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Prace Naukowe Uniwersytetu slqskiego nr 1999, Katowice

ON A FUNCTIONAL EQUATION CONNECTED
WITH PTOLEMAIC INEQUALITY

IRENA FIDYTEK

In the first part of the present paper we consider Ptolemaic inequality
and give some necessary conditions for its solutions. The other part is devo-
ted to solution of some functional equation which, simultaneously, satisfies
the Ptolemaic inequality.

1. Let (X,+) be an Abelian group. In what follows we assume that a
real function f: X — R satisfies Ptolemaic inequality:

) flz-9)f(2) < fly - 2)f (@) + [z ~ 2)f(y)
for all z,y,z € X.

REMARK 1. The function f satisfies the following conditions:
(1) if f(0) > 0, then f(z) > 0 for everyz € X;
(2) if f(0) <O, then f(z) <0 for everyz € X;
(3) if f(0)=0, then f(z) = f(—=x) for everyz € X.

Proor. If y =z =0, then from (I) it follows that

f(2)£(0) < £(0)f(=) + f() f(0)

for every z € X. Hence f(z)f(0) > 0,2 € X and, consequently, conditions
(1) and (2) hold.
However, if f(0) =0,z = z and y = 0, then (I) implies the inequality:

(@) < f(-2)f(z), z€X,
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and, consequently,

fA(-2) < f(=)f(-=z), z€X.

Hence if follows that

02 f(2)* + f(~2)* - 2(f(2)f(~2)) = (f(2) - f(-2))’, z € X,

and, consequently, f(z) = f(—z) for every z € X.

THEOREM 1. If f(0) = 0 and f(a) = 0 for some a € X, then f(z —a) =
f(z) = f(z +a) for every x € X. Moreover, f is either non-negative or f
is a non-positive function.

PROOF. From condition (3) it follows that f is even. Moreover, (I)
implies that

f@=a)f(z) < fla—2)f(z), z,2€X.
This jointly with the evenness of f implies that
fle—a)f(z) < f(z-a)f(x) < f(z —a)f(2), = z2€X.

Thus
flx—a)f(z)=f(z—a)f(z) foral =z,z€ X.

We can assume that f does not vanish identically. Let b € X be such
that f(b) # 0. Since

fle = f0) = [b-a)f(@), =€X,

we have
DN (0 PN
fa-a)= T, sex
Put
_f-a)
)

If ¢ =0, then f(z — a) = 0 for every « € X, and, consequently,
F(b) = f((b+ a) — a) = 0; a contradiction. Therefore ¢ # 0 and

flz—a)=cf(z), z€X.
Moreover

f(e+a) = f(-2 - a) = cf(-2) = ef(a), @ €X,
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whence

(4) fle—a)=cf(z) = f(z +a), z€X.

Moreover, we observe that
f@)=f((z+a)—a)=cf(z+a)=c"f(z), z€X;

in particular,
£(b) = £(b),

and, consequently, ¢ = 1. Now, (I) and the evenness of f imply that

fle=9)f(2) < fly =~ 2)f(@) + fle - 2 ()
Sfe-a)fW)+ fly-2)f(2) + fle - 2)f(y)
=2f(e - 2)f(y) + f(z - y)f(2)

for all z,y,z € X and, therefore,
(5) fl@-2)f(y) 20, =,y,z€ X.
Now, from conditions (4) and (5) it follows that

0 < f(b— a)F(b) = cf(B)".

From here we infer that ¢ > 0, and, finally, ¢ = 1. Finally, (5) implies that

whence,
sgn f(z) =sgn f(b) or f(z)=0
for every = € X. This completes the proof.
Remark 1 and Theorem 1 imply Corollary 1.

COROLLARY 1. If f : X — R satisfies (I), then either f is non-negative
or f is a non-positive function.

THEOREM 2. Let G :={z € X : f(2) =0}. If G # 0, then (G, +) yields
a subgroup of the group (X,+).

PROOF. Suppose that G # @ and fix arbitrarily an z € G. Then

0 < f(0)® = f(z — 2) f(0) < f(z = 0)f(e) + f(z — 0) f(z) = 2f(x)* = 0.
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Hence f(0) =0 and 0 € G. Therefore, by virtue of Remark 1 f is even,
and, consequently, —z € G. Moreover, if z,y € G, then, by Theorem 1, we
have

fle=9)f(2) < fly-2)f(@)+ flz - 2)f(y) =0

for every z € X. Putting 2 = z —y we infer that f(z—y) =0and z -y € G.
Since —y € G, we have £ + y = £ — (~y) € G which finishes the proof.

REMARK 2. If a function f : X — R satisfies inequality (I) and ¢ € R,
then functions cf and | f | satisfy (1) as well.

THEOREM 3. Let f : X — R be an even and bounded function satis-
fying (I). If f is non-negative, then f is subadditive function. If f is
non-positive, then f is superadditive function.

PRroOOF. Suppose that f is a non—negative and non—zero function. Let
M :=sup f(X),0< M < +o0o. For every n € N there exists a z, € X such
that )
Ml";i'<f(zn)SM'

In view of (I) we obtain

f@-y)f(zn) < fly — 2) f(2) + flz - 2) f(v)
< Mf(z)+ Mf(y)

for all z,y € X, n € N. Hence
Mf(z —y) = lim f(z~y)f(zn) < Mf(z)+ Mf(y)
for all z,y € X and, consequently,

flz—y) < flz) + f(y), z,y € X.

From here and from the evenness of f it follows that

fle+y) = flz-(-y) < fl@)+ f(-y) = f(=) + f(y)

for all z,y € X, i.e. f is subadditive on X.

Obviously, the zero—function is subadditive, too.

If f is a non—positive and non-zero function, the —f is non—negative
and non—zero. Hence f is superadditive because —f subadditive.

In view of the well known inequality:

(6) (z+y)P <zP+yP, 2,y>0,0<p<1,
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and by Corollary 1 and Remark 2 we obtain
REMARK 3. Ifp € (0,1] and a function f : X — R satisfies (1), then so
does | f|?.

Now, we give some examples of solutions of the Ptolemaic inequality.

ExaMPLE 1. It is well known (see [1], [2], [3]) that if (X,]|-||) is an
inner product space, then || - || satisfies (I) and, consequently, so does || - ||?,
where 0 < p <1 is arbitrarily fixed.

EXAMPLE 2. If ¢ : X — R is an additive function and 0 < p < 1,
then | a |P satisfies (I). Moreover, if (X,+) is a umquely 2—-divisible Abehan
group, then the following functions:

f(z) =| sin (a(2)) |, = € X,
9(z) = sin h(a(z)) ", = € X,
h(z) =| cosh(a(z)) |?, z € X,

yield solutions of (I).

ExaMPLE 3. If (X, +) is a uniquely 2-divisible Abelian group and f
is a real or complex solution of Wilson’s sine functional equation

(1) f@)? = f)? = fla+y)fz-y), 2,y € X,
then | f | satisfies (I) on X.

EXAMPLE 4. Let (G, +) be a subgroup of (X,+) and let f: X — R be
a function defined by the formula:

_JO0o for z€d
f(w)_{c for z e X\G,

where ¢ € R is arbitrarily fixed. Then f satisfies (I).

- Now, we present some necessary conditions for a given function to be a
solution of the Ptolemaic inequality.

THEOREM 4. Let f : X — R be an even solution of (I). Then the
following conditions are satisfied;

fe+y) = fle—y)|_ F@2) _ fle+y)+ f(z—y)
™ i) <@ S W
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provided that f(z) #0, f(y) # 0, z,y € X;
®) | f@)? - WIS fE+y)f(z-y) < f=)}?+ ), sy X.

Moreover, if (X,+) is a uniquely 2-divisible Abelian group, then condition
(8) is equivalent to the following one:

ICORICY!

<sro <1 (L)

(9) 2
Fr(552) e

Proor. By Corollary 1, we may suppose that f is non—negative. The
assumptions imply that

flz = y)f(2) = flz ~y)f(=2) < fly +2)f(2) + f(22)f(9),
for all 2,y € z. Hence
(f(z—-y) - f(z+y) f(=) < f(22) f(y), =,y € X.
Now, replacing here y by —y, we obtain
(fz+y) - fle-y)f(z) < f(22)f(y), =,y € X.
Thus

(10) | flz+y) - flz-y) | f(z) < f22)f(y) =,y € X.

Moreover

f@2)f(y) = f(z - (=2))f(y) < f(-z - y) f(2) + f(z — y) f(—=)
= fle+y)f(a) + f(z - y) f(=)

for all z,y € X, whence

(11) F(22)f(y) < (Fe +y) + flz = v)) f(2), o,y € X.

From (10) and (11) we have (7), whenever f(z) #0, f(y) #0,z,y € X.
If f is non—positive, then we can replace f by —f getting (7) in that
case.
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In order to prove (8) we put z =z + y in (I) to get

(12) fz-y)f(z+y) < f(=2)f(2)+ F(-v) fv) = f(=)* + f(y)?, 2,y € X.

However, if z = y + z, then, by (I), it follows that

(13) f@P<fly-2)fly+2)+ f(W)% v, 2 € X,

and, consequently,

(14) FW < flz=v)fz+y) + F(2)?, v,z € X.

Conditions (13) and (14) jointly with the evenness of f imply that

(15) | f@)? = F(2? IS fly+2)fly - 2), y,2 € X.

Now, (12) and (15) imply (8).
Obviously, conditions (8) and (9) are equivalent, provided that (X, +)
is a uniquely 2—divisible Abelian group.

2. In this section we assume that (X, +) is a uniquely 2—divisible Abelian
group and a function f: X — R satisfies the following functional equation:

(IID) | f(2)* = F()* |= fz+ ) f(z ~y), 2,y € X,

or its equi{ralent form
2 2

T+y T—Y

e ‘f(2>"f(2)

THEOREM 5. If a function f : X — R satisfies functional equation (II1),
then f satisfies Ptolemaic inequality (I).

PRrooF. From (1V) it follows that

fly—2)f(z)+ f(zz— z) f(y)
= |7 (=) - g (g’

3
T—y—z\2
- F (=) = fe - »)1()
for all z,y, 2 € X, which finishes the proof.

=f(‘77)f(y)1 z,y € X.

+|r (=) - g (=)’

> |f (=)

THEOREM 6. If f : X — R satisfies (III), then f(0) =0, f is even and
f is either non-negative on X or f is non-positive on X.

3 — Annales...
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PRrooF. If z = y = 0, then, by (III), it follows that f(0)? = 0, and,
consequently, f(0) = 0. Now, Theorem 5, Remark 1 and Corollary 1 imply
the assertion.

In the sequel we shall restrict ourselves to real solutions of equation (III)
on X, because any complex solution of (III) proves to be real. Indeed, if f
is a complex solution of (IIT) on X, then f(0) = 0. Moreover, putting y = 0,
we infer that
| f(z)? |= f(z)® € R for every z € X. Let = € X be fixed, w = f(z) =
v+ i € C, where u = Rew, v = Imw (C - denotes here the field of all
complex numbers). Then w? = |w?| and, therefore

u? — v? + 2w = u? +v? e R.

2

Thus uv = 0 and v? — v? = u? 4+ v?, whence v = 0 and finally w = f(z) € R.

REMARK 4. If f : X — R is a solution of (III) and ¢ € R, then so is
cf.

REMARK 5. If F : X — R is a solution of Wilson’s sine functional
equation (II), then |F| satisfies (II1).

In what follows we shall show that for every non—negative solution f
of (III) on X there exists a solution F of (II) on X such that f = |F).

At first we shall prove some lemmas, which will be needed to find all
real solutions of equation (III) on X.

LEMMA 1. If f : X — R satisfies (III), x € X, and f(2z) # 0, then
f(z) #0 and

X T 2
(16) , fld) _ ‘2 - ff(fx)l .

f2z)

PROOF. Suppose that f(2z) # 0. By Theorem 5 and Theorem 1 it
follows that f(z) # 0.

On account of (III) we have

T 2 - x 2
@) = F20)°] = F(30) f(@), f(30) = L) f(zf)(2 -

and

|f(z)? — f(3z)*| = f(4z) f(22).



On a functional equation connected with Ptolemaic inequality 35

Hence
_ oz - F@)2 = £(22)°)° _ |2f()’f(22)" — f(22)"
f(4:1:)f(2z) - f( ) f(:l:) | f(:l:)2
_ o2 |2 @2 = F@P] ol f(22)?
BRA o e e e

From here we obtain that

fl4z) |2 _ f(2e)?

@) |77 @)

LeMMA 2. If f >0 satisfies (Il), « € X and f(z) # 0, then f (&) # 0
for every n € N and the following conditions are satisfied:

) _ @) . fE) _
7 Ge = e s Th g
forn €N, lim_f(2"z) = +oo, lim_f(&) = 0;
 f(20) @) | )
(18) if 7@) > 2, then F@n o) > 2, (2 > 2

: oy 2
for n €N, lim _f(2"z) =+o0, lim f(5%)=0;

(19) if %(_(257)_) < 2, then f(z%)) < 2, for neN
and ——— f(2"2) <2 for mé€N, promded f(2"z) #0 forn € N.

7@Tx)

PROOF. The assertions result from Lemma 1 by induction.

THEOREM 7. If f > 0 satisfies (III), then f satisfies ezactly one of the
following two conditions:

f(22)

(20) z/e\x(()¢o—_—> f()>z)
f(2z)

(21) x/e\x (f(w)#0=> @) <2)

3*
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PRrRoOF. We first prove that f satisfies the following condition:

2 2
(22) V f( y) > 9 : /\ f( x)
veEX T€EX
F(y)#0 f(x)#0

In fact, let y € X be an element such that f(y) # 01i f(zy) > 2. Assume,

that there exists an z € X such that f(z) # 0 and % S ‘2. Condition (18)

of Lemma 2 implies that lim f(5%) = 0. Thus there exists a & € N such
n—»00

that f(3%) < f(z). Put z := &%. Then 0 < f(2) < f(z). Moreover, by (18),

Lf(f—;l > 2. On account of inequalities (7) from Theorem 4 we have

f(2z)? flz+2)~-flz—z
4276 Z( ) )

— Ulzt2)+f(2=2))%  [f(z)? _ 4f(z+3)/(z~2)
f(z)* " J(z)? f(z)?

1222 H=)?  alf(e) =127 2)2= (2
2_(—2’1‘(2) HEE e >4 i‘Lf() 4 J—)—fu_f(z) 4,

a contradiction. Hence condition (22) holds true. Observe that (22) is equ-
ivalent to the following condition

2

(23) f(22) <2 = /\ f
z€X f(z vEX
f(=)#0 f(y)#0

Now, (22) and (23) imply (20) and (21).

LEMMA 3. Suppose that f : X — R is @ non—zero and non-negative
function satisfying (111), y € X, i f(y) #0. Let F: X — R be a function
defined by the formula:

zty\2 r—y\2
(24) F(z) := f(—":l)fzyg(—zl) , € € X. The F satisfies the following condi-
tions:
(25) F(y) = f(y);
(26) F(0) = 0;

(27) |F(2)| = f(2), 2 € X;

(28) F(-z) = —F(z),z € X;

(29) F()F(y) = F ()" - F (%), 2 € X;

(30) F@)F(? = (F(552)' - F(52)) ) w2 € X

(31) if z € X is an element such that F(z) = 0, then F(22) = 0 and
F(z+2)? = F(z)? = F(z — 2)? for every z € X.
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PRrRoOOF. By Theorem 6 we have f(0) = 0 and therefore F(y) = f(y).
Formula (24) jointly with then evenness of f implies (26), whereas (IV)
implies (27). Condition (28) holds, because f is even. Moreover, by (24),
(25) and (27) we have (29). Condition (27) and equation (IV) imply (30).
Finally, if z € X and F(z) = 0, then (27), Theorem 5 and Theorem 1 imply
(31).

LEMMA 4. If f > 0 satisfies (III) and y € X is an element such that
f(y) #0 and f(2y) =0, then the function F defined by (24) with the azd
of this y satisfies Wilson’s sine functional equation (II) on X.

PROOF. By (27) we have F(2y) = 0. Consequently (30) implies that
0= F(2z)’F(2y)’ = (F(z +y)’ - F(z - y)z)2 , z€X,
whence
(32) Flea+y)?-Fz-y)?=0,z€X.
On account of (28), (29), (30) and (32) we get

0= (F(2e +y)* = F2o - %) (Fz + )" - F22 - 4)%)
= (F(z +2+y)? - Flz - 2)2)° - (F(z + 2)° F(z~2+y>)2
—(F(z+2)? - F(z — z — y)* )2+(F t+z-y F("’"Z)o)

=((F(:1r:+z+y)2 F(z - 2)?) = (F( T+Z—y)2 (3'7_"")2))2
+2(Fe+2+y)’ - F(z - 2)°) (Fz + 2 - y)* = F(z - 2)*)
((F(:c+z)2 F(a:—z+y) — (Fz+2) - F(z - z - y)?))*
~2(F(z+2)* - Fz ~ 2+y)")(F(z + 2)* - F(z - 2~ y)*)
=2(F(z+z+y)’F(z+2-9) - Flz+z+y)*F(z - z)?

~F(z - 2)?F(z+2z-y)'+ Flz - 2)* - F(z + 2)*
+F(z+2)?F(z -z —y) '+ F(z — 2+ y)?Fz + 2)*~
F(z - 24 y)?F(z — z — y)?)

=2 ((Fle+97 - FOP) - (F (5 -
(P () - P (22)7) 4 Fa - 2y

~Fle+ 21+ (F (250" - F(20)") |
+(F () - F(5)7) - (Fa- 27 - PO’
=2 (=2F(y)*(F(z + 2)* - Fz - 2)°
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2 2 2
= 4F(y)2(F(2z)F(22) — (F(z + 2)? - F(z - 2)?))

for all z,2 € X. Hence

+2(F (352)" - F (2572)") (F (35)" - F (359)7))

(33) F(22)F(22) = F(z + 2) - F(z — 2)%, z,z€ X
Putting z := 2, 2 := 22t in (33), we obtain

F(s+t)F(s —t) = F(s)? - F(t)?, s,t € X.
This completes the proof.

LEMMA 5. If f : X — R is a non-zero and non-negative function
satisfying (III) and y € X is an element such that f(y) # 0 and

(v)?  f22)  f(22)

y .
(5)? fl&)  f(2)

for all z,z € X, provided that x # z, f(z) # 0, f(2) # 0, then the function
F : X — R defined by (24) with the aid of that y satisfies Wilson’s equation
(II) on X.

PROOF. On account of (28), (29), (30) we have
F(y)?F(2z)F(22)
= (P (22)" - F (3552)") (F (2340)" - P (252)")
2

f
(34) i

-(F 3 % 3

= (P (=52)" = P (=5570)") - (P (=52)" - P (=552)7)
+2(F (252" - P (552)") (P (25520 - P (52

~2(F (559" - F (==552)") (F (359" - P (=552))

4
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=F y)?(F z+z)2 F(z - 2)?)

( - P ) (PR - P (552))

for all z,z € X. Hence

(35) F(y)*(F(2x)F(22) - (F(z + 2)* - F(z - 2)?))

=4 ((F (220" - P (220)) (F (22 - P (272))

2 2 _2\2
-F () (F(=59)" - P (559)'))
for all z,z € X.
Now, observe that condition (30) implies the following two equalities:

(36) |F(22)F(22)| = |F(z + 2)’ - F(z — 2)}| ,z,z€ X,

and

(37) |(F(”+ zzu)) (P (252 F(“—:“V)
=F(¥)'|F@)F )| (1) ’F - F (%)’

for all z,2 € X.
Suppose that there exist a,b € X such that

(38) F(2a)F(2b) # F(a + b)* = F(a — b)%.
Then, by (31), it follows that F(a) # 0, F(b) # 0 and, consequently, f(a) # 0,

f(b) # 0, because (27) is satisfied. Obviously, a # b, by (26).
Now, in view of (35) and (38) we infer that

B (FCsp) - r)’) (P (20) - (25))
¢F(a)2(( ) F(534)).

Hence, by (36), (37), (38) and (39) it follows that

~(F(a+)? - F(a - b)?) = F(2a)F(2b)

and
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—F ()" (F (%) - P (55)")
- (rCepy” - ) (P (232)" - (5)).

This jointly with (35) implies that

2F(y)?F(2a) F(20b)
=5 (P (=)’ - p(0)Y) (r(2p) - 1 (250)).

From here and from (27) and (30) we have

f()*f(2a) £(2b) = |F(y)* F(2a) F (2b)|
~dr ey - p | o (22) - ()
=4f (%)” f(a)F(b).

Hence we obtain

= [0 J20) | f(20)
F? fla)  f)”
which contradicts (34). Finally, F satisfies (33) and, consequently, F' yields
a solution to Wilson’s equation (II) on X.

THEOREM 8. Suppose that a non—zero and non—negative function f :
X — R satisfies (III). If f(2z) < 2f(x) for every x € X, then for an
arbitrary y € X such that f(y) # 0 the function F : X — R defined by
formula (24) with the aid of that y satisfies Wilson’s equation (II) on X.

PRrROOF. For arbitrarily fixed element y € X such that f(y) # 0 we
define the function F, : X — R by formula (24), i.e.

Then, every function Fy satisfies conditions (25)—(31).

We assume first that for every y € X such that f(y) # 0 the function
F, does not satisfy (II) on X.

On account of this assumption and Lemma 4 we infer that f(2y) # 0
and f(4y) # 0 provided that f(y) # 0,y € X. However, our assumption
jointly with Lemma 5 implies that

f(y)* f(22) f(22)
40 4 = 5 .
(40) AV (5 F@)1)

yEX z,2€X
F(¥)#0  f(x)#£0 f(z)#0
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Since f(2t) < 2f(t) for every t € X, condition (40) implies that

< f(y)22 4
£(3)
provided that f(y) # 0, y € X. This implies that
f(y)
41 1<
“y f(%)

for every y € X such that f(y) # 0.
By (41) and (16) of Lemma 1 we have

) l , 1@
it ) Ok
provided that f(y) # 0,y € X. Hence, if y € X and f(y) # 0, then
LG R )
VSTw 2

Putting here a := ¥, we infer that

f (20) f(2a)
BT 12 Tn

for every a € X such that f(4a) # 0. This jointly with (41) gives

f2a) _f(a)
) <Tw T Tw

provided that f(4a) # 0,a € X.

Now we shall show that thé inequality f(4a) # 0 forces ffza“
different from 1.

Assume the contrary: there exists a b € X such that f(4b) # 0 and
%71 = 1. Obviously, f(b) # 0 and f(2b) # 0, by Lemma 2. Hence, by (40),
there exist ,z € X such that f(z) # 0, f(z) #0 and

b fe5) f29) _ fen)(2)
o F@ 10 - f@fe)

to be

4=
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On account of the assertion of this theorem we have -%(zf)l < 2, _ffi(z_z)l <2

and infer that Lf%w;l =2= )}((22"’)) . Now, by Lemma 2 it follows that f(5%) # 0

for every n € N and li_r}n f(3%) = 0. Hence there exists a k € N such that
n—oo

f(3F) < f(b). Put ¢ := K. Then 0 < f(c) < f(b). By Lemma 2 we have
!}(2;?- = 2. Now, Theorem 5, Theorem 6 and condition (7) of Theorem 4

imply that

oo F29? (f(c+ b)+f(c-b))2

o7 < 70)

_ (et d) = fe=b)? f& , 4t Bie=b)
iGE 1) 70)?

@ FQR | A0 - 1

S OETO! 0

0| A0 - f0) £(0)?

Sfert T e T e

Consequently, we get ﬁ;}; < 0, a contradiction because f(c) > 0.

Finally, ijl # 1, provided that f(4b) # 0,b € X. This _]omtly with
(42) implies that

f(2a)
43 >V3
(43) @ 2
for every a € X such that f(4a) # 0.
Since f(a) # 0 implies f(4a) # 0, we have (43) for every a € X such

that f(a) # 0.
Therefore, for all z, y, z € X such that f(z) # 0, f(y) # 0, f(z) # 0 we

obtain
‘ 1) f(22)£(22)
FE2f2)f(z) ~

>9,

which contradicts (40).

Finally, we infer that there exists y € X such that f(y) #0 and F}
satisfies (II} on X.

We shall show that for every z € X such that f(z) # 0 the function F,
satisfies (II) on X.

Let z € X such that f(2) # 0 be fixed. By the definition of F, and F,
and in view of the equality (27) in Lemma 3 we have

) -5 _R(EE) -FR () _ REFRE)
1) e el

F,(z) =
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for every z € X. Put A := I—?:—E—f;)ll-; obviously A € {—1,1}. We obtain

F,(z) = AFy(z) z € X,

whence F, satisfies (II) on X as well. This completes the proof.

THEOREM 9. Suppose that a non-zero and non-negative function f :
X — R satisfies (I11). If f(2z) > 2f(z) for every z € X such that f(z) # 0,
then for arbitrary y € X such that f(y) # 0 the function F : X — R defined
by formula (24) with the aid of that y satisfies Wilson’s equation (II) on X.

ProoF. Let y € X, f(y) # 0 and let F : X — R be defined by (24).
Si ' '
W)@ |
P
F(3) f@)f(2)

for all z,z € X such that f(z) # 0, f(2) # 0, Lemma 5 implies that F
satisfies (II) on X.

Theorems 7, 8, 9 lead now to the following

COROLLARY 2. Let f : X — R be a non-zero and non-negative func-
tion satisfying equation (III) on X. Then there ezist ezactly two different
functions o ,‘
Hy,Hy : X — R satisfying Wilson’s sine functional equation (II) on X and
the condition |H,(z)| = |Hy(z)| = f(z) for every x € X. Moreover Hy(z) =
_H2("E)1 ‘

z € X. _

ProoF. Let y € X such that f(y) # 0 be fixed. Let F : X — R be
defined by (24) and let H : X — R be a function satisfying (II) on X and
the condition: |H(z)| = f(z),z € X. Then H(y) # 0 and

H(z) = HEHW) _ H (252)? _ H (252)°
H(y) H(y)

_IE -1 S6) S0

1) H(y)  H(y) ;

for every z € X. Hence H = ForH = ~F, which was to be proved.
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