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Abstract. Based on a previous theoretical result of the same authors the present
paper deals with discrete perturbed two-dimensional maps having a semi-hyperbolic
fixed point. We give applicable sufficient conditions assuring a particular kind of
bifurcation of homoclinic orbits when the perturbative parameter ; varies in a small
neighborhood of zero: no homoclinic orbits when u is on one side of zero, one ho-
moclinic orbit when x = 0, and infinite homoclinics when £ is on the other side of
zero.

1. Introduction

In [3, Theorem 2] we proved a general result which give sufficient con-
ditions assuring that the following discrete perturbed map

(D) 2pg1 = flan) + ph(en, 1), e, €RN, neZ, peR, |ul <1,

where f and h are C®—functions of their arguments, has a particular kind of
bifurcation of homoclinic orbits when the perturbative parameter u cros-
ses zero, under the assumption that the unperturbed map (1), that is
Tpnt1 = f(zn), has a “critical” orbit {¢, }nez (by “critical” we mean that the
jacobian matrices A, := f'(q,) are invertible for any n # 0, but Ay := f'(qo)
is not invertible), and (1), has a “semi-hyperbolic” fixed point p € RV
(by “semi-hyperbolic” we mean that, for any (small) value of |u|, f(p) +
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ph(p,p) = p and f'(p) + ph(p,p) has 1 as simple eigenvalue and all the
other eigenvalues have modulus different from 1); in this case we obtain:
zero homoclinic orbits “near” {¢,},cz when u is on one side of p = 0;
one homoclinic orbit, just the {¢, } ¢z, when p = 0; an infinite number of
homoclinic orbits “near” {¢,},cz when y is on the other side of 1 = 0.
We called this kind of bifurcation a “0 to co — bifurcation”. The present
paper deals with the study of a particular but remarkable class of discrete
two-dimensional maps [5,6] for which the general, but difficult, sufficient
conditions become easier and applicable. For shortness reasons, concerning
definitions, notations and preliminaries, we refer to [2,3].

2. The two-dimensional case

Consider the following two-dimensional discrete perturbed map

Tpy1 = fl ("L'n; yn) + ﬂhl (zm Yn, lu‘)
(2)u

Ynt1 = f2 (znv yn) + Nh2 (iltn, ynall‘)

where 2,,y, € R, fi, fa, b1, hy are real-valued C®—functions and assume:
A1) f1(0,y) = hy(0,0, x) = f2(0,0) = hy(0,0, ) = 0;
A2) f2a:(0, y) = h‘.Zx(Oa 0, N) - h2y(0a 07”) = O: |f1x(0) 0)| > 1,
lf2y(070)|: 1, f2yy(070)#0;
A3) the unperturbed map (2)o, that is

(2)o

Tpy1 = fl (a;n,yn)
Y1 = f2 (-’IIn, yn)
has the (critical) orbit {¢, = (0, Jn)}nez homoclinic (snap-back [4]) to the
fixed point (0,0), such that G # (0,0), f1(0,%) # 0, f2y(0,%) = 0,
Jayy(0,%0) # 0, G = (0,0) for any n > @2 > 0.
From (Al) we get that (0,0) is a fixed point of (2), for any u; from
(Al) and (A2), the jacobian matrix A(u) of (2), evaluated at (0, 0) writes

Ap) = (flz(01 0) + ghlr(o) 0, 1) ,“hly((l)v 0, ,u)) ;
1t has the eigenvalues A\ (1) = f12(0,0) + phi,(0,0, 1) and Ay(u) = 1 (for
any u). It is obvious, from (A2) and the smoothness of hy,, that |A; ()| > 1
for || small. So, (0,0) is a ”semi-expanding” fixed point of (2),, for |u| small.
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The variational system of (2)o evaluated at {g, = (0, Jn) }nez is

Tn+1 } _ Tn — flz(oagn) 0 n
(3) (yn+1 ) N An (yn) An ._ ( 0 f2y(0737n)) ’ € Z.

Hence we have Ag := (fxz(g,ﬂo) f (8 7 )), the homoclinic orbit {g, =
2y\Y, Yo

(ann)}nEZ is critical if flz(oayO) =0, or f2y(0a3—/0) = 0, or flx(O,go) =
J24(0, 7o) = 0; for reason that will be clear later on we restrict to the case
f12(0, o) # 0, f2,(0, Jo) = 0, as we assumed in (A3). Then N Ay, the kernel
of Ay, is exactly span {e3}, e2 = (0, 1)*. Observe that Age; = 0 and A§ = Ao,
so that e5 Ay = 0. Since we are studying a two-dimensional semi-expanding
case, it is not difficult to see, following the notations of [3], that the projec-
tions of the trichotomy (see also [1]) of the linear map (3) are

Pﬂ::(g g)» Q:l::<(l) 8), R:l::(g ?)7

so that RP,, the range of P, is {0}, NP~ = R? and (see also [3], the
Remark at the end of the proof of Theorem 2)

Vi={neNP_: A€ RPy} = NAo = N A} = span {ez}.

Moreover, again from (A1) and (A2) we get that (H1) in 3] is satisfied. Then
(2),. has, for any small fixed |u|, a (local) center manifold

C, = {tv. (W) + H(t,p) : t € R,[t|small} C R?,

where v,.(u) is the normalized right eigenvector of A(u) associated with the
eigenvalue \2(p) = 1, and H (-, u) : span {v,(u)} = W () is a C*—function
such that H(0,u) = H:(0,u) = 0, W(x) being the eigenspace of A ()
[3, Theorem 1]. From (Al)-(A3) we easily get that (2), has the center
manifold C, = Co = {(0,y) € R* : y € R}. The jacobian matrix A4 :=
— fl:c(oao) 0
4@ = (N0 ¢
tors associated with the eigenvalue 1. We get v (0) f”(0, 0)(v,-(0),v,-(0)) =
e; (?w %g’gg) = fayy(0,0) # 0; then, (H2) and (H3) in [3] are satisfied.
2yy \Yy
Moreover, there exists o > 0 such that, for any g with 0 < 8 < o, (2), has
a smooth solution {q;} (3, 1) = (0, yF (8, 1)) }nez C C, such that ¢} (0, ) =0
for any n > # with sup ,5q l¢} (8, 4) — @n] — 0 as |B] + || — 0. We show
now how Theorem 2 in [3] writes for the case here considered. Let

) has v;(0) = v.(0) = ez as left and right eigenvec-
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I, n=20,1
T, = An—lTn—la n>1
A;lTn+1, n<0

be the pseudo-fundamental solution [2] of the linear variational system (3),
and
i = [ @)™ z0
(T A, 1<o.

In the present case we have : k = 1, p(¥) = ¢ = e, ¥ = (T3))*Ages =0,

l <o, 1/)(k) = (T1+11) €2, 1 > 0; so, a,b,c of Theorem 2 in [3] take now the
simple form (recall that Age; = 0,5 A = 0)

0= =5 50,0) - 1(0,70,0),
(4) b= €3 f"(0, Go) (e2, e2),
_ 3‘]1

We have now the unique quadratic form, say bA? + ¢)2, and the unique

equation bA} + cA} = +a. Then we get the following simplified version of
Theorem 2 in [3]:

ProrosITION 1. Let a,b,c be as in (4). Assume that (A1)-(A3) hold
and that b and ¢ have the same sign. Then there exists ug > 0 such that,
for any p with |u| < po and pab < 0, the map (2), has an infinite number
of solutions {q,,(s, u)}nez, s € R, homoclinic to (0,0) which are the unique
homoclinic solutions satisfying

(5) lim Sup |qn (s /‘) - (In| =0

pu—0

in a neighborhood of p = 0. In particular (2), does not have homoclinic
orbits satisfying (5) when p is small and pab > 0.

If (5) is satisfied we say that {g,(s, #)}nez is "near” {g,}nez as it was
stated in the Introduction.

We apply now Proposition 1 to the map (2),. To this end we have

to compute explicitly a,b, c. As regards a, observe that ¢ (0, u) = 0, then
8qn

(0 0) = 0, for any n > 7, and the component y} (0, 1) = 0 satisfies
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Ui 1(0,1) = £2(0,y5 (0, 1) + pha (0,51 (0, 1), 1)

from which it follows

{ ay:+1 (0,0) f?y(o yn) (0 0)+h2(0 ymo)

8yn 1
8; = 0.
Then
oy Oy, _ — -1 h2 (0, ¥r, 0)
= 0,0 = ° 0,0 -’ 0, ﬁ,O 0, I =
a/J«( ) [ all‘ ( ) 1'2( Y ) f2y( y) f2y(0ayﬁ)
then, using the induction
dyf
50 (0,0)
_{]1'2(0)37130) h?( ay27 ) + + h?(O’gﬁaO) }
J2y(0,71)  fay(0,91) f24(0, %2) Joy(0,51) - - .- f24(0,7n)
- i h2(Oagka )
« 2y (0,51) - -~ fay (0, k)
Thus,
—_ hl (0, 370, 0)
a=—(0,1) dyi
991 b (0.7
(6) a‘u (070) h-(Ovyo,O)
h2(0,yk7 )
= -+ h4(0, 79,0
an, O fyO g 2050 0)

REMARK. Observe that ¢ # 0 is a generic condition and that a de-
pends only on the perturbative term A,(0,y,0) and on a finite number of
points, usually very small in concrete examples, o, .. .7, of the unpertur-
bed snap-back orbit. Note also that f;,(0,%,) # 0 for any n # 0 since A,, is
invertible for any n # 0.
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What concerns b an easy computation gives:
(7) b= f2yy(0ag0)

and then b # 0 because of (A3). To compute ¢ we have to evaluate (O 0) =

0
( 5 0. ) ) We know that (5, 0) satisfies 47, (5,0) = /, (o, v (8, 0));
a6 \V

50 %1'7;—(0, 0) satisfies the linear system:

Un41 = f2y( )un

with the initial condition uny1 = —1 (see the proof of Proposition 2 in [3]).

So
oy 1

_5/8_(0’0) f2y( ayn)

and, using the induction,

W 0 0= — ! .
8[3 (0’0)_ f2y(0agﬁ)""'f2y(0ayl),

from (4) we get

0 1
(8) e=-01 (%(0,0)) " T(09a) Ry (0

REMARK. The reason why we do not consider the possibility that
f12(0,%0) = 0 (see (A3)) is that this fact implies N4y =span{e,}, ¢; =
(1,0)*. Thus ¢ = 0 and the condition of Proposition 1 concerning the signs
of a, b, c could not be satisfied.

3. An example

It is not difficult to find discrete perturbed systems which satisfy the
assumptions (A1), (A2), (A3) of the previous section 2. Consider for example

(9) Tpntl — xn(xnyn + 2) + ,U,[CL‘n + sin (ﬂyn)]
o vnr = 12028 4 yE) 4+ 11(02 4 2) — (2492 — 1) + plual +y2)
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so that, following the notations of section 2, we have:

filz,y) =2(zy+2), hi(z,y,p) =2 +sin (uy),

fo(z,y) =12(a* +y*) + 1122 +y?) = y(24y° — 1),  ha(z,y, p) = pa® + o>

Simple computations show that (A1) and (A2) of section 2 are satisfied; in
particular we get f,,(0,0) = 2, f2,(0,0) = 1, f2,4(0,0) = 22 > 0. Concerning
(A3) we have that (0,0) is a fixed point for (9), for any u; moreover, the

. . . . 24 p? .
jacobian matrix A(u) of (9), at (0,0)is A(x) = 0 E then (0, 0) is

a semi-expanding fixed point of (9), for small x near y = 0. The unperturbed
system (9)o, that is

(9o

Tpy1 = :I;n(xnyn + 2)
Ynt1 = 12(z5, + yp) + 11(22 + 7)) — yn(24y5 — 1)

has the orbit {¢, = (0,9n)},ecz homoclinic (snap-back) to (0,0) if we set
for {yn}nez the homoclinic (snap-back) orbit of the scalar map y,41 =
f2(0,yn) = 12y% — 2493 4 11y> + y,, starting from g, = 1/2. Then we have :
Go = (O’ 1/2) # 0, = (Oa 1)) g = (O:O)r Gn = (an) foranyn > 1;so = 1.
We easily get f12(0,1/2) =2 # 0, f2,(0,1/2) = 0, foyy(0,1/2) = —14 < 0;
then (A3) is satisfied too. Applying Proposition 2 to the present case we see
that b = f2,4(0,1/2) = =14 < 0, ¢ = 1/f2,4(0,1) = —1 < 0; hence b and ¢
have the same sign. Moreover,

. h2(0» laO)

o=z T hy(0,1/2,0) = —3/4 < 0.

Then ab > 0 and the original perturbed map (9), has an infinite number of
homoclinic orbits near {§y,}nez for any small fixed p such that pad < 0, i.e.
for any small fixed p < 0.

REMARK. Note that the infinite orbits assured by the previous theory
generally belong to the plane, while the unperturbed orbit {g, },cz belongs
to the y-axis.
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