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O N S O M E C O N D I T I O N A L F U N C T I O N A L E Q U A T I O N S 

T O M A S Z S Z O S T O K 

Abstract. Let X, Y be real linear spaces. We are looking for a function G : X2 R 
such that the equation 

/(x + y)= G(x,y)\f(x)+f(y)] 

is equivalent to the orthogonal Cauchy equation 

» l y = » / ( * + V)=/(x)+/(y). 

Several kinds of orthogonalities are considered. The quotient |j*~|J closely connected 
with the James orthogonality plays here a distinguished role. Similar problems are 
considered for the Ptolemaic equation 

xXy => f{x + y)f(x - y) = f(x)2 + f(y)2. 

As a result a characterization of inner product spaces is obtained. 

1. Introduction 

In the present paper we intend to examine the properties of some con
ditional equations. Namely we are going to deal with so called orthogonal 
equations. That means equations which are assumed to be satisfied only for 
orthogonal pairs of vectors. We shall consider functions defined on normed 
spaces and in the case of inner product spaces we shall deal with the usual 
orthogonality defined by an inner product. However in the case of a normed 
space in which the norm does not come from an inner product we shall have 
to define another orthogonality. 
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Since it is impossible to define a nontrivial orthogonality in a linear 
space with dimension equal to 1, we assume in the whole paper that the 
domain of considered functions is at least 2-dimensional. 

We are going to consider the well known orthogonal Cauchy equation 

(1) x±y=> f(x + y) = f(x) + f(y) 

and the Ptolemaic equation 

(2) xLy f(x)2 + / ( y ) 2 = f(x + y)f(x - y). 

Now we would like to find unconditional equations which preserve the pro
perties (solutions) of the above equations. The simplest way to do it is to 
remove the conditions and tó leave the equations unchanged. However it does 
not seem to be a good idea. Have a look at the equation (1). It is known 
that in an inner product space the square of the norm is a solution of this 
equation. However the square of the norm is clearly nonadditive. That means 
that after removing the condition we loose some important solutions of this 
equation. Further let us consider the modified version of (2) 

(3) ||s - y| | = \\x + y| | => f{xf + / ( y ) 2 = / ( * + y)f(x - y). 

We are able to consider this version of the Ptolemaic equation in any nor
med space. We shall prove later in the paper that the function f(x) = \\x\\ 
satisfies the equation (3) if and only if X is an inner product space. Once 
the condition is removed we obtain immediately that this equation has no 
nonzero solutions. We not only loose the solutions, we loose also the above 
mentioned characterization of inner product spaces. It is now clear that if 
we want to find unconditional equations which preserve the properties of 
conditional equations we have to modify them in a way. 

In [7] the following version of Jensen equation was considered 

We shall try to modify the equations of Cauchy and Ptolemeus in a similar 
way. However dealing with (4) we use the quotient which is equal to 
1 if and only if x and y are James orthogonal (we exclude here the case 
of x = y = 0). We would like to generalize these considerations to cover 
for instance some other conditional equations involving different types of 
orthogonality. 
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2. The Cauchy Equation 

Before starting with further considerations it is convenient to recall a 
definition of some kind of orthogonalities. Jiirg Ratz (see [5]) introduced 
the following definition. Let us consider a relation "J_" defined on pairs of 
elements of an at least 2-dimensional real linear space. We shall say that this 
relation is an orthogonality in a sense of Ratz if and only if it satisfies the 
following conditions: 

x±0,0±x;x e X 
[x j= 0 ^ y, x±.y] =>• x, y are linearly independent 
[x, y e X, x±.y] axLfiy for all a, (3 € R 
Let P be a linear subspace of X such that dim P = 2. 
If x € P, A 6 R + , then there exists y £ P such that x±.y 
and x + y±Xx — y. 

L E M M A 1. Let X be a real linear space in which we have an orthogo
nality satisfying conditions (R) and let Y be a real linear space. Let further 
D C X x X be such that 

x±y, (x, y) Ć (0,0) (x, y) € D. 

If f : X -> Y is a solution of the following modified version of the Cauchy 
equation 

(5) f{x + y) = G(x, y)[f(x) + f(y)], {x, y) e D, 

where G:XxXDD—lR.is some function satisfying the condition 

xLy =>G(x,y) = c (*) 

for all (x,y) G D and some c € R \ {0},then f is constant and c = | 
or 

f is given by the following formula 

f[x) = a(x) + h(x) 

where a is an additive function, h is a quadratic mapping, and c = 1. If we 
additionally assume that X is an inner product space, then in this case we 
have f{x) = a(x) + 6(||a;||2) with some additive functions a : X —> R and 
b : [0, oo) -» R . 

5 * 

1. 
2. 
3. 
4 . 
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P R O O F . F ix a vector x G X, x ^ 0. Then xLO implies that (z,0) e D 
and 

/(*) = c[f(x) + /(0)]; 

thus (1 — c)f(x) = c/(0). If now c = 1, then we have /(0) = 0 and consequ
ently 

xLy f(x + y) = f{x) + f(y) , x,y£X, 

which means that function / is orthogonally additive and we obtain the 
desired form of this function using suitable results contained in [5]. 

Now, assuming that c ^ 1, we infer that 

(6) f(x) = ^ / ( O ) , for * G X \ { 0 } . 

Without loss of generality we may assume that /(O) ^ 0 (otherwise / = 0). 
We are going to show that in this case c = | which, in view of (6), means 
that / is constant. Indeed, fixing x £ X and using axiom 4 from conditions 
( R ) one can find a y £ X \ {0} that is orthogonal to x. Consequently we get 

f(x + y) = c[f(x) + f(y)]. 

Now applying (6) to f(x + y), f(x) and f(y) and substituting it to the above 
equation we have 

j ^ / ( 0 ) - 2 0 ^ - / ( 0 ) 

and, consequently, c = \ . Summarizing, we have shown that in this case 
function / is constant and G(x, y) = | (in the case where / ^ 0). • 

D E F I N I T I O N 1. Let (X, || • ||) be a normed space. We define the function 
s : X x X R by the following formula 

S ( x , y ) = { ^ ^ f x # 0 
11 x = 0 

The following remark gives a few simple properties of the function s. 

R E M A R K 1. Let ( X , || • ||) be a real normed space. Function s takes its 
values in the interval [0,1]. For all real numbers a, ft ^ 0 and all x, y G X we 
have s(ax,f3y) = s (x ,y) . Further s(x,y) = 0 if and only if x,y are linearly 
dependent. 

If additionally X is an inner product space then 

x±y s(x, y) = 1 and s(x, y) = s(y, x). 
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Moreover, in this case 

P R O O F . The assertions concerning the case of any normed space are 
obvious. Assume that X is an inner product space and take two orthogonal 
vectors x , y € X. Then for* every A / 0 we have \\x + Ay|| > ||x||, which 
means that the minimal value is achieved for A = 0. On the other hand if 
six> y) = 1 then for every A € R one has ||x + Ay|| | |x| |. That means that 

(x|x) + 2A(x|y) + A 2 (y|y) ^ (x|x), A € R , 

and 
A(2(x|y) + A(y |y) )>0, A € R , 

which is possible in the case when (x|y) = 0 exclusively. 
To prove the last assertion we fix two vectors x ,y € X \ {0}. Put o := 

| |y | | 2 ,6 := (x|y), and c := | |x | | 2 . We shall determine a A 0 G R such that the 
expression ||x + Ay|| is minimal at A = Ao. Since the function A —•> ||x + Ay|| 
is nonnegative, it takes its minimum at the same point as its square. Since 

||x + Ay | | 2 = c + 2A6 + A 2 a , 

it is obvious that Ao = — Thus 

(x |y) 2 

• 
Function s is strictly connected with the Birkhoflf—James orthogonality 

defined by the formula 

x i B j y ^ A \\X + Pv\\> Ml 

Recall that the Birkhoff—James orthogonality satisfies the conditions (R) 
(see [5]). 
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R E M A R K 2. Let (X, \\ • ||) be a real normed space. Then 

X^-BJV «=> Ąx,y) = i . 

Now, using function s, we can try to get an unconditional equation 
which is connected with Birkhoff—James orthogonal additivity. 

R E M A R K 3. Let X be a real normed (inner product) space. Then func
tion / : X —> R satisfying the equation 

(7) f{x + y) = g(8(x,y)){f{x) + f(y)] 

with some function g, is either constant or is of the form / (x ) = a(x) + 
h(x), x G X, for some additive mapping a and quadratic h. (Respectively, 
f(x) = a{x) + 6(||x|| 2) for some additive a : X -> R and b : R R.) 

For the proof it suffices to note that all the assumptions of the Lemma 1 
are satisfied. 

However this equations fails to be equivalent to the equation of ortho
gonal additivity. More precisely, in an inner product space all continuous 
solutions of this equation are constant or additive; no quadratic terms oc
cur. 

T H E O R E M 1. Let ( X , (-|-)) be a real inner product space. Then a con
tinuous function f : X -> R satisfies equation (7) with some function 
g : [0,1] —̂  R if and only if f is constant or additive. 

P R O O F . A n additive function clearly satisfies the equation considered 
with function g := 1. Constant function satisfies our equation with g = | . 

Let us assume that / is a continuous solution of (7). From Remark 3 
we infer that 

/(*) = a(s) + 6(||x|| 2), x € X , 

for some additive functions a and 6. The continuity of / allows us to write 
the equality 

/ (x ) = a(x) + fc||x||2, x € X, 

where k is some real number'. We are going to show that the following alter
native is true 

f(x) = a(x), x e X, or / (x ) = fc||x||2, x G X. 
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For indirect proof let us assume that a ^ 0, k ^ 0. Substituting this form of 
/ to the equation we obtain-

a(x + y) + k\\x + y\\2 = g{s{x, y))[a(x) + fc||x||2 + a{y) + k\\y\\2], x, y 6 X 

Let us consider two cases: 
1° one can find a pair of nonorthogonal vectors x, y such that g(s(x, y)) = 

1. Then we get the equality 

||« + y||2 = ||x||a + ||y||2, 

which is obviously false. 

2° For all nonorthogonal x, y we have g(s(x, y)) ^ 1. Then we obtain 

(1 - g(s(x, y))a(x + y) = k[g(s(x, y))(||x|| 2 + | |y| | 2) - ||x + y\\% 

and substituting here j in place of x and y we get 

(1 - g(0))a(x) = k - l ) \\x\\\ 

for all x ^ 0 which means that a = 0, a contradiction. 
We have shown that f(x) = a(x), xeX,oi f(x) = &| |x | | 2 , x 6 X. The 

remaining part of the proof is to show that the second of these functions is 
not a solution of our equation. To this end suppose that 

k\\x + y\\2 = g(s(x, y))k(\\x\\2 + \\y\\2), x G X, 

for some function g : [0,1] —> R . Taking here x = y we may write 

| |2x | | 2 = f f (0)2 | |x | | 2 , X G X , 

i.e. g(0) = 2. Writing now 2x instead of x and x in the place of y we achieve 

||2x + x | | 2 =y(0) ( | | 2x | | 2 + | |x | | 2 ) , x G X, 

which gives us g(0) = | , a contradiction. • 

Now we are going to introduce the quotient connected with James or
thogonality. Elements x, y of a normed space are called James orthogonal i: 
and only if ||x — y\\ = ||x + y\\. Now, we are going to use the quotient 
in similar way as we previously used the function s. Namely, let us consider 
the following equation: 

( 8 ) '<*+*>=»(prfi)I /w+/ ( !* 
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It is known that in normed spaces which are not inner product spaces the 
James orthogonality does not satisfy conditions (R). 

That means that in the general case we cannot use Lemma 1 to prove 
a result similar to that of Remark 3. But we can formulate the following 
result. 

G(x,y)={ 

T H E O R E M 2. Let (X, (-|-)) be a real inner product space and let f : X -> 
R be a continuous function. Then f is a solution of (8) with some function 
g : [0, oo) —•> R such that g(l) ^ 0, if and only if f is constant, additive or 

/(«) = *M l a . 
Further, the equation (5 ) , where G is some function satisfying the condi

tion (*) has a nonadditive, not constant and continuous solutions f : X —"> R 
if and only if 

0 x = -y ^ 0 
a x = y = 0 

with some function g : [0, oo) —> R and a € R . Moreover, if in this case 
f is a continuous nonadditive and not constant solution of (5 ) , then the 
corresponding function g is given by the formula g(a) = j^s, a 6 [0, oo). 

P R O O F . Let us start the proof with the latter of the above two state
ments. If / is not constant then we obtain (similarly as in the above theorem) 
the following form of this function f(x) = a{x) + A;||a;||2. Also in the same 
manner as before we can prove that 

f(x) = a(x), x e X, or f(x) - k\\x\\2, x 6 X. 

That means that every continuous and nonadditive solution of this equation 
must be of the form fc||x||2. Let us substitute this function to the equation 
(5) 

fc||x + y| | 2 =G(x,y)(fc| |x| | 2 + % | | 2 ) . 

If now x = - y ^ 0 and k ^ 0, then G(x,y) must be equal to zero, (3(0,0) 
may take any value. Consequently there is no loss of generality in assumption 
that ||x + y|| 0. It allows us to write 

rt x Hs + yll 2 _ i 
l : E ' y J ~ llx||2 + |h/H2 ~ Ik+^ip+lk-vip 

l,x||2

 + ||y|| 2 i K ^ i f r * 1 + ( f e a y 
for all x, y € X, x ^ —y. 

Proceeding to the second part of our theorem we note that in a real 
inner product space the James orthogonality coincides with the usual one. 
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Since the orthogonality defined by an inner product satisfies conditions (R), 
we are able to use Lemma 1. If now / is not constant then, similarly as 
before, we obtain 

f(x) = a(x), x eX, or f(x) = k\\x\\2, x € X. 

On the other hand in the first part of the proof it has been shown that both 
of these functions satisfy equation (8). • 

Studying the functions s and the James quotient | | *^ | | it is worthwhile 
to note that the function s is nonzero only in the case of spaces of dimension 
at least 2 and function ||g+yfl may be considered also in one-dimensional 
case. Considering equations of this type on a real line we obtained (under 
some assumptions) a characterization of multiplicative functions (see [6] and 
[7])-

Furthermore although we were considering mainly continuous functions, 
this assumptions is not essential. Namely, using a result contained in [7], 
it can be proved that every solution of (8) which is not additive must be 
continuous. 

3 . The Ptolemaic Equation 

The Theorem of Ptolemeus states that in a quadrilateral inscribed in 
a circle the product of the diagonals is equal to the sum of products of the 
opposite sides. If we consider the parallelograms then the only parallelogram 
which can be inscribed in a circle is a rectangle That means that we obtain 
the following property 

xLy^\\x + y\\\\x-y\\ = \\x\\2 + \\y\\2. 

In a natural way this leads to a conditional functional equation which is 
satisfied by the norm coming from an inner product. In the sequel the cor
responding equation 

xLy f{x + y)f(x - y) = Ax)2 + f{y)2 

will be called the Ptolemaic equation. Trying to generalize this equation to 
the case of normed spaces we shall once more use the James orthogonality 

(9 ) II* + 2/11 = \\x - y\\ =• f(x)2 + f(y)2 = f(x + y)f(x - y). 
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Using this equation we shall present a characterization of inner product 
spaces. A proof of the next theorem can be found in Dan Amir monograph 
[1] but since that theorem can be proved very shortly, for the sake of com
pleteness we shall present our approach. 

T H E O R E M 3 . Let (X, || • ||) be a normed space. Then X is an inner 
product space if and only if the function / (x ) = ||x|| satisfies equation ( 9 ) . 

P R O O F . Let (X, (-|>)) be an inner product space. Then 

II* - aril = ||x + y|| => (x\y) = 0 => | |x | | 2 + | |y | | 2 = ||x + y | | 2 , 

which means that our equation is satisfied. 
On the other hand, assume that the function / (x ) = ||x||, x € X, satisfies 

(9) . F ix a pair (x,y) 6 X x X satisfying the equalities 

11*11 = llvll = I-
and put 

u := x + y, v :— x — y. 

Then ||« + v|| = ||« — u||, which means that u, v are orthogonal in the sense 
of James, whence using the equation (9) , we obtain 

| |«-Ml ll«-t>IMMI' + IMIa. 
Thus we have shown that 

11*11 = N i = 1 112*11 ||2y|| = Har + y | | 2 + ||x - y | | 2 

11*11 = Hvll = 1 4 = ||x + y | | 2 + ||x - y | | 2 

and further 

(10) |N| = ||y|| = 1 ^ 2 | | x | | 2 + 2||y|| 2 = ||x + y | | 2 + | | x - y | | 2 . 

Thus we have the parallelogram identity on the unit sphere. It is well known 
(see [2] or [1] p.47) that this condition forces a normed space to be an inner 
product space. • 

As we have seen, equation (9) can be used to characterize inner product 
spaces. However, if we assume this equation to hold for all pairs of x and 
y we infer that this equation has no nonzero solutions. Therefore we shall 
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modify it in a similar way as we have done it in the case of the Cauchy 
equation. Namely, we shall multiply the right-hand side of this equation by 
a function which depends on the James quotient, getting 

(11) / ( x + y)f(x - y) = g [/(*)* + /(v) al. * / ~V-

R E M A R K 4. Let ( X , || • ||) be a normed space. Then the function / ( x ) = 
||x| | satisfies equation (11) if and only if A" is an inner product space. 

P R O O F . Assume that the function / (x ) = ||x| | satisfies equation (11). 
Take two James orthogonal vectors x, y. Then 

l k - y | | | | x + y|| = y(l)( | |x | | 2 + | |y | | 2 ) , 

which is obviously true also for x = y = 0. Taking here y = 0, we obtain 
y ( l ) = 1 which means that 

ll« + aril = II* - vll => M* + vll II* - v\\ = INI2 + IMP. *.» e x , 
i.e. the norm satisfies equation (9). In view of Theorem 3, this means that 
X is an inner product space. 

Let now X be an inner product space. We are going to show that the 
function / ( x ) = | |x| | satisfies the equation (11) with function 

(12) 5 ( a ) : = _ ^ _ , o€[0 ,oo) . 

The desired equality 

||x + y|| ||x - y|| = y ( J j ^ j j ) (||*||a + ||v||a) 

is equivalent to the following one 

J\\x-y\\\ = \\x + y\\ \\x-y\\ 
5 Vl l * + y||y W + IMI2 * 

Using here the form of g from (12) we obtain the following equation 

2 f e f _ l l » + y | | > - y | | 

( f e D ' + i " w + w 
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which has to be proved. Multiplying the denominator and the nominator of 
the left-hand side of this equality by ||a; + y | | 2 we get 

2 | | z - y | | | | a ; + y|l ||» + y\\ \\x - y\\ 
l l*-y| | 2 + ll* + 2/ll2 NI 2 + IMI2 ' 

which is true since X is an inner product space. • 

Under some assumptions concerning the functions considered, the Pto
lemaic equation has been solved in a paper of M . Fochi [4]. This equation 
was considered in connection with the orthogonal d'Alembert's equation (see 
[3]). Using this result we shall solve our unconditional equation (under the 
same assumptions). It will be seen that also in this case we do not loose the 
solutions of orthogonal equation. 

T H E O R E M 4. Let (X, (•!•)) be a real inner product space of dimension 
at least 3. Then a nonnegative (nonpositive) function f : X -> K satisfies 
equation (11) and the condition 

(12) f(2x) = 2f(x) 

if and only if 
m = ć\\x\\ 

(respectively f{x) = —c2||a;||) for all x 6 X and some c 6 K . 

P R O O F . A S we have already checked, functions of the form described 
above yield a solution to equation (11). It is clear that they also satisfy 
the additional assumptions. Consequently it suffices to show that every 
solution of equation (11) satisfying the above conditions is of the form 
f(x) = A;||x||, x € X. 

Let us assume that a function / satisfies equation (11) with some func
tion g. We have 

((*, y) Ź (0,0), arJLy) =* f(x + y)f(x - y) = y ( l ) [ / (* ) 2 + / (y ) 2 ] . 

If now g(l) — 1 then / satisfies equation (9). Margherita Fochi [4] has shown 
that a constant sign solution of equation (9) satisfying (13) is of the desired 
form. 

Consider the case of y ( l ) ^ 1. Then, taking y = 0, we get 

/ ( x ) 2 = y ( l ) [ / ( a ; ) 2 + / (0) 2 ] . 
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Now, from the condition (13), we have /(O) = 0 which together with the last 
equation gives us / = 0. Thus the theorem has been proved. • 
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