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Abstract. In the present paper the trace form on the ring of integers of a number 
field is considered. All quadratic fields are determinated for which the form can be 
diagonalized, i.e. the quadratic fields with an integral basis orthogonal with respect 
to the trace. There are also given examples of fields of higher degree with the same 
property. 

0. Introduction 

In [B] Eva Bayer-Fluckiger investigated lattices with an integral bilinear 
symmetric form 

b: IxI—¥Z 

b(x,y) = Tr (axy), 

where / is a fractional ideal of a number field F, a £ F is an appropriate 
scaling factor, Tr = Trp/ą is the absolute trace, and y t-> y is an involution 
of F. 

In particular, she asked which lattices can occur in this way, and she 
got a partial answer in the case when the involution is nontrivial. 

In the present paper we consider the case when the involution is trivial, 
a = 1, and / = OF is the ring of integers of a number field F. We ask when 
the trace form can be diagonalized, i.e. when in OF there is an integral basis 
orthogonal with respect to the trace. We determine all quadratic number 
fields with this property, next we extend our results to some composita of 
quadratic fields. 
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A t the end of the paper we give a list of orthogonal integral bases in 
quadratic imaginary fields with discriminants — d = l(mod 4), 3 < d < 500, 
provided such a basis exists. These examples have been computed using the 
package G P / P A R I . 

1. Notation 

Let F = Q(Vd), where d is a squarefree integer, be a quadratic number 
field. Let o : F X F —> Q be a pairing defined by 

a o (3 = Tr(«/3), for a, f3 € F, 

where Tr = Tr/r/Q is the trace. 
Denote 

A/5, if rf = 2,3 (mod 4), 
i ^ 5 , if d= 1 (mod 4). 

u> = 
I _L 

2 It is known that l,u> is an integral basis in F. Obviously, 1 o u = 0, if 
d = 2, 3(mod 4), i.e. in this case the integral basis I, u is orthogonal. 

If d = l(mod 4) then l o w = Tr(cj) = 1 ^ 0 , thus this integral basis is 
not orthogonal. 

In the present note we shall characterize all d = l(mod 4) such that in 
F = Q(Vd) there is an orthogonal integral basis. 

2. Main Results 

In theorems below we give some conditions equivalent to the existence 
of an orthogonal integral basis in the quadratic number field with the discri
minant d = l (mod 4) 

T H E O R E M 1. Let F = Q(Vd), where d = l(mod 4) is squarefree. Then 
the following conditions are equivalent: 

(i) There is an orthogonal integral basis in F, 

(ii) There are p,q,r,s G Z satisfying 

(1) ps - qr = 1 

and 
(2) {2p+q){2r+s) + qsd = 0, 

(Hi) There are p,q € Z such that for t = 2p + q and A = t2 + dq2 the 
numbers 

t + dq 2t 
(3) r = — Z T « S = A ' 
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are integers. 

P R O O F . Let p, q,r,s£ Z . Then 

/?l = p+qu>, 
f}2 = r + su), 

is an integral basis iff the matrix ^ ^ is invertible in Z . We may even 

assume that (1) holds changing the sign of fa if necessary. 

Computing the trace we get 

ft o (32 = Tr(pr + {ps + qr)u + qsu2) = i((2p + q)(2r + s) + qsd). 

Thus /?i, 02 is an orthogonal integral basis if and only if there exist p, q, r, s C 
Z satisfying (1) and (2). 

Using Cramer's rule we determine r and s from (1) and (2) and we get 
(3). 

T H E O R E M 2. Under assumptions of Theorem 1 the following conditions 
are equivalent: 
(i) There is an orthogonal integral basis in F, 

(iv) There is A' | d such that 2 is represented over Z by the form A'X2 + 
A " y 2 , where A" = d/A'. 

P R O O F . We use the above notation, and we shall prove that the equ
ivalent conditions of Theorem 1 imply (iv). 

Taking the equality (2) modulo 4, it follows easily from (1) and (2) 
that qs is odd. Hence t = 2p + q is odd and A = t2 + dq2 = 2(mod 4). 
Put A ' = A / 2 , then A ' is odd and from (3) we get A ' 11 + dq, A' \ t. Since 
gcd(p,q) = 1 by (1), then gcd(t,q) = 1 and from the above divisibilities it 
follows that A ' I dq and A ' 11, hence A ' | d. Denote A " = d/A'. 

Now, 2 A ' = A = t2 + dq2 = [sA')2 + A'A"q2 = A'(A's2 + A"q2), i.e. 
2 = A ' s 2 + A"q2 and (iv) holds. 

Conversely, if 2 = A'x2 + A " y 2 , where A ' A " = d and x, y 6 Z , then 
A ' j ; _ y 

evidently x,y are odd (since d is odd). Then p = and q = y are 

integers and we shall prove that r, s defined by (3) are integers. In fact, 
t = 2p + q = A'x and hence 

A = t2+dq2 = (A'x)2 + A'A"y2 = A'(A'x2 + A " y 2 ) = 2A ' , 

2 * 
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and 
t + dq = A'x + dy = A'(x + A"y). 

Then t + dq is divisible by 2 A ' = A , i.e. r = _^+_!^ j g a n m j e g e r Similarly 
2t t . s = — = —- = a; is an integer. 
A A ' 

C O R O L L A R Y 1. If F = Q(Vd) where d = l(mod 4) is squarefree and 
d > 1 ż/ien m F ź/jere is no orthogonal integral basis. 

P R O O F . From the assumption it follows that d > 5. Then 2 cannot be 
represented by the form A'X2 + A"Y2, where A ' A " = d, since A ' , A " have 
the same sign and A ' A " > 5. 

Let £ = u + Vy/a be the fundamental unit of the field Q(A/O) where a = 
3(mod 4), a > 0 is squarefree. Then Ne = u2 -av2 = 1, since a = 3(mod 4). 
Denote en = un + u n V / a , for TC 6 Z . It is easy to observe that u is odd iff v 
is even iff all un are odd. Thus if un is even for some n then « is even. 

T H E O R E M 3. Let F — Q(Vd) where d = l(mod 4) is squarefree and 
d < 0. Let e = u + Vyfa be the fundamental unit of the field Q( v /a) , where 
a = — d > 0. Then the following conditions are equivalent: 
(i) There is an orthogonal integral basis in F, 
(v) u is even. 

P R O O F , (V) (i). Assume that u is even. Then from 1 = Ne = u2—av2 

it follows that (u+ l)(u — 1) = av2 and gcd(u + l,u— 1) = 1. Consequently 

u + 1 =aix2, 

u - I =02j/2 

where aia2 = a and xy = v. Subtracting we obtain 2 = a\x2 — c^y 2 and 
taking A ' = at, A" — -a2 we get (iv) since A ' A " = -aia2 = - a = d. The 
claim follows from Theorem 2. 

(i) (u). In view of Theorem 2 there are A ' [ d and i , y € Z satisfying 
A ' x 2 + A"y2 = 2, where A " = d/A'. Then A ' A " = -a. Let us observe that 
U = A'x2 - 1 = 1 - A ' V and V = xy satisfy 

U2 - aV2 = (A'x2 - 1)(1 - A"y2) + A ' A " a ; 2 y 2 = A'x2 + A " y 2 - 1 = 1. 

Moreover U is even. Therefore from the observation before Theorem 3 it 
follows that (v) holds. 
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3. Examples 

First we consider the case where — d is a prime number. 

T H E O R E M 4. Let p = 3(mod 4) be a prime number, and lets = u + Vy/p 
be the fundamental unit of the field Q (y/p). Then u is even. 

P R O O F . As we have observed above, Ne — 1, hence (u+l)(u — 1) = pv2. 
If u is odd, then v is even, thus u = 2u\ +1, v = 2vi. Then + = pv2. 
Hence 

«i + 1 = py2 ui + 1 = x2 

Ui = xi u\ = py* 
for some positive x, y satisfying xy — v\. 

The first case is impossible modulo 4. In the second case subtracting we 
get 

2 2 i 
x — py = 1 

where x < u\ + 1 < u. This contradicts the minimality of u. 

SECOND PROOF It is known that the class number of the field Q(y/p) 
is odd, and 2 ramifies in Q ( ^ ) , i.e. (2) = p 2 , Np = 2. Then the ideal class 
containing p has order < 2, thus p is principal, p = (x + y^/p). Hence taking 
norms we get 2 = Np = \x2 - py2\ and the condition (iv) of Theorem 2 is 
satisfied. 

COROLLARY 2. If p = 3(mod 4) is a prime number, then in Q{\/—p) 
there is an orthogonal integral basis. 

T H E O R E M 5. Letp, q be prime numbers, pq = 3(mod 4), lets = u+Vy/pq 

be the fundamental unit of the field Q(y/pq). If ^ - ^ = —1 then u is even. 

P R O O F . We have Ns — u2 - pqv2 = 1, where u, v > 0. We may assume 
that p = l (mod 4), q = 3(mod 4). 

Suppose that u is odd. Then v is even, u = 2u\ + 1, v = 2«i. Consequ
ently U\ (tii + 1) = PC^i-

There are four possibilities: 

u\ + 1 = pqx2,x2,px2,qx2 and respectively, «i = y2,pqy2,qy2,py2, 

where x, y are positive integers of different parity and xy = v\. Subtracting 
we get respectively 

l=pqx2-y2, l = x2-pqy2, l=px2-qy2, 1 = qx2 - py2. 
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The first and the last equalities are impossible modulo 4. From the third one 
it follows that p is a quadratic residue modulo q, contrary to the assumption. 
From the second equality we get N(x + yy/pq) = 1, then by the minimality 
of u we have u < x < v\ < u\ < u, contradiction. 

C O R O L L A R Y 3. Ifp, q are prime numbers satisfyingpq = 3(mod 4), ^ - ^ = 

— 1 then in Q(y/—pq) there is an orthogonal integral basis. 

4. Quartic fields 

Basing on the above results it is easy to give examples of quartic bicyclic 
fields with orthogonal integral bases. 

We fix the following notation. For j = 1,2, let Kj = Q{y/dj) be the 
quadratic number field of discriminant dj, where d\ ^ d2. Then K — K\Ki 
is a quartic bicyclic field. Denote Tr, = Tr/^./Q, T r / = TVK/KJ a r | d Tr = 
T T K / Q . 

Suppose that ,0^ is an integral basis of Kj, and consider the set 

B = { $ ) $ ) : l < i , f c < 2 } . 

We shall use the following Theorem 88 of Hilbert: 

T H E O R E M 6. Under the above notation if gcd{d\,d2) = 1 then the di
scriminant of K equals ( r f i ^ ) 2 , and B is an integral basis of K. 

P R O O F . See [H], Theorem 88. 

T H E O R E M 7. Under the above notation if ft^ is an orthogonal 
integral basis of Kj, for j = 1,2, then B is orthogonal with respect to Tr. 

If moreover gcd{d\, d2) = 1 then B is an orthogonal integral basis of K. 

P R O O F . Let i,k,l,m € {1,2}. Since Tr = Tri o T r / , Tn'\ K2 = T r 2 , 
and T r / is /fi-linear, then 

Tr ( t f ^ .^ffl) = Tr, ( T r / ( f ^ - t f ' ^ ) ) 

= Tr , ( ^ ^ • T r / ( t f ^ ) ) = Tr , ft™ • T r 2 ( # > ^ ) ) 
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unless i = / and k = m. Thus B is orthogonal with respect to Tr. 
Now, the second part of the theorem follows from the theorem of Hilbert. 

COROLLARY 4. If d,d! are relatively prime squarefree integers ^ 1 and 
d = l(mod 4), and in the fields Q(\/d), Q(VS') there are orthogonal integral 
bases, then in the field Q(\/d, y/dJ) there is an orthogonal integral basis. 

P R O O F . Let di = d and d% = d', resp. Ad' if d' = l(mod 4) resp. 
d' = 2, 3(mod 4). Then d\ and d2 satisfy the assumptions of the second part 
of Theorem 7. 

5. Remarks 

1) There are fields Q(y/—pq) not satisfying the assumptions of Corollary 
3 with an orthogonal integral basisE.g. for p = 17, q = 19 we have the 
fundamental unit e = 18 -f w, in Q{y/pq). Then by Theorem 3 in the field 

/ 1 7 \ 
Q(\/—pq) there is an orthogonal integral basis. We have also I — J = 1. 

2) It is easy to see that in Q(Vd), for d = 2,3(mod 4), the orthogo
nal integral basis is unique up to a permutation and sign changes. On the 
other hand due to the infinity of solutions of the Pell equation, in the case 
d = l(mod 4) if there exists an orthogonal integral basis, then the number 
of such bases is infinite. 

3) We do not know any cubic field with an orthogonal integral basis. 
We do not know if there is an orthogonal integral basis in a quartic field not 
satisfying the assumptions of Theorem 7. 

4) One can generalize the case of quartic fields as follows. Let d\,..., dr 

be pairwise relatively prime squarefree integers ^ 1 satisfying dj = l(mod 4) 
for j = l , 2 , . . . , r - 1. If in the field Kj = Qiy/dj), f o r i = 1,2,. . . , r there 
is an orthogonal integral basis, then in the field K = K\K2 • • • Kr there is 
an orthogonal integral basis. 

In view of Corollary 2 this gives examples of fields with an orthogonal 
integral basis of arbitrary large degrees. 

5) On the other hand, if we consider the hermitian pairing (see e.g. 
[B]): a o /3 = Tr(a/3), where /3 is the complex conjugate of /3, then it is 
easy to see that in Q(Vd) there is an orthogonal integral basis if and only 
if d = 2,3(mod 4). Then 1,UJ is an orthogonal integral basis. Namely, for 
d = l (mod 4) the equality (1) and the orthogonality condition analogous to 
(2): (2p + q){2r + s) — qsd = 0 give a contradiction modulo 4. 

Acknowledgements. I should like to thank Professor Jerzy Browkin 
for many valuable suggestions. I am also indebted to Patrik Lundstrom for 
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informing me on his results. In particular he has proved independently The
orem 3 above. 

6. The table 

In the table below we give an orthogonal integral basis in Q(\/d), where 
—500 < d < 0, d = l(mod 4) is squarefree, provided such a basis exists. 
The table has been computed using the package G P / P A R I , version 1.39 (see 
[BBCO]). 

For every d in question there are given (in the above notation) — d, 
[A', A " ] , [x, y] satisfying x2A' + y 2 A " = 2 and an orthogonal integral basis 
L # i , A i ] = [p + Qu, r + S0J]- We can always assume that A " < 0. If for some 
d such a line is empty then in Q(\/<i) there is no orthogonal integral basis. 
E.g. it is the case for d = —39, -55 , —95, etc. 

Table 

-d 

3 

[ A ' , A " ] 

[3, -1] 

[*, 2/] [ft, A J ] 

[1,1] [u> + l,u] 
7 [1, -7] [3,1] [o;+ 1,3 o;+ 2] 

11 [11,-1] [1,3] [3a; + 4,a; + l] 
15 [5, -3] [1,1] [w + 2,w + l] 
19 [19, -1] [3,13] [13 UJ + 22,3 UJ + 5] 
23 [1, -23] [5,1] [u> + 2, 5 UJ + 9] 
31 [1, -31] [39, 7] [7 UJ + 16, 39 UJ + 89] 
35 [7, -5] [1,1] [a;+ 3, w+ 2] 
39 
43 [43,-1] [9,59] [59 a;+ 164, 9 a;+ 25] 
47 [1, -47] [7,1] [UJ + 3, 7 UJ + 20] 
51 [51, -1] [1,7] [7 a; + 22, u> + 3] 
55 
59 [59, -1] [3, 23] [23 UJ + 77, 3 UJ + 10] 
67 [67,-1] [27, 221] [221 UJ + 794, 27 UJ + 97] 
71 [1, -71] [59,7] [7 ui + 26, 59 UJ + 219] 
79 [1, -79] [9, 1] [a; + 4, 9 UJ + 35] 
83 [83,-1] [1,9] [9 UJ + 37, UJ + 4] 
87 [29, -3] [1,3] [3 a; + 13, UJ + 4] 
91 [7, -13] [15,11] [11 UJ + 47,15 w + 64] 
95 
103 [1, -103] [477, 47] [47 UJ + 215, 477 w + 2182] 
107 [107, -1] [3,31] [31 UJ + 145,3 a; + 14] 
111 
115 [23, -5] [7,15] [15 a;+ 73, 7 a;+ 34] 
119 [1,-119] [11,1] [a;+ 5,11 a;+ 54] 
123 [123, -1] [1,11] [11 UJ + 56, UJ + 5] 
127 [1, -127] [2175,193] [193 UJ + 991, 2175 UJ + 11168] 
131 [131,-1] [9, 103] [103 a; + 538, 9 UJ + 47] 
139 [139, -1] [747, 8807] [8807 w + 47513, 747 UJ + 4030] 
143 [13,-11] [1,1] [a;+ 6, a;+ 5] 
151 [1,-151] [41571, 3383] [3383 UJ + 19094, 41571 UJ + 234631] 



Diagonalizing the trace form in some number fields 25 

-d [A', A"] [/?i,/y 

155 
159 [53, -3] [5,21] [21 w + 122, 5 ui + 29] 
163 [163, -1] [627,8005] [8005 ui + 47098,627 ui + 3689] 
167 [1, -167] [13,1] [UJ + 6,13 ui + 77] 
179 [179, -1] 
IS1? 

[153, 2047] [2047 w + 12670,153 ui + 947] 

loo 
187 [187, -1 ] [3,41] [41 ui + 260, 3 w + 19] 
191 [1,-191] [2999, 217] [217 w + 1391, 2999 UJ + 19224] 
195 [15, -13] [1,1] [w + 7, w + 6] 
199 [1, -199] 
W3 

[127539, 9041] [9041 UJ + 59249,127539 u> + 835810] 

211 [211,-1] [36321, 527593] [527593 ui + 3568069, 36321 w + 245636] 
215 [5, -43] [3,1] [w + 7, 3 ui + 20] 
219 [3, -73] [5,1] [w + 7,5w + 34] 
223 [1, -223] [15,1] [ui + 7,15 w + 104] 
227 [227, -1] [1,15] [15 u> + 106, w + 7] 
231 [77, -3] [1,5] [5 w + 36, ui + 7] 
235 [47, -5] [1,3] [3 w + 22, w + 7] 
239 [1, -239] [2489,161] [161 UJ + 1164, 2489 ui + 17995] 
247 [13,-19] [81,67] [67 u + 493, 81 w + 596] 
251 [251, -1] [121,1917] [1917 ui + 14227,121 w + 898] 
255 [17, -15] [1,1] [ui + 8, UJ + 7] 

263 [1,-263] [373, 23] [23^ + 175, 373 w + 2838] 
267 [267, -1 ] [3, 49] [49 w + 376, 3 w + 23] 
271 [1, -271] [340551, 20687] [20687 u + 159932, 340551 UJ + 2632813] 
283 [283,-1] [699,11759] [11759 UJ + 93029, 699 w + 5530] 
287 [1, -287] [17,1] [u;+ 8, 17 w + 135] 
291 [291, -1] 
295 
299 
303 [101, -3 ] 
307 [307, -1 ] 
311 [1,-311] 
319 [29, -11] 
323 [19, -17] 
327 
331 [331, -1] 
335 [5, -67] 
339 [339, -1 ] 
347 [347, -1] 
355 
359 [1,-359] 
367 [1, -367] 
371 
379 [379, -1] 
383 [1, -383] 
391 [1, -391] 
395 
399 [21,-19] 
403 [31, -13] 

[1,17] 

[5, 29] 
[537, 9409] 
[4109, 233] 
[667,1083] 
[1,1] 

[2900979, 52778687 
[H,3] 
[17, 313] 
[43, 801] 

[19,1] 
[137913, 7199] 

[5843427, 11375938 
[137, 7] 
[2709,137] 

[1,1] 
[147, 227] 

[17w + 137, ui+ 8] 

[29 ui + 238, 5^ + 41] 
[9409 UJ + 77725, 537 UJ + 4436] 
[233 UJ + 1938, 4109 w + 34177] 
[1083 u + 9130, 667 w + 5623] 
[ui + 9, ui + 8] 

'] [52778687 w + 453722681, 2900979 ui + 24938854] 
[ 3 « + 26,11 ui + 95] 
[313 w + 2725, 17 w + 148] 
[801 UJ + 7060, 43 w + 379] 

[u + 9,19 o; + 170] 
[7199 a; + 65357,137913 a; + 1252060] 

3] [113759383 w + 1050449725, 5843427 w + 53957978] 
[7 a; + 65,137 w + 1272] 
[137 a; + 1286, 2709 a; + 25429] 

[a; + 10, u + 9] 
[227 a; + 2165, 147 w + 1402] 
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-d [A', A"] [z>y] 

407 
411 [411, -1] [11, 223] [223 w + 2149, 11 w + 106] 
415 [5, -83] [1919, 471] [471 u + 4562, 1919 ui + 18587] 
419 [419, -1] [803, 16437] [16437 ui + 160010, 803 w + 7817] 
427 [7, -61] [3,1] [ui + 10, 3 w + 29] 
431 [1, -431] [12311, 593] [593 u + 5859, 12311 w + 121636] 
435 [3, -145] [7,1] [UJ + 10, 7 ui + 69] 
439 [1,-439] [21, 1] [ui + 10, 21 ui + 209] 
443 [443, -1] [1,21] [21 UJ + 211, u; + 10] 
447 [149, -3] [1-7] [7 ui + 71, ui + 10] 
451 [451, -1] [321, 6817] [6817 u + 68977, 321 w + 3248] 
455 [65, -7] [1,3] [3 ui + 31, <J + 10] 
463 [1, -463] [15732537, 731153] [731153 w + 7500692, 15732537 u + 161395651] 
467 
d71 

[467, -1] [59, 1275] [1275 ui + 13139, 59 u + 608] 
4(1 
479 [1, -479] [1729, 79] [79 ui + 825, 1729 a; + 18056] 
483 [23, -21] [1,1] [w + 11, w + 10] 
487 [1, -487] [7204587, 326471] [326471 w + 3439058, 7204587 ui + 75893395] 
491 [491, -1] [13809, 305987] [305987 u + 3237116, 13809 u + 146089] 
499 [499,-1] [3, 67] [67 a; + 715,3 a; + 32] 
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