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DIAGONALIZING THE TRACE FORM
IN SOME NUMBER FIELDS

ANNA DABROWSKA

Abstract. In the present paper the trace form on the ring of integers of a number
field is considered. All quadratic fields are determinated for which the form can be
diagonalized, i.e. the quadratic fields with an integral basis orthogonal with respect
to the trace. There are also given examples of fields of higher degree with the same

property.

0. Introduction

In [B] Eva Bayer-Fluckiger investigated lattices with an integral bilinear
symmetric form

b: Ix]I —7

b(z,y) = Tr(azy),

where I is a fractional ideal of a number field F, a € F is an appropriate
scaling factor, Tr = Trp/q is the absolute trace, and y — ¥ is an involution
of F.

In particular, she asked which lattices can occur in this way, and she
got a partial answer in the case when the involution is nontrivial.

In the present paper we consider the case when the involution is trivial,
a =1, and I = OF is the ring of integers of a number field F. We ask when
the trace form can be diagonalized, i.e. when in OF there is an integral basis
orthogonal with respect to the trace. We determine all quadratic number
fields with this property, next we extend our results to some composita of
quadratic fields.
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At the end of the paper we give a list of orthogonal integral bases in
quadratic imaginary fields with discriminants —d = 1(mod 4), 3 < d < 500,

provided such a basis exists. These examples have been computed using the
package GP/PARL

1. Notation

Let F = Q(v/d), where d is a squarefree integer, be a quadratic number
field. Let o : F X F — Q be a pairing defined by

aof=Tr(aB), for a,p¢€F,

where Tr = Trp/q is the trace.
Denote
Vvd, if d=2,3 (mod 4),
WEYvE o og=
Ve if d=1 (mod 4).

It is known that 1,w is an integral basis in F. Obviously, low = 0, if
d = 2,3(mod 4), i.e. in this case the integral basis 1,w is orthogonal.

If d = 1(mod 4) then 1 ow = Tr(w) = 1 # 0, thus this integral basis is
not orthogonal.

In the present note we shall characterize all d = 1(mod 4) such that in
F = Q(V/d) there is an orthogonal integral basis.

2. Main Results

In theorems below we give some conditions equivalent to the existence
of an orthogonal integral basis in the quadratic number field with the discri-
minant d = 1(mod 4)

THEOREM 1. Let F = Q(v/d), where d = 1(mod 4) is squarefree. Then
the following conditions are equivalent:

(?) There is an orthogonal integral basis in F,

(i¢) There are p,q,r,s € Z satisfying

(1) ps—qr=1
and
(2) (2p+q)(2r+s) +qsd =0,

(41i) There are p,q € Z such that for t = 2p+q and A = ¢* + dq® the
numbers

_ t+dg 2
(3) T—-T, S-—-'A—,
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are integers.

ProoF. Let p,q,r,s € Z. Then

ﬂ1=p+qwa
B = r + s,

is invertible in Z. We may even

is an integral basis iff the matrix ﬁ g

assume that (1) holds changing the sign of 8, if necessary.

Computing the trace we get

((2p+ g)(2r + 5) + gsd).

N —

B 0 By = Tr(pr + (ps + qr)w + gsw?) =

Thus 4, B2 is an orthogonal integral basis if and only if there exist p, ¢, r, s €
Z satisfying (1) and (2).

Using Cramer’s rule we determine r and s from (1) and (2) and we get
(3).

THEOREM 2. Under assumptions of Theorem 1 the following conditions

are equivalent:

(£) There is an orthogonal integral basis in F,
(iv) There is A’|d such that 2 is represented over Z by the form A'X? +
A"Y? where A" = d/A.

Proor. We use the above notation, and we shall prove that the equ-
ivalent conditions of Theorem 1 imply (iv).

Taking the equality (2) modulo 4, it follows easily from (1) and (2)
that gs is odd. Hence ¢t = 2p + ¢ is odd and A = t? + d¢® = 2(mod 4).
Put A" = A/2, then A’ is odd and from (3) we get A’|¢+ dg, A'|t. Since
ged(p,q) = 1 by (1), then ged(t,¢) = 1 and from the above divisibilities it
follows that A’|dg and A'|¢, hence A’|d. Denote A" = d/A’.

Now, 2A" = A =12 + dg? = (sA")2 + A'A"¢? = A'(Als? + A”¢?), i.e.
2=A's? + A"¢* and (iv) holds.

Conversely, if 2 = A’z + A"”y?, where A’A"” = d and z,y € Z, then

. . . Alz —
evidently z,y are odd (since d is odd). Then p =

and ¢ = y are

integers and we shall prove that r,s defined by (3) are integers. In fact,
= 2p+ ¢ = A’z and hence

A = t2 +dq2 — (A'z')2 + A,A” 2 — A’(A’(Ez +A"y2) — 2A,,
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and
t+dg=A'z+dy=A'(z +A"y).

Then t + dq is divisible by 2A' = A, j.e. r = _.t -I_Adq
2t
AT A

is an integer. Similarly

s= = z is an integer.

COROLLARY 1. If F = Q(v/d) where d = 1(mod 4) is squarefree and
d > 1 then in F there is no orthogonal integral basis.

ProoF. From the assumption it follows that d > 5. Then 2 cannot be
represented by the form A’X? + A"Y?2, where A’A" = d, since A!, A" have
the same sign and A’A" > 5.

Let £ = u + vy/a be the fundamental unit of the field Q(,/a) where a =
3(mod 4), a > 0 is squarefree. Then Ne = u? —av? = 1, since ¢ = 3(mod 4).
Denote €™ = u, + vp/a, for n € Z. It is easy to observe that u is odd iff v
is even iff all u,, are odd. Thus if u, is even for some n then u is even.

THEOREM 3. Let F = Q(Vd) where d = 1(mod 4) is squarefree and
d < 0. Let £ = u + vy/a be the fundamental unit of the field Q(y/a), where
a = —d > 0. Then the following conditions are equivalent:
(¢) There is an orthogonal integral basis in F,
(v) u is even.

PROOF. (v) = (7). Assume that u is even. Then from 1 = Ne = u*—av?
it follows that (u+ 1)(u — 1) = av? and ged(u+1,u — 1) = 1. Consequently

u+1 =a1z2,

u— 1 =ayy’

where aya; = a and zy = v. Subtracting we obtain 2 = a;2% — ayy? and
taking A’ = a;, A" = —a; we get (iv) since A’A” = —aya3 = —a = d. The
claim follows from Theorem 2.

(i) = (v).In view of Theorem 2 there are A’ d and z,y € Z satisfying
A'z? 4 A"y? = 2, where A" = d/A’. Then A’A" = —a. Let us observe that
U=A'2?—1=1-A"y? and V = zy satisfy

U2 _ avz — (A':l:2 - 1)(1 _ A"y2) +A'A":v2y2 — Alm2 + A"y2 —1=1.

Moreover U is even. Therefore from the observation before Theorem 3 it
follows that (v) holds.
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3. Examples
First we consider the case where —d is a prime number.

THEOREM 4. Let p = 3(mod 4) be a prime number, and lete = u+v,/p
be the fundamental unit of the field Q(,/p). Then u is even.

PROOF. As we have observed above, Ne = 1, hence (u+1)(u—1) = pv?.
If u is odd, then v is even, thus u = 2uy +1, v = 2v;. Then (u; +1)u; = pv3.
Hence
uy + 1 = py? u + 1 = z?
2 or = pu?
U =2z Uy = py
for some positive z, y satisfying zy = v;.
The first case is impossible modulo 4. In the second case subtracting we
get '
2 —py’ =1

where z < u; + 1 < u. This contradicts the minimality of u.

SECOND PROOF It is known that the class number of the field Q(,/p)
is odd, and 2 ramifies in Q(y/p), i.e. (2) = p?, Np = 2. Then the ideal class
containing p has order < 2, thus p is principal, p = (2 +y,/p). Hence taking
norms we get 2 = Np = |22 — py?| and the condition (iv) of Theorem 2 is
satisfied.

COROLLARY 2. If p = 3(mod 4) is a prime number, then in Q(\/=p)
there is an orthogonal integral basis.

THEOREM 5. Let p, q be prime numbers, pg = 3(mod 4), lete = u+v,/pq
be the fundamental unit of the field Q(\/pq). If (3) = —1 then u is even.

PRrooOF. We have Ne = u? — pqv? = 1, where u,v > 0. We may assume
that p = 1(mod 4), ¢ = 3(mod 4).

Suppose that u is odd. Then v is even, u = 2uy + 1, v = 2v;. Consequ-
ently uy (u; + 1) = pqui.

There are four possibilities:

up + 1= pgz’,2?, pz’, gz and respectively, u; = 3%, pgy?, q?, py?,

where z,y are positive integers of different parity and zy = v;. Subtracting
we get respectively

1=pga® —y®, 1=2%-pgy®, 1=p2*—qy’, 1=qz®—py’.
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The first and the last equalities are impossible modulo 4. From the third one
it follows that p is a quadratic residue modulo ¢, contrary to the assumption.
From the second equality we get N(z + y,/pq) = 1, then by the minimality
of u we have u < ¢ < v; < 4y < u, contradiction.

CoroLLARY 3. If p, q are prime numbers satisfying pg = 3(mod 4), (g) =
—1 then in Q(y/—pq) there is an orthogonal integral basis.

4. Quartic fields

Basing on the above results it is easy to give examples of quartic bicyclic
fields with orthogonal integral bases.

We fix the following notation. For j = 1,2, let K; = Q(\/@) be the
quadratic number field of discriminant d;, where d; # d3. Then K = K K,
is a quartic bicyclic field. Denote Tr; = Try; /0 Tr;' = Trx/k; and Tr =
TI‘K /Q-

Suppose that ﬂ%j ), gj )is an integral basis of K;, and consider the set

B={sMp» :1<i k<)

We shall use the following Theorem 88 of Hilbert:

THEOREM 6. Under the above notation if ged(dy,dy) = 1 then the di-
scriminant of K equals (d1d3)?, and B is an integral basis of K.

Proor. See [H], Theorem 88.

THEOREM 7. Under the above notation if /;‘ﬁ"’, %j) is an orthogonal
integral basis of K;, for j = 1,2, then B is orthogonal with respect to Tr.
If moreover ged(dy,ds) = 1 then B is an orthogonal integral basis of K.

ProOF. Let i,k,I,m € {1,2}. Since Tr = Tr; o Try’, Tr;'| K3 = Try,
and Tr;’ is Kj-linear, then

Tr (B8 - 418D ) = Tni (Tra' (8180 - 5P8Y))

= Try (8767 - T’ (B782))) = Trs (8787 - T2 (87 2))

i (97) e (52) =0
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unless ¢ = and k = m. Thus B is orthogonal with respect to Tr.
Now, the second part of the theorem follows from the theorem of Hilbert.

COROLLARY 4. Ifd,d' are relatively prime squarefree integers # 1 and
d = 1(mod 4), and in the fields Q(v/d), Q(v/d') there are orthogonal integral
bases, then in the field Q(\/J, V' ) there is an orthogonal integral basis.

PROOF. Let dy = d and dy = d', resp. 4d' if d' = 1(mod 4) resp.
d' = 2,3(mod 4). Then dy and d; satisfy the assumptions of the second part
of Theorem 7. ‘

5. Remarks

1) There are fields Q(1/=pq) not satisfying the assumptions of Corollary
3 with an orthogonal integral basisE.g. for p = 17, ¢ = 19 we have the
fundamental unit € = 18 + w, in Q(,/pg). Then by Theorem 3 in the field

Q(1/=pq) there is an orthogonal integral basis. We have also (%) =1.

2) It is easy to see that in Q(v/d), for d = 2,3(mod 4), the orthogo-
nal integral basis is unique up to a permutation and sign changes. On the
other hand due to the infinity of solutions of the Pell equation, in the case
d = 1(mod 4) if there exists an orthogonal integral basis, then the number
of such bases is infinite.

3) We do not know any cubic field with an orthogonal integral basis.
We do not know if there is an orthogonal integral basis in a quartic field not
satisfying the assumptions of Theorem 7.

4) One can generalize the case of quartic fields as follows. Let dy, ..., d,
be pairwise relatively prime squarefree integers # 1 satisfying d; = 1(mod 4)
for 7=1,2,...,r — 1. If in the field K; = Q(\/_ forj =1,2,...,r there
is an orthogonal integral basis, then in the field K = K{Kj - - K there is
an orthogonal integral basis.

In view of Corollary 2 this gives examples of fields with an orthogonal
integral basis of arbitrary large degrees.

5) On the other hand, if we consider the hermitian pairing (see e.g.
[B]): @ o 8 = Tr(af), where B is the complex conjugate of 3, then it is
easy to see that in Q(\/c_i) there is an orthogonal integral basis if and only
if d = 2,3(mod 4). Then 1,w is an orthogonal integral basis. Namely, for
d = 1(mod 4) the equality (1) and the orthogonality condition analogous to
(2): (2p+ ¢)(2r + s) — gsd = 0 give a contradiction modulo 4.
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informing me on his results. In particular he has proved independently The-
orem 3 above.

6. The table

In the table below we give an orthogonal integral basis in Q(v/d), where
—500 < d < 0, d = 1(mod 4) is squarefree, provided such a basis exists.
The table has been computed using the package GP/PARI, version 1.39 (see
[BBCOJ).

For every d in question there are given. (in the above notation) —d,
[A", A", [z, y] satisfying z2A’ + y2A” = 2 and an orthogonal integral basis
[B1,8:2] = [p+ qw, r + sw]. We can always assume that A” < 0. If for some
d such a line is empty then in Q(v/d) there is no orthogonal integral basis.
E.g. it is the case for d = —39, —55, —95, etc.

Table
—d (A, A" (2,9 [81, Ba)
3 13, —1] 1,1] [w+1,w]
7 [1,—7] 3, 1] w+1,3w+2]

1 [11,-1] 1,3] 3w+4,w+1]

15 5, —3] 1,1] w+2,w+1]

19 [19,—-1]  [3,13] 13w+ 22,3w + 5]

23 1,23 5,1] w+2,5w+9]

31 1, —31 39, 7] Tw+16,39w + 89]

35 [7, —5] [1,1] w+ 3w+ 2]

39 '

43 43, —1 9, 59] 59 w + 164, 9w + 25]

47 1, —47 7, 1] w+3,7w+20]

51 51, —1] [1,7] Tw+22,w+ 3

55

59 59, —1 3, 23] 2w+ 77,3w + 10]

67 67, —1 27, 221] 221 w + 794, 27w + 97]
7 1,-71 59, 7] 7w+ 26,59 w + 219]

79 1,—79 9,1] w +4,9w + 35]

83  [83,—1 1,9] 9w + 37, w + 4]

87 29, —~3 1,3] 3w+ 13w+ 4]

91  [7,—13]  [15,11] 11w + 47, 15w + 64]

95

103 1, —103 477, 47] 47w + 215,477 w + 2182]
107 [107, —1 3, 31] 31w + 145,3w + 14]

111

115 [23,-5] [7,15] 15w+ 73, 7w + 34]

119 [1,—119 11,1] w+5, 11w+ 54]

123 {123, —1 1,11] 1w+ 56,w + 5]

127 1, —127 2175, 193] 193 w 4+ 991, 2175 w + 11168]
131 [131,—1] [9,103] 103 w + 538, 9w + 47]
139 139, —1 747, 8807] 8807 w + 47513, 74T w + 4030]
143 [13,—11 1,1] w+6,w + 5]

151 [1,—151]  [41571, 3383] [3383 w + 19094, 41571 w + 234631])
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—d [A, A" [z,4] (81, Bal

155

159  [53, —3] 5,21] 21 w + 122, 5w + 29]

163 163, —1 627, 8005] 8005 w + 47098,627 w + 3689]

167 [1,—167 13,1] w+6,13w + 77

179 [179,—1]  [153,2047] [2047 w + 12670, 153 w + 947]

183

187  [187, —1 3, 41] 41w + 260, 3w + 19

191 1,—191 2999, 217] 217w + 1391, 2999 w + 19224]

195 [15,—13 1,1] w+T,w+ 6]

199 1, —199 127539, 9041] 9041 w + 59249, 127539 w + 835810]
203

211 [211, —1] 36321, 527593] [527593 w + 3568069, 36321 w + 245636]
215 [5,—43] [3,1] w+7,3w+ 20]

219 [3,-73] 5,1] w+7,5w+ 34

223 [1,—223 15,1] w+ 7, 15w+ 104]

227 227, —1 1, 15] 15w + 106, w + 7]

231 [77,-3] 1,5 5w+ 36,w + 7]

235 [47,-5] [1,3] 3w+22,w4+T]

239 1, —239 2489, 161] 161 w + 1164, 2489 w + 17995]

247 13,—19 81, 67] 67w +493,81w + 596]

251 251, —1 121, 1917] 1917 w + 14227,121 w + 898]

255  [17,—15 1,1 w+ 8w+ 7]

259

263 [1,—263] [373,23] (23w + 175, 373 w + 2838

267 [267, —1 3, 49] 49w + 376,3w + 23]

271 [1, —271 340551, 20687] 20687 w + 159932, 340551 w + 2632813]
283 283, —1 699, 11759] 11759 w + 93029, 699 w + 5530]

287 (1, —287 17,1] w+ 8, 17w + 135]

291 [291,—1] [1,17] 17w+ 137,w + 8]

295

299

303 101, —3 5, 29] 29w + 238,5w + 41]

307 307, —1 537, 9409] 9409 w + 77725,537 w + 4436]

311 1, —311 4109, 233] 233 w + 1938, 4109 w + 34177]

319 29, —11 667, 1083] 1083 w + 9130,667 w + 5623]

323 [19,—17] [1,1] [w+9,w+ 8

327

331 [331, —1] 2900979, 52778687] 52778687 w + 453722681, 2900979 w + 24938854]
335 [5,—67] 11, 3] 3w+ 26,11 w + 95

339 [339, —1] 17, 313] 313w 4+ 2725,17w + 148]

347 [347, --1] 43, 801] 801 w + 7060, 43 w + 379]

355

359 [1,—359] [19,1] [w+9,19w + 170]

367 [1,—367] [137913, 7199 [7199 w + 65357, 137913 w + 1252060]
371

379 [379, —1] [5843427, 113759383] [113759383 w + 1050449725, 5843427 w + 53957978]
383 [1,-—383] [137,7] [7w + 65,137 w + 1279)

391 [1, —391] [2709, 137] [137w + 1286, 2709 w + 25429]

395

399 [21,—~19] [1,1] [w+10,w + 9]

403 [31, —13] [147, 227] [227w + 2165, 147 w + 1402]
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—d (&, A" [z,9] [81, 8]
407
411 [411, —-1] [11, 223] [223w + 2149, 11w + 106]
415 [5,—83]  [1919, 471] 471 w + 4562, 1919 w + 18587)
419 [419, —-l] 803, 16437] 16437 w + 160010, 803 w + 7817]
427 [1,—61] [3,1] w + 10,3 w + 29]
431 [1, —431] 12311, 593] 593 w + 5859,12311 w + 121636]
435 [3,—145] [7,1) w + 10,7 w + 69]
439 [1,—439] [21,1] w + 10,21 w + 209]
443 443, —1 1,21] 21w+211,w+10]
447 [149,-3] [1,7) 7w+ 71, w + 10]
451 [451, —1] 321, 6817] 6817 w + 68977,321 w + 3248]
455  [65,—7] [1,3] 3w+ 31,w + 10]
463 1, —463 15732537, 731153] 731153 w + 7500692, 15732537 w + 161395651]
467 467, —1 59, 1275] 1275 w + 13139,59%9w + 608]
471
479 [1,—479) [1729,79] (79w + 825, 1729 w + 18056]
483 [23,—21] [1,1] W+ 11,w + 10]
487 1, —487 7204587, 326471] 326471 w + 3439058, 7204587 w + 75893395]
491 491, —1 13809, 305987] 305987 w + 3237116, 13809 w + 146089]
499 [499, —1] [3,67] 67w + 715, 3w + 32]
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