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To the memory of Professor Győrgy Targonski 

A b s t r a c t . The aim of this paper is to give a necessary and sufficient condition for 
conjugacy of some iteration groups J = {F* : S H> S, ( G t } and Q = {G* : 
S i—y S, ( £ E} defined on the unit circle S. Our basic assumption is that they 
are non-singular, that is at least one element of T and Q has no periodic point. 
Moreover, under some further restrictions, we determine all orientation-preserving 
homeomorphisms T : S i—> S such that 

r o F ' = c ' o r , ( £ R . 

Let S:= {z £ C : \z\ = 1} be the unit circle with positive orientation. 
A family T = {F* : S H > S , t 6 K} of homeomorphisms such that 

Fs oF* = Fs+t, s, t e R 

is said to be a flow or an iteration group. 

DEFINITION l(see [1] and also [6]). An iteration group T such that for 
every t e K, F* = id if F* has a fixed point is said to be disjoint. 

DEFINITION 2(see [6]). Let T = {Ft: S H-> S, te K} and Q = {G*: S 
i-> S, t G R } be iteration groups. We will say that T and Q are conjugate 
if there exists a homeomorphism r : S •-»• S such that 

(i) r o F * = G ' o r , teK. 

Received: November 9, 1998. 

A M S (1991) subject classification: Primary 39B12; Secondary 58F25, 39B62. 



104 Krzysztof Ciepliński 

The problem of conjugacy of disjoint iteration groups denned on open 
real intervals has been examined by M. C. Zdun (see [6]). In this paper 
we give a necessary and sufficient condition for conjugacy of some iteration 
groups on the unit circle. Moreover, under some further restrictions, we 
determine all orientation-preserving homeomorphisms r : S (4 S fulfilling 
for these iteration groups condition (1). 

Throughout this note the closure of the set A will be denoted by cl A 
and we write AA for the set of all cluster points of A. ~ p stands for the 
negation of p. 

Let 7T : R 9 t !->• e27nt G S and n := f p , i). For all v, w, z G S, there 
exist unique ij, t-i G [0, 1) such that wn(ty) = z and vrnfc) = v. Define 

v -< w -< z if and only if 0 < ti < t2 

and 
v <w < z if and only if t\ < i 2

 o r £2 = 0 

(see [1]). 
If v, z G S, v ^ z, then there exist tv, tz G R such that tv < tz < tv + 1 

and v = ir(tv), z = n(tz). Put 

(«, z) := {*(*), t£{tv,t2)}. 

L E M M A 1 (see [3]). Let v, w, z G S. v -< w -< z if and only if w G {v, z). 
Moreover, if v w -< z, then v ^ w, w ^ z, v / z. 

L E M M A 2 (see [3]). For every v, w, z G S the following conditions are 
equivalent: 

(i) v < w -< z, 
(ii) w -< z -< v, 
(iii) z -< v -< w. 

L E M M A 3 (see [3]). For every u, w, z G S the following conditions are 
equivalent: 

(i) ~ (v -< w •< z), 
(ii) v = w or w = z or v = z or z -< w -< u, 
(iii) z ^ w ̂  u, 
(iv) u; •< v -< z, 
(v) v < z < w. 
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Let A C S be such that card̂ 4 > 3. We say that the function <p : A i-ł S 
is increasing (respectively, strictly increasing, decreasing, strictly decreasing) 
if for every v, w, z € A such that v -< w -< z we have <p(v) < <p(w) •< (p(z) 
(respectively, <p(v) -< <p(w) -< <p(z), <p(z) •< <f(w) < (p(v), <p(z) -< ip(w) < 
f{v)). According to Lemma 1, the map <p is strictly increasing (respectively, 
strictly decreasing) if w £ (v, z) yields f(w) G (</?(u), <p{z)) (respectively, 
(p(w) G {^p{z)i (p(v))). The function <p is said to be strictly monotonie if <p is 
strictly increasing or strictly decreasing. 

A subset A C S is said to be an open arc if A = (v, z) for some v, z 6 
S, v ^ z. Every open arc is non-empty, different from S, open and connected 
(see also [l] and [3]). 

It is known (see for instance [4]) that for every homeomorphism F : S 
i-> S there exists a homeomorphism / : E t-» E such that 

F O 7T = 7T O / 

and 
f(x + 1) = f(x) + 1, if / is strictly increasing 

and 
f(x + 1) = f(x) - 1, if / is strictly decreasing. 

We will say that the function / represents the homeomorphism F. If / is 
strictly increasing we will say that the homeomorphism F preserves orien­
tation. 

If F : S i-> S is an orientation-preserving homeomorphism represented 
by a function / then the number a(F) G [0, 1) defined by 

fn(x) 
a(F) := lim —^(mod 1), x € R 

n—too n 

is said to be the rotation number of F. This limit always exists and does not 
depend on x and / . Moreover, a(F) is rational if and only if Fn(zo) — z0 

for a zo G S and an n € Z \ {0}, which means that z0 is a periodic point 
of F. 

DEFINITION 3. An iteration group T is called non-singular if at least 
one element of T has no periodic point. 

Of course, T is non-singular if and only if there exists an element of 
T with an irrational rotation number. Such iteration groups have been 
investigated in [1]. Without loss of generality we may assume that the 
above-mentioned function from T = {Fl : S i-» S, t G R} is F 1 , that is 
a{Fl) # Q. 



106 
Krzysztof Ciepliński 

Prom Remark 2 in [5] it follows that every FŁ G T and GT G Q preserves 
orientation. Thus, we have the following 

R E M A R K 1 (see [4]). If the iteration groups T = {FŁ : S H-> S, t G K} 
and Q = {GŁ i S ^ ł S , t 6 1} are conjugate, then a(F*) = a(G"), i C R . 

Let T and £7 satisfy (1). Then, according to Remark 1, T is non-singular 
if and only if so is Q. Moreover, one can show that T is disjoint if and only 
if so is G (see also [1]). 

For a given orientation-preserving homeomorphism F : S i 4 S put 

CF(z) := {Fn(z), n e Z } , z G S. 

If a(F) £ Q, then the set hp :— CF[Z)A does not depend on z, is invariant 
with respect to F (that is F[LF] = LF) and either LF = S or LF is a perfect 
nowhere dense subset of S (see for instance [4]). 

L E M M A 4. Let T = {FŁ : S 4 S, t G K} be an iteration group and 
F t o € T be such that a(FTO) G" Q . 27ien 

Ft[Lpt0] — Lpt0, t G K. 

P R O O F . Fix ( £ R , z e S. By the definition of Cpi0(,z) we have 
FT[CF<o(z)] = Cpi0(Ft(z)). Hence, using the definition of Lpt0 and the 
fact that F* is a homeomorphism, we obtain 

F*[L F . 0 ] = Ft[CF>o(z)d] = ( F f [ C F « 0 ( z ) ] ) d = (CF^(Ft(z)))d = LF,0. 

• 

L E M M A 5. Let T — {FŁ : S H S, t 6 R } k an iteration group and 
F T L , F * 2 eJ7 be such that a(FTL), a(F' 2) £ Q . Then 

Lp'i = = Lpi2 • 

P R O O F . Fix t G R, A C S and put 

CF>(A):= (J CF,(w). 
w£ A 

Clearly, 

CF,(A) = (J Fni[A]. 
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Hence and by Lemma 4 we have 

CFT,(LFH) = (J F n * 2 [ L F t l ] = LFH. 

Consequently, 
{Cp*2 (Z*F'I ) ) D = {LF*I) — LF*H 

since the set LFtl is perfect. Take a w G Lptl. Using just shown equality we 
obtain 

LF<2 = (CFt2{w))i C {CF,2(LFtl))d = L F < 1 . 

In the same manner we can see that LFtx C LFt7. • 
Prom now on we assume that T — {Fi : S 4 S , t G R} (and also Q) 

is a non-singular iteration group. Then, according to Lemma 5, the set LFt 
does not depend on the choice of Ft G T such that a(F () g Q. Thus, we 
can define 

Ljr := LFt0 

for an arbitrary t0 G R such that a(F'°) £ Q . 
Put Ljr(*) := Ojr(z)d, where Ojr(z) denotes the orbit 0F{z) := {Fł(z), 

t G R } . 

R E M A R K 2 (see [1]). Let T = {Fl : S 4 S , t eR} be a non-singular 
iteration group and to G R be such that a(Fto) g" Q. Then 

(i) L? = cl Cpt0 (z), z G Ljr, 
{K)LF = LF{Z), Z G S . 

DEFINITION 4 (see also [6]). A non-singular iteration group T is said to 
be dense if L? — S, otherwise T is called a non-dense group. 

L E M M A 6. Let T = {F* : S K S, ( € R} 6e a non-singular iteration 
group and a(F1) £ Q . Then there exist a unique continuous increasing func­
tion (pjr i S i—y S and a uniquely determined function cjr : R h-t S such 
that 

(2) v ^ ( * ) ) = M t ) M 2 ) » zes, teR, 

(3) c ^ + t) = M « ) c / ( < ) , * , t € R , 

(4) 
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(5) ^(1) = 1 

and 

(6) cT(l) = n(a(F1)). 

The solution <pp of (2) is a homeomorphism if and only if the iteration group 
J- is dense. 

P R O O F . The existence of a continuous increasing function <pj? : S H-> 
S and a mapping : R u S satisfying conditions (2)-(4) and the fact 
that ipp is a homeomorphism if and only if T is dense have been proved 
by M. Bajger (see Proposition 1 in [1]). Moreover, it is easily seen that the 
above-mentioned proof gives more, namely c? satisfies condition (6). Fix 
a £ S and observe that apjr fulfils (4) and (2) with the function cj?. Hence, 
we may assume that (pjr satisfy condition (5). 

Note now that using (2) and (6) we have 

(7) <pr(F1(z)) = x(a(F1))<pr(z), zeS. 

But in [3] it is proved that for every orientation-preserving homeomorphism 
with an irrational rotation number there exists a unique up to a multi­
plicative constant continuous increasing solution of (7). Thus, we have the 
desired uniqueness of <pp. From this it is easy to check that c? is uniquely 
determined. • 

An immediate consequence of Lemma 6 is the following 

L E M M A 7 (see also [1]). If T — {Ft : S e-» S, t £ R} is a dense iteration 
group such that a(i ? 1) ^ Q, then there exist a unique function cjr : R \-t S 
satisfying (3) and (6) and a uniquely determined homeomorphism ^ : S H 4 
S fulfilling (5) such that 

Ft{z) = y-J>{cr{t)yr(z)), z£S, t£R. 

If .T7 is a non-dense iteration group, then we have the following unique 
decomposition 

S\L^ = (J Lq, 
q£M 

where Lq for q £ M are open pairwise disjoint arcs and cardM = Ko-

L E M M A 8 (see [1]). Let T = {F< : S ^ S, t £ R} be a non-dense 

iteration group and a(Fx) £ Q . / / <pr • S S is a continuous increasing 
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solution of (2) satisfying (4) and (5) with cy? : E •->• S fulfilling (3) and (6), 
then: 

(a) for every q € M , is constant on Lq, 
(b) t / K c S ts an open arc and ip? is constant on V, then V C Lq for 

some q € M, 
(c) ifp^q, then y?[Lp] (~l ipr[Lq] — 0, 
(d) for every q € M and even/ i G R, there exists a p € M such that 

(e) the sets Im c?, 
Kr := V^[S \ M 

are countable, 
(f) A> • Im Ĉ r = A>-

By Lemma 8 the function 

is a bijection of M onto and the mapping 

TAq, t) := ^ ( M f l M O ) . 9 G M, i 6 E 

is well defined. Condition (3) makes it obvious that 7> : M x E i-> M 
satisfies the translation equation 

TATAq, *), t) = s + 0. qeM, s,te R . 

L E M M A 9 (see [1]). If T = {Ft : S 4 S, t € E} is a non-dense 
iteration group and a{Fx) £ Q , t/zen 

F t [L,] = L T ^ ( , , t ) , 9 G M , ( G R . 

The below results show that the strictly monotonie mappings defined 
on S have many of the properties of strictly monotonie real functions. 

Let us first note that an immediate consequence of Lemma 1 is 

R E M A R K 3. Every strictly monotonie mapping is an injection. 
The following lemma is easy to check 

L E M M A 10. Assume that A , B, C C S are such that card A = 
card B = card C > 3 and let F : A B and G : B t-> C be strictly 
monotonie. Then: 
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(i) if F has the same type of monotonicity as G, then G o F is strictly 
increasing, 

(ii) if F has different type of monotonicity from G, then GoF is strictly 
decreasing. 

The fact that every orientation-preserving homeomorphism is strictly 
increasing has been shown in [1]. The same proof works for a homeomorphism 
which revers orientation, so we have 

L E M M A 11. A homeomorphism F : S t-> S preserves (respectively, re­
vers) orientation if and only if F is strictly increasing (respectively, decre­
asing). 

L E M M A 12. Every strictly monotonie function defined on a dense subset 
of S can be extended to a strictly monotonie mapping of the entire circle S. 

P R O O F . Let D be a dense subset of S and F : D H-> S be strictly 
increasing (similar arguments apply to the case of strictly decreasing F). 
Fix w 6 S \D and choose a sequence {u> n}„ eN C D such that 

(w0, wn) C (w0, w), (u>o, wn) C (w0, wn+i), n e N \ { 0 } 

and 

(J {w0, wn) = (w0, w). 
n=l 

As F is strictly increasing on D, U^Li {F(wo), F(wn)) is an open arc, say 

(F(wo), a). Put F(w) :— a. It only remains to prove that the definition 
of F(w) does not depend on the choice of the sequence {wn}n e^ a n ^ that 
so determined function F is strictly increasing on S. We leave this to the 
reader. • 

The below lemma in the case of strictly increasing mappings can be 
found in [3]. The same conclusion can be drawn for strictly decreasing func­
tions, so we get 

L E M M A 13. Every strictly monotonie function F : S i—• S such that the 
image of F is a dense subset of S is continuous. 

As an immediate consequence of Lemmas 12 and 13 we have the follo­
wing 

COROLLARY 1. Let Di, D2 be dense subsets of S and F be a strictly 
monotonie mapping from D\ onto D2. Then F can be uniquely extended to 
a continuous function defined on the entire circle S. 
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To prove our main results, we start with 

R E M A R K 4. Let T = {F* : S -> S, t e R} and Q = {G* : S 4 S , 
t G R} be non-singular iteration groups such that a(F 1), a(G 1) 0 Q. If T 
and Q satisfy (1) with a homeomorphism V, then 

P R O O F . Fix z e S. By (1) we have 

r[CF1(z)] = CGi(T(z)). 

Hence, using the fact that T is a homeomorphism, 

T[CFl(z)d] = CG.(r(z))d 

and finally T[Ljr] = LQ. 

T H E O R E M 1. Let the dense iteration groups T = {F* : S H S , t G R} 
and G = {G* : S S, te R} be such that aJF 1) = c^G1) =: a g Q . Then 
T and G are conjugate if and only if c? = eg. 

P R O O F . Let T = {F* : S t-> S, < e R } and £ = {G* : S ^ S, 
i G R} be dense iteration groups with ^(F 1) = ^(G1) = a £ Q. Then, by 
Lemma 7, F'(.?) = ( / ^ ( c ^ O v r W ) a n c * ^ł(z) = Ve^&WveC 2 )) f ° r *he 
homeomorphisms <pyr, <pg : S S fulfilling (5) and the functions c ,̂ cc; : 
R S satisfying conditions (3) and (6). Assume first that 7 and Q are 
conjugate. Putting A := <pg o T o ^ 1 , where T is a homeomorphism fulfilling 
(1), it is easy to check that 

(8) \(zcr(t)) = \{z)cg(t), z € S, t G R . 

Moreover, 
cjr(n) = cg(n) = 7r(a) n, n G Z, 

since ĉ r and satisfy (6) and (3). Using now the facts that the set D := 
{ir(a)n, n G Z} is dense in S (see for instance [2]) and A is continuous, we 
get by (8) 

\(zw) = \(z)w, z,w£S. 

Hence and again by (8), cjr = eg. 
Conversely, if c? — eg then we obtain (1) with T := ipg1 o <pyr. • 

We now give a necessary and sufficient condition for conjugacy of 
non-dense disjoint iteration groups. It is worth pointing out that in order 
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to get the necessary condition, the assumption that the iteration groups are 
disjoint can be dropped. 

T H E O R E M 2. Let the non-dense disjoint iteration groups T = {Fl : S 

H-> S, t e R } and Q = {Gl : S K S , t e R} be such that c^F1) = o^G1) =: 
a £ Q . Then T and Q are conjugate if and only if cjr = eg and there exists 
a d € S such that 

Kg = d • KT. 

P R O O F . Let T= {Fł : S S, t e R] and Q = {G*: S S, t e R } 
be non-dense disjoint iteration groups with c^F1) = o^G1) = a £ Q. Then 
we have the following unique decompositions 

(9) S \ Z ^ = (J L 9 and S \ Lg = \J L'q, 
q£M qeM 

where Lq and L'q for q € M are open pairwise disjoint arcs and cardM = Ko-
Let the continuous increasing functions <pyr, ipg : S t-4 S satisfy conditions 
(2), (4) and (5) and the functions c?, c e : R n S fulfil (3) and (6). By (6) 
and (3) the dense set D — {7r(a)n, n € Z} is contained in Imĉ r and Imcg. 
Hence, using Lemma 8(f), we conclude that the sets Kjc and Kg are dense 
in S. 

Lemma 8(a) lets us define 

(10) M ? ) : = ^ J 3 1 1 ( 1 * 0 ( 9 ) : = V a [ £ ' , ] , q € M. 

Moreover, by Lemma 8(c), (f), we can define 

(11) l>(c, t) := ? € M , i e R, 

(12) Tg{q,t):=^g1{^g(q)cg(t)), o € M, t C R . 

It follows from Lemma 9 that 

(13) Ft[Lą] = LTAą,t) and G*[Lj] = L'Tg(qi t ) , qeM,teR. 

Assume first that T and Q are conjugate and let F : S 1-4 S be a 
homeomorphism satisfying (1). By Remark 4 and (9), 

U nLq] = (J Lr 
qeM qeM 
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Therefore there exists a bijection 4> : M •-)• M such that 

(14) T{Lq} = L'Hq). 

Using (14), (13) and (1) we get 

= G*[I'*(,)] = ^(* ( , ) , t ) , c e M , i € R 

and consequently 

(15) *(l>(g, t)) = r f f(*(g),0, 9 € M , t G R. 

Hence by (11) and (12), 

= ^ ( M ^ ) ) ^ ) ) , <? G M , t G R. 

Putting c := 4>̂ -x(2) for z G A> and (5:= $ e o $ o <b~^ we obtain 

(16) *(«c^(t)) = S(z)cg(t), z£l<r,t£R, 

whence, by (6) and (3), it follows that 

(17) 5{zn{a)n) = 6(z)n{a)n, z G A>, n G Z . 

It is obvious that J : Ky? Kg is a bijection. We shall prove that it is 
strictly monotonie. To do this, take v, w, z G Kp fulfilling v ^ w ~< z and 
let p, q, r G M be such that u = <&JF(P), W = $^(a), z = ^> (̂r). Then 

and by (10) and the facts that ipjr is increasing and Lq for 0 G M are open 
arcs 

(that is for every v G L p , w £ Lq, z £ Lr we have u -< -u; -< z). Now, using 
Lemma 11 and (14), we get 

L'*(P) < L%(q) < L*(r)i i f r preserves orientation 

and 
Z4(P) >- L'^(q) y Z 4 ( r ) , if r revers orientation. 

8 - Annales... 
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Hence, by the fact that ipg is increasing and Lemma 8(a), (c), 

and from (10) 
<M*b)H <M*(<?)H «M<%))-

(x) (>-) 

Using now the fact that p — (u), g — (w), r = 4>7̂ (z) we have 

6{v)< 6{w)< S(z). 
<>-) (!-) 

Since the sets K? and Ac are dense in S, Corollary 1 shows that the function 
<5 has a continuous extention 8 defined on S. By (17), the density of the set 
D = {7r(a)n, n G Z} and the continuity of the function 8 we get 

8(zw) = 8(z)w, z, we S. 

Putting z := 1 we have 8(w) = 8(1)w for w £ S and, in consequence, 

Kg = 5[K>] = 8[KT] = *(1) • A>-

Moreover, (16) gives cjr = eg. This ends the first part of the proof. 
Let now cyr = cg —: c and A'g = d • K? for a d G S. We will prove that 

.T7 and £ are conjugate. Actually, we will show even more, namely we shall 
give the general construction of all orientation-preserving homeomorphisms 
T : S i-)- S satisfying (1). 

Define the function \P : M >-> M by 

V(q):=*c\*r{q)d), q G Af. 

Note that ^ is a bijection. Moreover, 

(d>e o \p o ̂ X z ) = zd, zeKjr 

whence 

(QgoV o<f>~l)(zc(t)) = (Qgof oą>~l)(z)c(t), z e A>, t G R, 

since zc(£) G A>. From this and (11) we have 

$g(V(Tr(q, t))) = (*g o * o fc^KM?)^)) 
= *0(tf(c))c(r), c G M , i GR. 
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On the other hand, (12) gives 

*c(T0mq), *)) = Qg^cH^ilMt))) 

= *c(*(?))c(t). q£M,t€R. 

Consequently, 

(18) #CZ>(c, t)) = Ts(y{q), t), q£M, t£ E . 

Now we introduce the following relation on M 

PTZq^3teR p = !>(<?, t). 

A trivial verification shows that TZ is an equivalence relation. Let E be an 
arbitrary subset of M such that for every q G M, card(2? C\[q]) = 1 (here 
and subsequently [q] denotes the equivalence class of q with respect to the 
relation 11) and define 

A(q) := [q] nE, q G M. 

Let W : M •-»• E be an arbitrary function such that 

(19) TT(A(q),W(q)) = q, q G M. 

Hence according to (11) we get 

*r1(*AM<l)WW(q))) = q, q€M 

and consequently 

*r(A{q)) = ^ ( g ) - ^ - L - ^ = ą>r(q)c(-W(q)), q G M. 

Hence 
A(q) = *Jr

1(*r(q)c(-W(q))), <? G M 

so, by (11), 

(20) 7>(g, -W(q)) = A(q), q G M. 

Let 

(21) r e : L e ^ L ^ ( e ) , e £ £ 

8 * 



116 Krzysztof Ciepliński 

be arbitrary strictly increasing homeomorphisms. Define the mapping r 0 by 

(22) r 0(z) := (GWM o rA{q) o F-W^)(z), z e Lq. 

According to (22), (13), (20), (21), (18) and (19) we have the following 
equalities 

T0[Lq] = (Gw^ o TA{q) o F-w^)[Lq] = [Gw^ o TA(q))[LTAq,-W(q))] 

= (Gw{q) o r ^ , ) ) ^ , ) ] = Gw(g)[L'nMq))] = L ' T g { n A { q ) h w { q ) ) 

= L'y(TT(A(q),w(q))) = qeM. 

Thus, 

(23) r 0 [L,] = L ^ ( , ) ł qeM. 

Our next goal is to show that r 0 : [jqeM^q ^ U^M^'? 1 S strictly 

increasing. In order to do this take v, w, z e \JqeM Lq such that w 6 (u, z). 
We shall show that T0(v) -< T0{w) -< r 0(z). For this purpose, we consider 
three cases: 

(i) {v, w, z} c Lq for a q £ M. As Gł and Ft for t e R preserve 
orientation (see Remark 2 in [5]), we obtain our claim from (22) and Lemmas 
11 and 10. 

(ii) card({u, w, z} n Lq) = 2 for a q e M. By Lemmas 1 and 2 we 

can assume that v, w 6 Lq. Choose u € Lq such that w £ (v, u). Using (i) 

and (23) we get T0(w) e (r0(w), U(u)) C L^(q). Moreover, T0(z) $ L'nq), 
since z ^ Lq and ^ is a bijection. According to the above remarks, we have 

T o H e ( r 0 ( « ) , r0(z)). 
(iii) card({u, w, z} n L 9 ) < 1 for every q £ M . Suppose that v £ 

Lq, w e L p , z £ Lr for p, a, r e M, p ^ q, q ^ r, p ^ r. Let us note that 
Lq < Lv < Lr. Using the fact that </?̂  is increasing, Lemma 8 and (10) we 
have 

$r(q)d < $?{p)d -< $f(r)d. 

Hence and by the definition of *I>, 

M * ( ? ) H * c ( * ( p ) H * c ( * ( r ) ) . 

Now (10), the facts that (pg is increasing and L'q for q £ M are open arcs 
lead to 
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whence by (23) we obtain our claim. 
Thus, T 0 is strictly increasing. Moreover, by (9), (23) and the fact that 

^ is a bijection we get 
r0[S\Lr] = S\Lg. 

Since the sets S \Ljr and S \Lg are dense in S, Corollary 1 shows that T 0 

has the unique continuous extention V : S H-> S. 
We will prove that T satisfies (1). First we show that 

(P) if TT(p, u) = TT(P, v) for a p £ M , then F" = Fv and Gu = Gv. 

In fact, if Tjr(p, u) = TT(p, v), then by (11), c(u) = c(v) and (3) gives 
c(u — v) = 1. Hence, 

Tj?(p, u-v)=p and Tg(p, u - v) = p, 

which follows from (11) and (12). Set 

(ap, bp) Lp and (a'p, b'p) := L'p. 

By (13), 
FU-V[LP) = LP and Gu-v[L'p] = L'p, 

whence it follows that Fu~v{av) = ap and Gu-V{a'p) = a'p. From this Fu = 
Fv and Gu = Gv, since the iteration groups T and Q are disjoint. 

Fix q £ M, t e R. By (19), the facts that I> satisfies the translation 
equation and A(q) = A(T>(fl, t)) we get 

2>(c, t) = Tr(Tr(A(q), W{q)), t) = TT(A(q), W(q) +1) 
1 ' =Tr(A(Tr(q, t)), W(q) + t). 

Putting u := Tyr(q, t) in (24) we have u - Tjr(A(u), W(q) +1) and conse­
quently by (19), 2>(A(u), W(u)) = 7>(A(u), w\q) + t). Hence by (P), 

(25) Fw(-q)+t = F w ( u ) = F w { T r ( q ' t ] \ G w { q ) + t = G w { u ) = G w [ T r ( q > t ] ) . 

Let zQ e S \ L J F and p 6 M be such that z0 € L P . By Lemma 9, F'(z0) € 
Lrjr{P,t) - Hence from (22) and (25) we conclude that 

(G* o r)(z0) = (G* o G ^ > o TA(p) o F-W^)(z0) 

= (Gt+wW o rA{p) o F~t-W(p) o F*){zo) 

= (GW(Tr(P, t)) Q R ^ ( P ) 0 F - W ( 7 > ( P , * ) ) ) ( F * ( Z O ) ) 

= ( G W ^ ' *» o r x ( 7 > ( p , t ) ) o F - ^ ^ ' «»)(*"(*)) 

= ( r o f ) ( 4 
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Therefore, by the density of the set S\Ljr and the continuity of the mappings 
G\ Fl and T we obtain (1). 

Finally, let T be an orientation-preserving homeomorphism fulfilling 
(1). Putting T e := T | L e for e G E we get 

T(z) = (Gw^ o rA{p) o F-W^)(z), zeLp,p€M. 

Hence it follows that the above-described construction determines all 
orientation-preserving homeomorphisms F satisfying (1). • 
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