Published: 2001-09-28

Sur les lois de sortie des semi-groupes de convolution

Imed Bachar

Abstract

Let μ = (μt)t>o be a convolution semigroup on ℝd. An exit law for μ is a positive measurable function ϕ: ]0,∞[ × ℝd → [0,∞] which verifies the functional equation (by putting ϕt:=ϕ(t,·))
s,t>0 : μs ⚹ ϕt = ϕs+t   λ.a.e.
where λ is the Lebesgue measure on ℝd. Following [1], we prove in this paper that the solutions of this equation are on the form
ϕt = d^t ⚹ β)/dλ   λ.a.e.
where μ^ := (μ^t)t>o is the reflected convolution semigroup of μ, β is a positive measure on ℝd such that μ^t ⚹ β ≪ λ, for evry t > 0.
Moreover, we study the global solutions and their interpretations in terms of the negative definite function associated to μ.

Download files

Citation rules

Bachar, I. (2001). Sur les lois de sortie des semi-groupes de convolution. Annales Mathematicae Silesianae, 15, 7–15. Retrieved from https://journals.us.edu.pl/index.php/AMSIL/article/view/14112

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Domyślna okładka

Vol. 15 (2001)
Published: 2001-09-28


ISSN: 0860-2107
eISSN: 2391-4238
Ikona DOI 10.1515/amsil

Publisher
University of Silesia Press

This website uses cookies for proper operation, in order to use the portal fully you must accept cookies.