Problem session

The 4th Czech and Polish Conference on Number Theory

 Cieszyn, June 11-14, 2002The Problem Session, chaired by Andrzej Schinzel, took place on June 14, 2002. The following problems were proposed.

Wladyslaw Narkiewicz:

Find an algorithm for solving the equation

$$
u+v+w=1
$$

in units of an algebraic number field.

Andrzej Schinzel:

(Unpublished problem of T. Ordowski)
In 1944 Chowla and Mian considered the sequence

$$
1,2,4,8,13, \ldots,
$$

where a_{n} is the smallest natural number with the property that the set of differences $a_{n}-a_{i}$ for $1 \leqslant i<n$ is disjoint from the set of all differences $a_{j}-a_{i}$ for $1 \leqslant i<j<n$. The first question is to find an estimate for the n-th term of the sequence better than the known estimate

$$
\frac{1}{2} n^{2}+O(n) \leqslant u_{n} \leqslant \frac{1}{6} n^{3}+O\left(n^{2}\right) .
$$

The second question is to decide whether or not the series

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n+1}-a_{n}}
$$

converges.
References
[1] Mian, Abdul Majid, and S. Chowla, On the B_{2} sequences of Sidon, Proc. Nat. Indian Acad. Sci. India. Sec. A. 14 (1944), 3-4.

Collected and edited by K. Szymiczek

Kazimierz Szymiczek:
Let K be a number field and \mathcal{O}_{K} its maximal order, that is, the ring of all algebraic integers in K. Let \mathcal{O} be any order of K (that is, a subring of the maximal order containing a basis for K over the rationals). Find the kernel and the cokernel of the natural ring homomorphism

$$
W(\mathcal{O}) \rightarrow W\left(\mathcal{O}_{K}\right)
$$

where, for a commutative ring $R, W(R)$ is the Witt ring of bilinear spaces over R.

Andrzej Rotkiewicz:

Do there exist infinitely many Dickson-Fibonacci pseudoprimes not divisible by 5 which are not Frobenius-Fibonacci pseudoprimes?

The least such pseudoprime is $2737=7 \cdot 13 \cdot 23$.
Andrzej Rotkiewicz:
Do there exist infinitely many Fibonacci pseudoprimes of the second kind which are not Frobenius-Fibonacci pseudoprimes?

The least such pseudoprime is $6479=11 \cdot 19 \cdot 31$.

Reference

[1] A. Rotkiewicz, Lucas and Frobenius pseudoprimes, Ann. Math. Sil. (to appear).
Andrzej Sladek:
Let
$3 \prec 5 \prec 7 \prec 9 \prec \ldots \prec 2 \cdot 3 \prec 2 \cdot 5 \prec \ldots \prec 2^{2} \cdot 3 \prec 2^{2} \cdot 5 \prec \ldots \prec 2^{3} \prec 2^{2} \prec 2 \prec 1$
be the Sharkovski's ordering of the set of natural numbers \mathbb{N}. For a function $f: I \longrightarrow I$, where $I=[a, b] \subset \mathbb{R}$ or $I=\mathbb{R}$, Sharkovski proved in 1963 the following theorem: If f is continuous, then

$$
n \in \operatorname{Cycl}(f) \Longrightarrow \underset{m}{\forall}\{n \prec m \Rightarrow m \in \operatorname{Cycl}(f)\} .
$$

Here $\operatorname{Cycl}(f):=\{n \in \mathbb{N} ; f$ has an $n-$ cycle $\}$.
It is known that for any $n \in \mathbb{N}$ there exists a continuous function $f: I \longrightarrow I$ such that $C y c l(f)=\{m \in \mathbb{N} ; n \preceq m\}$. The functions constructed in the literature are piecewise polynomial.

The question is whether the function f can actually be taken as a polynomial, that is, we ask if the following statement holds true:

$$
\underset{n \in \mathbb{N}}{\forall} \underset{f \in \operatorname{Br}(X]}{\exists} C y c l(f)=\{m \in \mathbb{N} ; n \preceq m\} .
$$

JÁnos Tóth:

Let $F(n)$ be the number of solutions $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{N}^{n}$ of the diophantine equation

$$
x_{1} x_{2} \cdots x_{n}=n\left(x_{1}+x_{2}+\cdots+x_{n}\right)
$$

such that $x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{n}$. It is known that

$$
\limsup _{n \rightarrow \infty} F(n)=\infty \quad \text { and } \quad F(n)=O\left(n^{2}\right) .
$$

The question is whether

$$
\lim _{n \rightarrow \infty} F(n)=\infty .
$$

Moreover, do there exist positive constants c and α so that

$$
\lim _{n \rightarrow \infty} \frac{F(n)}{c n^{\alpha}}=1 ?
$$

Reference

[1] J. Bukor, P. Filakovszky, J. Tóth, On the diophantine equation $x_{1} x_{2} \cdots x_{n}=h(n)\left(x_{1}+\right.$ $x_{2}+\cdots+x_{n}$), Ann. Math. Sil. 12 (1998), 123-130.

Jan Krempa:

A subset $\mathcal{S} \subset \mathbb{N}$ is said to be Pythagorean if for any $n \in \mathbb{N}$ and for any distinct elements $s_{1}, \ldots, s_{n} \in \mathcal{S}$ there exists $t \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{i=1}^{n} s_{i}^{2}=t^{2} \tag{1}
\end{equation*}
$$

Any singleton is a Pythagorean set, all 2-element Pythagorean sets are well known, and it is an open question if there exists a 3 -element Pythagorean set. It can be checked that any Pythagorean set is finite. This suggests the following question. Does there exist $k \in \mathbb{N}$ such that any Pythagorean set has at most k elements?

A Pythagorean set \mathcal{S} is said to be primitive if there is no nontrivial common divisor for all elements of \mathcal{S}. A primitive Pythagorean set contains only one odd number. Let \mathcal{S} be a primitive Pythagorean set with odd element $s \in \mathcal{S}$. What is the exact upper bound for the cardinality of \mathcal{S} as a function of s ?

