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O N A F U N C T I O N A L E Q U A T I O N C O N N E C T E D 
W I T H P T O L E M A I C I N E Q U A L I T Y 

I R E N A F I D Y T E K 

In the first part of the present paper we consider Ptolemaic inequality 
and give some necessary conditions for its solutions. The other part is devo­
ted to solution of some functional equation which, simultaneously, satisfies 
the Ptolemaic inequality. 

1. Let (X, +) be an Abelian group. In what follows we assume that a 
real function / : X —> R satisfies Ptolemaic inequality: 

(I) / ( * - y)f(z) < f(y - z)f(x) + f(x - z)f(y) 

for all x, y, z € X. 

R E M A R K 1. The function f satisfies the following conditions: 
(1) if /(0) > 0, then f(x) > 0 for every x € X; 
(2) if /(0) < 0, then f(x) < 0 for every x € X; 
(3) if /(0) = 0, then f(x) = f(-x) for every x 6 X. 

P R O O F . If y = z = 0, then from (I) it follows that 

f(x)f(0)<f(0)f(x) + f(x)f(0) 

for every x 6 X. Hence /(a;)/(0) > 0, x € X and, consequently, conditions 
(1) and (2) hold. 

However, if /(0) = 0, x — z and y = 0, then (I) implies the inequality: 

/ 2 (*) </ ( -*) / (*) , 
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and, consequently, 

f(-x)<f(x)f(-x), xex. 

Hence if follows that 

0 > f(x)2 + f(-x)2 - 2 ( / ( x ) / ( -x ) ) = (f(x) - f{-x))\ x € X, 

and, consequently, f(x) = f(-x) for every x 6 X. 

T H E O R E M 1. If f(0) = 0 and f(a) = 0 for some a e X, then f(x - a) = 
/ (x ) = f(x + a) for every x 6 X. Moreover, f is either non-negative or f 
is a non-positive function. 

P R O O F . From condition (3) it follows that / is even. Moreover, (I) 
implies that 

f(x - a)f(z) < f(a-z)f{x), x,z£X. 

This jointly with the evenness of / implies that 

f{x - a)f{z) < f(z - a)f{x) < f{x - a)f(z), x, z G X. 

Thus 
f(x - a) f(z) = f(z — a)f(x) for all x, z € X. 

We can assume that / does not vanish identically. Let b 6 X be such 
that f(b) ^ 0. Since 

f(x-a)f(b) = f(b-a)f(x), xeX, 

we have 

/ ( * - « ) = ^ = p / ( z ) , 

Put 

/(*) ' 
If c = 0, then f(x — a) — 0 for every x £ X, and, consequently, 

/(&) = /((6 + a) — a) = 0; a contradiction. Therefore c 7̂  0 and 

f(x — a) — cf(x), x G X. 

Moreover 

/ ( x + a) = / ( - x - a) = cf(-x) - c/(x) , x 6 X , 
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whence 

(4) f(x - a) = cf(x) = f(x + a), x € X. 

Moreover, we observe that 

f(x) = f({x + a)-a) = cf(x + a) = c2f(x), x G X; 

in particular, 
f(b) = c2f(b), 

and, consequently, c 2 = 1. Now, (I) and the evenness of / imply that 

/(* - V)f(z) < HV - z)f(x) + f(x - z)f(y) 
< f(z - x)f(y) + f(y - x)f(z) + f(x - z)f{y) 
= 2f(x-z)f(y) + f(x-y)f(z) 

for all x,y,z 6 X and, therefore, 

(5) f(x - z)f{y) > 0, x,y,zeX. 

Now, from conditions (4) and (5) it follows that 

0<f(b-a)f(b) = cf(b)2. 

From here we infer that c > 0, and, finally, c = 1. Finally, (5) implies that 

'/(*)/(&) >o, xex, 

whence, 

sgn f(x) = sgn f(b) or f(x) = 0 

for every x £ X. This completes the proof. 

Remark 1 and Theorem 1 imply Corollary 1. 

C O R O L L A R Y 1. / / / : X —> R satisfies (I), then either f is non-negative 
or f is a non-positive function. 

T H E O R E M 2. Let G := {x e X : f(x) = 0}. IfG ^ 0, then (G, +) yields 
a subgroup of the group (X, +). 

P R O O F . Suppose that G ^ 0 and fix arbitrarily an x G G. Then 

0 < / (0 ) 2 = f(x - x)/(0) < f(x - 0)f(x) + f{x - 0)/(a:) = 2 / (x ) 2 = 0. 
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Hence /(O) = O and O G G. Therefore, by virtue of Remark 1 / is even, 
and, consequently, —x G G. Moreover, if x , y G G, then, by Theorem 1, we 
have 

/(* - y)/(*) < f(y - *)f(x) + /(* - z)f(y) = o 

for every z € X. Putting z = x - y we infer that f(x — y) = 0 and x — y^G. 
Since — y G G, we have x + y = x - ( -y) G G which finishes the proof. 

R E M A R K 2. If a function f : X - » R satisfies inequality (I) and c G R , 
i/ien functions cf and \ f \ satisfy (I) as well. 

T H E O R E M 3. Let f : X —> R be an even and bounded function satis­
fying (I). If f is non-negative, then f is subadditive function. If f is 
non-positive, then f is superadditive function. 

P R O O F . Suppose that / is a non-negative and non-zero function. Let 
M := sup f(X), 0 < M < +oo. For every n G N there exists a zn G X such 
that 

M - — < f(zn) < M. 
n 

In view of (I) we obtain 

/(* " y)f(zn) < f(y - zn)f(x) + f(x - zn)f(y) 
<Mf(x) + Mf(y) 

for all x, y G X, n G N. Hence 

Mf(x -y)= lim / ( x - y)f(zn) < Mf(x) + Mf(y) 
n—>-oo 

for all x , y G X and, consequently, 

f(x-y) < f(x) + f(y), x,yeX. 

From here and from the evenness of / it follows that 

f(x + y) = f{x - (-y)) < / (x) + f(-y) = f(x) + f(y) 

for all x, y G X, i.e. / is subadditive on X. 
Obviously, the zero-function is subadditive, too. 
If / is a non-positive and non-zero function, the —/ is non-negative 

and non-zero. Hence / is superadditive because —/ subadditive. 

In view of the well known inequality: 

(6) {x + y)p < x p + y p , x ,y > 0, 0 <p< 1, 
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and by Corollary 1 and Remark 2 we obtain 

R E M A R K 3. Ifp G (0,1] and a function f : X —t R satisfies (I), then so 
does I / |P . 

Now, we give some examples of solutions of the Ptolemaic inequality. 

E X A M P L E 1. It is well known (see [1], [2], [3]) that if (X, \\ • ||) is an 
inner product space, then || • || satisfies (I) and, consequently, so does || • | | p , 
where 0 < p < 1 is arbitrarily fixed. 

E X A M P L E 2. If a : X -> R is an additive function and 0 < p < 1, 
then I a | p satisfies (I). Moreover, if (X, +) is a uniquely 2-divisible Abelian 
group, then the following functions: 

f{x) = | sin (a(x)) \p, xeX, 
g[x) =| sin h(a(x)) | p , x G X, 
h(x) =| cos h(a(x)) \p, x G X, 

yield solutions of (I). 

E X A M P L E 3. If (X, +) is a uniquely 2-divisible Abelian group and / 
is a real or complex solution of Wilson's sine functional equation 

(II) f{xf - f{yf = f{x + y)f(x - y), x, y 6 X , 

then I / I satisfies (I) on X. 

E X A M P L E 4. Let (G, +) be a subgroup of (X, +) and let / : X -> R be 
a function defined by the formula: 

for x € G 
for x G X\G, 

where c G R is arbitrarily fixed. Then / satisfies (I). 

Now, we present some necessary conditions for a given function to be a 
solution of the Ptolemaic inequality. 

T H E O R E M 4. Let f : X ->• R be an even solution of (I). Then the 
following conditions are satisfied; 

(7) 
/(* + y) - fix - y) 

f(y) 

< /(2s) f(x + y) + f{x - y) 

- m - m 



32 Irena Fidytek 

provided that f(x) ^ O, / (y) ^ O, x, y G X ; 

(8) | / ( x ) 2 - / ( y ) 2 |< /(x + y)f(x - y) < / (x ) 2 + / ( y ) 2 , x, y G X . 

Moreover, if (X, +) is « uniquely 2-divisible Abelian group, then condition 
(8) is equivalent to the following one: 

(9) 

, (£+») '_ , ( 4 1 ) ' < /(*)/(y) < / 

+f 
( x - y\2 

yex. 

P R O O F . By Corollary 1, we may suppose that / is non-negative. The 
assumptions imply that 

f(x - y)f{x) = f(x - y)f(-x) < f(y + x)f{x) + / (2x) /(y), 

for all x, y G x. Hence 

(/(* - y) - f{x + y))f(x) < /(2x)/(y), x,y G X. 

Now, replacing here y by —y, we obtain 

(/(* + V)- fix - y))f{x) < /(2x)/(y), x, y G X . 

Thus 

(10) I fix + y) - fix - y) I fix) < /(2x)/(y) x,y G X . 

Moreover 

/(2x)/(y) = /(x - (-x))/(y) < / ( - x - y)/(x) + f(x - y)f(-x) 

= fix + y)fix) + Ax - y)/(x) 

for all x, y G X , whence 

(11) /(2x)/(y) < (/(x + y) + /(x - y))/(x), x, y G X . 

From (10) and (11) we have (7), whenever f(x) ^ 0, f(y) ^ 0, x, y G X . 
If / is non-positive, then we can replace / by - / getting (7) in that 

case. 
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In order to prove (8) we put z = x + y in (I) to get 

(12) f{x - y)f(x + y)< f(-x)f(x) + f(-y)f(y) = f(x)2 + f(y)2, x,yeX. 

However, if a: = y + z, then, by (I), it follows that 

(13) f(z)2 < f(y - z)f(y + z) + f{y)\ y,z£X, 

and, consequently, 

(14) m2 < f{z - y)f(z + y) + f(z)2, y,z&X. 

Conditions (13) and (14) jointly with the evenness of / imply that 

(15) I / ( y ) 2 - f(z)2 \<f(y + z)f(y -z),y,zeX. 

Now, (12) and (15) imply (8). 
Obviously, conditions (8) and (9) are equivalent, provided that (X, +) 

is a uniquely 2—divisible Abelian group. 

2. In this section we assume that [X, +) is a uniquely 2-divisible Abelian 
group and a function / : X —> R satisfies the following functional equation: 

(III) I f(x)2 - f(y)2 |= f(x + y)f(x -y),x,ye X, 

or its equivalent form 

(iv) / ( n r ) 2 - f i ^ r ) 2 = / ( « ) / ( y ) . * . y e J f . 

T H E O R E M 5. If a function f : X —> R satisfies functional equation (TIT), 
then f satisfies Ptolemaic inequality (I). 

P R O O F . From ( I V ) it follows that 

f(y-z)fix) + fix-z)fiy) 

> 

+ / ( £ ± r £ ) 2 - / ( £ = r £ ) w 

f (^P) 2 - / ( x - ^ ) 2 =f(x-y)f(z) 

for all x,y,z 6 X, which finishes the proof. 

T H E O R E M 6 . / / / : X - » R satisfies (III), then / ( 0 ) = 0, / is even and 
f is either non-negative on X or f is non-positive on X. 

3 - Annales.. 
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P R O O F . If x = y = 0, then, by (III), it follows that / (O) 2 = 0, and, 
consequently, /(O) = 0. Now, Theorem 5, Remark 1 and Corollary 1 imply 
the assertion. 

In the sequel we shall restrict ourselves to real solutions of equation (III) 
on X, because any complex solution of (III) proves to be real. Indeed, if / 
is a complex solution of (III) on X, then /(0) = 0. Moreover, putting y = 0, 
we infer that 
I f(x)2 |= f(x)2 e R for every x e X. Let x e X be fixed, w = f(x) = 
u + iv € C, where u = Rew, u = Imw (C - denotes here the field of all 
complex numbers). Then w2 = |w 2 | and, therefore 

u2 - v2 + 2iuv - u2 + v2 e R . 

Thus uv = 0 and u2 — v2 = u2 + v2, whence v = 0 and finally w = f(x) £ R . 

R E M A R K 4. / / / : X -» R is a solution of (III) and c e R , then so is 
cf. 

R E M A R K 5. If F : X —> R is a solution of Wilson's sine functional 
equation (II), then \F\ satisfies (III). 

In what follows we shall show that for every non-negative solution / 
of (III) on X there exists a solution F of (II) on X such that / = \F\. 

A t first we shall prove some lemmas, which will be needed to find all 
real solutions of equation (TII) on X. 

L E M M A 1. If f : X R satisfies (III), x e X, and f(2x) ^ 0, then 
f(x) ^ 0 and 

(16) /(4s) 
f(2x) 

2 
/(2x) 

P R O O F . Suppose that f(2x) ^ 0. By Theorem 5 and Theorem 1 it 
follows that f{x) ± 0. 

On account of (III) we have 

I/Or) 2 - f{2x)2\ = / ( 3 * ) / ( « ) , mx) = l / ( * ) 2

/ ~ ^ ( 2 a ° 2 1 

and 
| / ( z ) 2 - / ( 3 z ) 2 | = / (4x) / (2x) . 
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Hence 

/ ( 4 s ) / ( 2 x ) = 
I 

= / ( 2 s ) 2 
2 / ( s ) 2 - / (2 s ) 2 

/ ( * ) 2 
= / (2s) 2 2 -

/ ( * ) 2 

/ ( 2 s ) 2 

f(xy 

From here we obtain that 

/(4s) 
/(2s) 

2 -
/ (2s) 2 

LEMMA 2. / / / > 0 satisfies (III), xe X and / ( s ) ^ 0, Men / (^-) ^ 0 
/or euery n 6 N and the following conditions are satisfied: 

(17) if 
/ (2s) 

= 2 t h e n fVn*) = 2 Z i l M = 2 
/ ( s ) - / ( 2 - i s ) / ( £ ) 

for n <E N , lim / ( 2 n s ) = +oo, lim / ( ^ . ) = 0; 

( 1 8 ) l / 7 w > 2 ' t h e n 7 ( 2 ^ ) > 2 ' 7 5 T > 2 

/or n € N , lim / ( 2 n s ) = +oo, lim / (^- ) = 0; 

(19) <2 , t h e n i ^ l < 2, /or n € 

/ ( 2 n s ) 
o n d /on- i < 2 -f° r n 6 N ' P m v i d e d / ( 2 n s ) # 0 /or n G N . / ( 2 n X) 

P R O O F . The assertions result from Lemma 1 by induction. 

T H E O R E M 7. If f > 0 satisfies (III), then f satisfies exactly one of the 
following two conditions: 

(20) 

(21) 
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(22) 

P R O O F . We first prove that / satisfies the following condition: 

1 /(2K) V > 2 A 
/(2x) 

,«* f(v) LI /(») 
> 2 

In fact, let y £ X be an element such that / (y) ^ 0 i ^ j ^ - > 2. Assume, 

that there exists an x e X such that / (x) ^ 0 and *j2£j < 2. Condition (18) 
of Lemma 2 implies that lim f(-Ł-) = 0. Thus there exists a k £ N such 
that /(#•) < / ( » ) . Put z := Then 0 < /(z) < f{x). Moreover, by (18), 
^j^- > 2. On account of inequalities (7) from Theorem 4 we have 

4 > /(2g)2 > (f(x+z)-f(x-z)Y 
4 2 /FP ^ V / I T J 

- (/(*+*)+/(g-*))2 4/(g+z)/(37-z) 
7W 

a contradiction. Hence condition (22) holds true. Observe that (22) is equ­
ivalent to the following condition 

(23) V 
\ 

< 2 A my) m < 2 

Now, (22) and (23) imply (20) and (21). 

L E M M A 3. Suppose that f : X —> R is a non-zero and non-negative 
function satisfying (HI), y £ X, i f(y) ^ 0. Let F : X —» R be a function 
defined by the formula: 

(24) F(x) := f ^ ' f J ^ ^ , x eX. The F satisfies the following condi­
tions: 

(25) F(y) = /(y); 
(26) F(0) = 0; 
(27) \F(x)\ = f(x),xeX; 
(28) F ( - x ) = —F(x),x £ X; 
(29) F(x)F(y) = F ( ^ ) 2 - F ( ^ ) 2 , x eX-

(30) F ( x ) 2 F ( z ) 2 = ( F ( ^ ) 2 - F ( ^ ) 2 ) 2 , x, z € X; 
(31) if z e X is an element such that F(z) = 0, then F(2z) — 0 and 

F ( x -(- z ) 2 = F ( x ) 2 = F ( x - z ) 2 for every x £ X. 
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P R O O F . By Theorem 6 we have / ( O ) = 0 and therefore F(y) = f(y). 
Formula (24) jointly with then evenness of / implies (26), whereas (IV) 
implies (27). Condition (28) holds, because / is even. Moreover, by (24), 
(25) and (27) we have (29). Condition (27) and equation (IV) imply (30). 
Finally, if z 6 X and F(z) = 0, then (27), Theorem 5 and Theorem 1 imply 
(31) . 

L E M M A 4. If f > 0 satisfies (III) and y € X is an element such that 
f(y) zfi 0 and f(2y) = 0, then the function F defined by (2Ą) with the aid 
of this y satisfies Wilson's sine functional equation (II) on X. 

P R O O F . By (27) we have F(2y) = 0. Consequently (30) implies that 

0 = F{2xfF{2yf = {F(x + y)2 - F(x - y)2)2, x € X, 

whence 

(32) F{x + y)2 - F(x - y)2 = 0,xeX. 

On account of (28), (29), (30) and (32) we get 

0 = (F(2x + y)2 - F(2x - y)2) {F(2z + y)2 - F(2z - y)2) 
= (F(x + z + y)2- F(x - z)2f - {F(x + zf - F(x - z + y)2f 

- (F(x + z)2 - F ( x - z - y)2f + {F(x + z - y)2 - F(x - zff 

= {(F(x + z + y)2- F(x - z)2) - {F(x + z - y)2 - F(x - z)2)f 
+2 (F(x + z + y)2- F(x - z)2) (F(x + z - y)2 - F{x - z)2) 
- {{F(x + z)2 -F(x-z + y)2) - (F(x + z)2 - F(x - z - y)2))2 

-2 {F(x + z)2 -F(x-z + y)2)(F(x + z)2 - F(x - z - y)2) 
= 2 (F(x + z + y)2F(x + z - y)2 - F(x + z + y)2F(x - z)2 

-F(x - z)2F(x + z-y)2 + F(x - z)* - F(x + z)4 

+F(x + z)2F(x - z - y ) 2 + F(x-z + y)2F(x + z)2-
F{x-z + y)2F(x-z-y)2) 
= 2 ( ( F ( x + z)2 - F(y)2)2 - ( F { ^ f - F ( ^ ) 2 ) ' 

-{F{^L)2-F{^L)2)\F{x-zY 

-Fix + zy + ^ F i ^ - F ^ ) 2 ) 2 

+ (F ( ^ ) 2 - F ( ^ ) 2 ) 2 - (F{x - z)2 - F{y)2)2^ 

= 2 ( - 2 F ( y ) 2 ( F ( x + z)2 - F{x - z)2) 
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+ 2 ( F (^±2)2
 - F ( ^ ) 2 ) ( F ( ^ ) 2 - F ( V ) 2 ) ) 

= 4F(y) 2 (F(2x)F(2z) - (F(* + z ) 2 - F{x - z)2)) 

for a\\ x,z £ X. Hence 

(33) F(2x)F(2z) = F(x + z)2 - F(x - z)2, x, z G X 

Putting x := := ^ in (33), we obtain 

F(s + t)F(s -t) = F(s)2 - F(t)2, s, t G X. 

This completes the proof. 

L E M M A 5. / / / : X & is a non-zero and non-negative function 
satisfying (III) and y G X is an element such that / (y) ^ 0 and 

[ ] w ( ! ) 2 /(*) f(z) 

for all x,z G X, provided that x ̂  z, f(x) ̂  0, f(z) ̂  0, then the function 
F : X —>• R defined by (2Ą) with the aid of that y satisfies Wilson's equation 
(II) on X. 

P R O O F . On account of (28), (29), (30) we have 

F (y ) 2 F (2z )F (2z) 

= 0 W ~ F ( ^ F ) 2 ) ( F ( ^ ) 2 - F p p ) 2 ) 

= ( > ( £ ± | ± i / ) 2 _F ( ^ - ) 2 ) 2 - ( F ( ^ ) 2 - F ( ^ = f ^ ) 2 ) 2 

- ( F ( ^ ) 2 - F (^FO 2) 2 + (F (2±F) 2 - F ( ^ ) 2 ) 2 

= ( > ( ^ i f t * ) 2 - F ( ^ ^ f ^ ) 2 ) 2 - ( F ( ^ f ± ^ ) 2 - F ( ^ ^ P 1 ) 2 ) 2 

+ 2 ( F ( ^± f±*) 2 - F ( ^ ) 2 ) ( F (2±P) 2 - F ( ^ ) 2 ) 

- 2 ( F ( ^ ) 2 - F ( ^ P ) 2 ) ( F ( ^ ) 2 - F ( ^ P ) 2 ) 

= F ( y ) 2 F ( x + z ) 2 - F(y)2F{x - z)2 + 2 ̂  ( F ( ^ ) 2 - F ( | ) 2 ) 2 

" W - F (^)2)2 - (^)2 - (^)2)2 

+ F ( ^ ) 4 - F ( £ f £ ) 4 + [F C-^-)2 - F {^L)2)2 

+ (F ( V ) 2 - F ( ^ ) 2 ) 2 - ( F ( - * ) 2 - F (f )2)2 ) 
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= F(y)2(F(x + z)2-F(x-z)2) 

+4 ^ (F (?^)2 - F ( ^ / ) 2 ) ( F { ^ f - F ( ^ ) 2 ) 

-^(!)2(^m2-^(^)2)) 
for all x, z £ X. Hence 

(35) F{y)2{F{2x)F(2z) - (F(x + z)2 - F(x - z)2)) 

= 4 ( ( F C-^)2 - F ( ^ p ) 2 ) ( F ( ? ^ ) 2 - F ( ^ ) 2 ) 

_ F ( f )

2 ( F m

2 _ F ( ^ ) ) 

for all x,z £ X. 
Now, observe that condition (30) implies the following two equalities: 

(36) \F(2x)F(2z)\ = \F{x + z)2 - F(x - z)2\ ,x,z£X, 

and 

( 3 7 ) ( F ( 2 - ^ ) 2 - F (^P))2
 ( F ( ^ ) 2 - F ( ^ ) 2 ) 

= F ( f ) 2 \F(X)F(Z)\ = F ( f ) 2 | F ( ^ ) 2 - F ( ^ ) 2 I 

for all x,z £ X. 
Suppose that there exist a, b £ X such that 

(38) F{2a)F(2b) # F(a + b)2 - F(a - bf 

Then, by (31), it follows that F(a) ^ 0, F(b) ^ 0 and, consequently, f(a) ^ 0, 
f(b) zfi 0, because (27) is satisfied. Obviously, a ̂  b, by (26). 

Now, in view of (35) and (38) we infer that 

(39) ( F { ^ f - F ( ^ ) 2 ) ( F ( ^ ) 2 - F ( ? ^ ) 2 ) 

^ F ( | ) 2 ( F m

2 _ F ( ^ ) 2 ) . 

Hence, by (36), (37), (38) and (39) it follows that 

- ( F ( a + b)2 - F (a - b)2) = F(2a)F(26) 

and 



40 Irena Fidytek 

= (F C 2 ^ ) 2 - F (^P)2) (F ( ^ ) 2 - F (^p) 2) . 

This jointly with (35) implies that 

2F{y)2F(2a)F{2b) 

= 8 (F ( ^ ) 2 - F (^)2) (F ( ^ ) 2 - F (24=*)') . 

From here and from (27) and (30) we have 

f(y)2f(2a)f(2b) = \F(y)*F(2a)F(2b)\ 

= 4 F(22**)A-F(2^)A F ( ^ ) 2 - F ( ? V ) 2 

= 4 / ( f ) 2 / ( « ) / ( & ) . 

Hence we obtain 

4 = f(y)2 /(2a) f(2b) 
/ ( ! ) » ' /(a) ' /(&) ' 

which contradicts (34). Finally, F satisfies (33) and, consequently, F yields 
a solution to Wilson's equation (II) on X. 

T H E O R E M 8. Suppose that a non-zero and non-negative function f : 
X —y R satisfies (HI). If f{2x) < 2f(x) for every x 6 X, then for an 
arbitrary y € X such that f{y) ^ 0 the function F : X —>• R defined by 
formula (2Ą) with the aid of that y satisfies Wilson's equation (II) on X. 

P R O O F . For arbitrarily fixed element y € X such that f(y) ^ 0 we 
define the function Fy : X by formula (24), i.e. 

2 r / x—w \ 2 

Then, every function Fy satisfies conditions (25)—(31). 
We assume first that for every y € X such that f(y) ^ 0 the function 

Fy does not satisfy (II) on X. 
On account of this assumption and Lemma 4 we infer that f(2y) ^ 0 

and /(4y) / 0 provided that f(y) / 0,1/ 6 I . However, our assumption 
jointly with Lemma 5 implies that 

(40) A V « = 
/(W)#0 / ( x ) # 0 /(*)*<> 

f(y)2f(2x)f(2z) 

f(*)2f(x)f(z)' 
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Since f(2t) < 2 f(t) for every t G X, condition (40) implies that 

4 < M l 

/(f) : 
•4 

provided that / (y) ^ 0, y € X. This implies that 

(41) 1 < 
"/(f) 

for every y G X such that / (y) =̂  0. 
By (41) and (16) of Lemma 1 we have 

1 < f(y) 
/(f) 

2 - /(f)5 

/(ir 
provided that / (y) ^ 0, y G X. Hence, if y € X and /(y) ^ 0, then 

7(f) 
V " / ( ! ) 

Putting here a := | , we infer that 

or 1 > 

\/3 < 
/ (2a) 

or 1 > 

/ ( ! ) 

/ (2a) 
/ ( a ) " / ( a ) 

for every a € X such that /(4a) ^ 0. This jointly with (41) gives 

(42) y/3 < 
/ (2a) 

/ ( « ) 
or 1 = /(2a) 

/ ( « ) 

provided that /(4a) ^ 0, a G X. 
Now we shall show that the inequality /(4a) ^ 0 forces ^j^- to be 

different from 1. 
Assume the contrary: there exists a b G X such that /(46) ^ 0 and 

^ = 1. Obviously, /(&) ^ 0 and /(26) ^ 0, by Lemma 2. Hence, by (40), 
there exist x,z G X such that f(x) ^ 0, / (z) ^ 0 and 

4 = 
f(2b) / (2s) /(2z) _ /(2s)/(2z) 
/ (* ) • ' /(*) * / (z) / ( s ) / (z ) ' 
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On account of the assertion of this theorem we h a V e ZIM < 2, m < 2 

and infer that łjffi -2 = ^j-. Now, by Lemma 2 it follows that / ( ^ - ) ^ 0 

for every n £ N and lim /(^ir) = 0. Hence there exists a k £ N such that 
n—f oo ' 

f(&) < /(&)• P u t c := p-. Then 0 < /(c) < /(ft). By Lemma 2 we have 
= 2. Now, Theorem 5, Theorem 6 and condition (7) of Theorem 4 

imply that 

i^fW < (f(c+b) + f(c-h)\% 

f(c)2 ' \ f(b) J 
_ (f(c + b)-f(c-b))2 / ( c ) 2 4/(c + 6)/(c-6) 

/ ( c ) 2 * / (6) 2 + / (6) 2 

^ / ( 2 6 ) 2 / ( c ) 2 4 j / ( b ) 2 - / ( c ) 2 | 
/(6)2 /(6)2 / 2 ( 6 ) 

^ / ( c ) 2 4(/(6) 2 - / ( c ) 2 ) / ( c ) 2 

/ ( 6 ) 2 + / (6 ) 2 - 4 J / ( 6 ) 2 -

Consequently, we get < 0, a contradiction because /(c) > 0. 

Finally, ^ # 1, provided that /(46) ^ 0,6 e X . This jointly with 
(42) implies that 

(43, ^ > V S 

for every a £ X such that /(4o) ^ 0 . 
Since f(a) ^ 0 implies /(4a) / 0, we have (43) for every a £ X such 

that /(a) ^ 0. 
Therefore, for all x,y,z £ X such that f(x) ^ 0, /(y) ^ 0 , / (z) ^ 0 we 

obtain 
/ ( y ) V ( 2 « ) / ( 2 * ) 
/<f )»/(*)/<*) - ' 

which contradicts (40). 
Finally, we infer that there exists y £ X such that f(y) ^ 0 and Fy 

satisfies (II) on X . 
We shall show that for every z £ X such that f(z) ^ 0 the function Fz 

satisfies (II) on X . 
Let z £ X such that / (z ) ^ 0 be fixed. By the definition of Fz and Fy 

and in view of the equality (27) in Lemma 3 we have 

F <r) - / m 2 - / ^ ) 2 _ A (*¥)2 - Fy (T)2 _ Fy{x)Fy(z) 
A ) /(*) \Fy{z)\ ~ \Fy(z)\ 
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for every x G X. Put A := ; obviously A € {—1,1}. We obtain 

Fz(x) = XFy(x) xeX, 

whence Fz satisfies (II) on X as well. This completes the proof. 

T H E O R E M 9. Suppose that a non-zero and non-negative function f : 
X - » R satisfies (III). If f(2x) > 2f(x) for every x € X such that f(x) ^ 0, 
then for arbitrary y 6 X such that f(y) ^ 0 the function F : X —> R defined 
by formula (2Ą) with the aid of that y satisfies Wilson's equation (II) on X. 

P R O O F . Let y <G X,f(y) ± 0 and let F : X -> R be defined by (24 ) . 

Since 
f(y)2f(2x)f(2z) 
/(f) 2 /(*)/(*) 

> 16 

for all x,z 6 X such that f(x) ^ 0, /(z) ^ 0, Lemma 5 implies that F 
satisfies (II) on X. 

Theorems 7, 8, 9 lead now to the following 

C O R O L L A R Y 2. Let f : X —>• R be a non-zero and non-negative func­
tion satisfying equation (III) on X. Then there exist exactly two different 
functions 
Hi, Hi : X —> R satisfying Wilson's sine functional equation (II) on X and 
the condition \Hi(x)\ = |if2.(aOI = f(x) for every x € X. Moreover H\{x) = 
-H2(x), 
xex. 

P R O O F . Let y € X such that f{y) / 0 be fixed. Let F : X R be 
defined by (24) and let H : X —t R be a function satisfying (II) on X and 
the condition: \H(x)\ = f{x), x e X. Then H{y) / 0 and 

H(x)H(y) H { ^ f - H { ^ ) 2 

H [ X } - H(y) ~ H(y) 

_ / m 2 - / m 2 m_-M. FM-
f(y) ' II (y) H{y)'t{Xh 

for every x € X. Hence H = F or H = —F, which was to be proved. 
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