have at least one member of degree $j+(d_A(m)-2j)=d_A(m)-j$ in each C_v . Then (6) implies the existence of a member, say d_v' of degree $j+\ell$ in C_v . The A-subchain of C_v starting with d_v and terminating in d_v' has length $\ell+1$ and it cannot be completely in \mathcal{D} . Let d_v^* be the element of this A-subchain not belonging to \mathcal{D} of the smallest possible degree. Let $\mathcal{D}'=(\mathcal{D}\setminus\mathcal{D}_j)\cup\{d_1^*,\ldots,d_h^*\}$. Since $j+\ell\leqslant i_0+\ell-1$, the A-degree of no member in \mathcal{D}' exceeds $i_0+\ell-1$. On the other hand, the minimal A-degree of \mathcal{D}' is >j. Repeating this procedure we can construct a set of A-divisors having the same cardinality as the original one and satisfying the hypotheses of our theorem until the A-degree of its each member is at least i_0 .

b) The minimal degree j of elements in \mathcal{D} satisfies $j > i_0 + \ell - 1$. A similar reduction procedure based on Lemma 15 (ss) leads to a set \mathcal{D}'' of A-divisors of m each of which is of degree $\leq i_0 + \ell - 1$ and simultaneously $\geq i_0$.

THEOREM 21. Let $m \in G$ and $m = m_1 m_2$ where $(m_1, m_2) = 1_G$ and $d_A(m_1) \geqslant d_A(m_2)$. Let $\mathcal{D} = \{d_1, d_2, \ldots, d_h\}$ be a set of A-divisors of m such that for no $\{i, j\} \subset \{1, 2, \ldots, h\}$ either

(7)
$$(d_i, m_2)_A = (d_j, m_2)_A$$
 and $(d_i, m_1)_A |_A (d_j, m_1)_A$

or

(8)
$$(d_i, m_1)_A = (d_j, m_1)_A$$
 and $(d_i, m_2)_A |_A (d_j, m_2)_A$

holds. Then

$$(9) h \leqslant \tau_{A,\lfloor (d_A(m_1)+d_A(m_2))/2\rfloor}(m).$$

PROOF. We shall use Lemma 7 to classify the divisors in \mathcal{D} in groups. Writing $d_i = (d_i, m_1)_A (d_i, m_2)_A$, $i \in \{1, \ldots, h\}$, the grouping will be realized

with respect to the A-divisors $(d_i, m_2)_A$ of m_2 . We then append each such group to the corresponding A-divisor of m_2 after the all A-divisors of m_2 are split into symmetric A-chain. To the groups appended to A-divisors of each chain we then apply Theorem 20. That this theorem can be applied is guaranteed by the assumptions. More precisely:

Let b_2, b_2, \ldots, b_l be an A-chain of A-divisors of m_2 . Define for $i = 1, 2, \ldots, l$

$$G_i = \{(d, m_1)_A : d \in \mathcal{D}, (d, m_2)_A = b_i\}.$$

Then (7) implies

(10) for no
$$h, k$$
 and $i: g_h, g_k \in \mathcal{G}_i$ and $g_h|_A g_k$.

Further, if $x \in \mathcal{G}_i \cap \mathcal{G}_j$ for $i \neq j$, then $x = (d', m_1)_A$ and $(d', m_2)_A = b_i$ for some $d' \in \mathcal{D}$, and similarly $x = (d'', m_1)_A$ and $(d'', m_2)_A = b_j$ for some $d'' \in \mathcal{D}$. But (8) implies that either $b_i \not\mid Ab_j$ or $b_j \not\mid Ab_i$, what is impossible due to the fact that the b's form an A-chain. That is, we have

$$(11) G_i \cap G_j = \emptyset \text{ for } i \neq j$$

Finally, the denial of

(12)
$$\bigcup_{i=1}^{l} \mathcal{G}_i \text{ cannot contain a chain of length } l+1$$

would imply that two elements $(d', m_1)_A$ and $(d'', m_1)_A$ of the chain in the same \mathcal{G}_i contradict (7) since $(d', m_2)_A = (d'', m_2)_A = b_i$, i.e. (12) holds.

To prove (9), as already indicated, partition the set of A-divisors of m_2 into disjoint symmetric A-chains. This can be done due to Theorem 12. If b_1, \ldots, b_l is one such chain of length l associate to it sets \mathcal{G}_i as described above. Since (12), Theorem 20 implies

$$\left| \bigcup_{i=1}^{l} \mathcal{G}_i \right| \leqslant \text{ sum of } l \text{ largest values of } \tau_{A,i}(m_2).$$

If L consists of the positive terms of the decreasing sequence $\{d_A(m_2) + 1, d_A(m_2) - 1, d_A(m_2) - 3, \ldots\}$, then Corollary 17 and Lemma 18 give the estimate

$$h \leqslant \sum_{l \in L} \left[\tau_{A,(d_A(m_2)+1-l)/2}(m_2) - \tau_{A,(d_A(m_2)-1-l)/2}(m_2) \right] \sum_{v=i_0}^{i_0+l-1} \tau_{A,v}(m_1),$$

where i_0 is determined in (5).

For the sake of simplicity suppose that the numbers $d_A(m_1) = 2M_1$, $d_A(m_2) = 2M_2$, $l = 2l_1 - 1$ are even. The other cases can be checked along similar lines. Then the last double sum reduces to the form

$$\sum_{l_1=1}^{M_2+1} \left[\tau_{A,M_2-l_1+1}(m_2) - \tau_{A,M_2-l_1}(m_2) \right] \sum_{v=1-l_1}^{l_1-1} \tau_{A,v}(m_1)$$

and this, due to the inner cancellations, to

$$\tau_{A,M_2}(m_2)\tau_{A,M_1}(m_1) + \sum_{i=1}^{M_2} \tau_{A,M_2-i}(m_2) \left(\tau_{A,M_1-i}(m_1) + \tau_{A,M_1+i}(m_1)\right).$$

Using the fact that $\tau_{A,j}(m) = \tau_{A,d_A(m)-j}(m)$, we get finally

$$= \sum_{j=0}^{M_2} \tau_{A,j}(m_2) \tau_{A,M_1+M_2-j}(m_1) + \sum_{j=1}^{M_2} \tau_{A,M_2-j}(m_2) \tau_{A,M_1-M_2+j}(m_1)$$

$$= \sum_{j=0}^{M_1+M_2} \tau_{A,j}(m_1m_2),$$

as claimed.

6. A-convex sets

A set S of A-divisors of an $m \in G$ will be called A-convex whenever

$$(d_1 \in S, d_2 \in S, d_1|_A d_3|_A d_2) \quad \Rightarrow \quad d_3 \in S.$$

One of the conditions imposed on the regularity of an A-system of divisors (cf. [9] for more details) is that the Möbius function μ_A of an A-convolution should assume only values 0 and -1 at prime powers.²⁾ The value of μ_A at $a = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ is defined by

$$\mu_A(a) = \begin{cases} 1 & \text{if } a = 1_G, \\ (-1)^r & \text{if each } p_i^{\alpha_i} \text{ is } A\text{-primitive for every } i, \\ 0 & \text{if some } p_i^{\alpha_i} \text{ is not } A\text{-primitive.} \end{cases}$$

²⁾ Note that, in the case of Dirichlet convolution, that is if A = D, the function μ_A is the ordinary Möbius function, while in the case of unitary convolution it is one of the Liouville functions, namely $a \mapsto (-1)^{\omega(a)}$, where $\omega(a)$ denotes the number of distinct prime divisors of $a \in G$.

The notion of A-convexity has its origin in [2] where also the next result can be found (Theorem 3) if $G = \mathbb{N}$ and A = D.

THEOREM 22. If $\omega_G(m)$ stands for the number of different primes dividing $m \in G$, and S is a A-convex set of A-divisors of m, then

$$\left| \sum_{d \in S} \mu_A(d) \right| \leqslant \binom{\omega_G(m)}{\lfloor \frac{\omega_G(m)}{2} \rfloor}.$$

PROOF. Since $\mu_A(d)=0$ when d is not a product of A-primitive elements, we can limit our consideration only to the case when m is a product of distinct A-primitive elements. In this case $\omega_G(m)=d_A(m)$ and the cardinality $\tau_{A,\lfloor d_A(m)/2\rfloor}(m)$ of the set of A-divisors of m of degree $\omega_G(m)/2$ is equal to

$$\tau_{A,\lfloor d_A(m)/2\rfloor}(m) = \binom{\omega_G(m)}{\lfloor \frac{\omega_G(m)}{2} \rfloor}.$$

We saw in the proof of Lemma 13 that this is the number of A-chains into which the set of A-divisors of m can be divided. Let

$$S = S_1 + S_2 + \ldots + S_{\tau_{A, \lfloor d_A(m)/2 \rfloor}(m)},$$

where S_i is the subset of the *i*th chain. However, when d runs over the elements of one chain then $\mu_A(d)$ assumes the values +1 and -1 alternately. Hence, $\sum_{d\in S} \mu_A(d) \in \{0, -1, +1\}$. Finally,

$$\left|\sum_{d\in S}\mu_A(d)\right|\leqslant \sum_{i=1}^{\tau_{A,\lfloor d_A(m)/2\rfloor}(m)}\left|\sum_{d\in S_i}\mu_A(d)\right|\leqslant \tau_{A,\lfloor d_A(m)/2\rfloor}(m).$$

7. Problem

Regular systems of divisors have their origin in Narkiewicz's paper [9], where he investigated the question under which conditions a convolution of two arithmetical functions f, and g defined on the set of positive integers \mathbb{N}

$$(f \circ g)(n) = \sum_{d \in A_n} f(d)g\left(\frac{n}{d}\right)$$

derived from a system $A = \{A_n; n \in \mathbb{N}\}$ turns the set of arithmetical functions into a commutative ring with unity and prescribed properties of its inverse.

Theorem 12 shows that the regular system of A-divisors possesses a symmetric chain partition. The question is whether this statement can be inverted:

If the system of A-divisors of each element $m \in G$ possesses a symmetric chain partition then it is regular.

REFERENCES

- [1] E. Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. 74 (1960), 66-80.
- [2] N. G. De Bruijn, C. van Ebbenhorst Tengbergen and D. Kruyswijk, On the set of divisors of a number, Nieuw Arch. Wisk. 23 (1952), 191-193.
- [3] P. Erdős, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51 (1945), 898-902.
- [4] P. Erdős, J. Schönheim, On the set of non pairwise coprime divisors of a number, in "Combinatorial Theory and its Applications" Vol. 1, pp. 369-376, Coll. Math. Soc. J. Bolayi 2 (P. Erdős, A. Rényi, V.T. Sós eds.), North-Holland, Amsterdam London 1970.
- [5] P. Erdős and J. Schönheim, Sets versus divisors, in "Combinatorics, Paul Erdős is Eighty" Vol. 2, pp. 193-212, Bolayi Society Mathematical Studies, 2 (Keszthely, 1993), Budapest 1996.
- [6] A. Kertész, On groups every subgroup of which is a direct summand, Publ. Math. 2 (1951), 74-75.
- [7] J. Knopfmacher, Abstract Analytic Number Theory, North-Holland Mathematical Library Vol. 12, North-Holland & American Elsevier, Amsterdam-Oxford-New York 1975.
- [8] P. J. McCarthy, Introduction to Arithmetical Functions, Springer Verlag, New York 1986.
- [9] W. Narkiewicz, On a class of arithmetical convolutions, Coll. Math. 10 (1963), 81-94.
- [10] Š. Porubský, Sets of regular systems of divisors of a generalized integer, Ann. Math. Sil. 12 (1998), 149-156.
- [11] J. Schönheim, A generalization of results of P. Erdős, G. Katona and D.J. Kleitman concerning Sperner's theorem, J. Combin. Theory 11 (1971), 111-117.
- [12] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Zeit. 27 (1928), 544-548.

Institute of Computer Science Academy of Sciences of the Czech Republic Pod Vodárenskou věží 2 182 07 Prague 8 Czech Republic

e-mail: stefan.porubsky@cs.cas.cz