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Abstract. We introduce the notion of iterative equivalence of two classes of map-
pings on metric spaces and we demonstrate its utility in metric fixed-point theory. In
particular, we show that the fixed-point theorem for Matkowski’s contractions can be
derived from the corresponding theorem for Browder’s contractions, though the first
class of mappings is essentially wider than the second one.

1. Introduction

A selfmap f of a metric space (X,d) is said to have the contractive
fized point property (abbr., CFPP) if f has a unique fixed point zo € X and
lim f"(z) = o for all « € X, where f" denotes the nth iterate of f. Let

n—00
us recall the following simple extension of the Banach contraction principle, ‘

which may be found, e.g., in Dugundji-Granas [3, p. 17].

PRrOPOSITION 1. Let (X, d) be a complete metric space and f be a self-

map of X such that for some positive integer k, f* is a Banach contraction.
Then f has the CFPP.

In fact, it suffices here to assume that f* has the CFPP. In this case we
may also drop the assumption on completeness of (X, d).

Let F' and G denote two classes of selfmaps of metric spaces. We treat
elements of these classes as pairs of the form (f, d), where d is a metric for
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the domain of a map f. We say that classes F’ and G are iteratively equivalent
if given (f,d) € F there exists k € N such that (f*,d) € G and, conversely,
given (g, p) € G thereis m € Nsuch that (g™, p) € F. We say that F has the
CFPP if each map in F has the CFPP. The following result is an immediate
consequence of a remark, which follows Proposition 1.

PRroPoSITION 2. Let F and G be classes of selfmaps of metric spaces
such that F and G are iteratively equivalent. Then F has the CFPP if and
only if G has the CFPP.

Proposition 2 gives us a tool for proving fixed-point theorems involving
the CFPP. If we know that some two classes of selfmaps are iteratively
equivalent, then it suffices to prove a fixed-point theorem only for one of
them and then we may conclude from Proposition 2 that both classes have
the CFPP. Moreover, fixed-point theorems for such two classes are, in some
sense, equivalent even if one of these classes is a proper subclass of the other.
We will discuss this fact with details in a sequel.

Given an a € (0,1), a selfmap f is said to be an a-contraction if
d(fz, fy) < a d(z,y) for all z,y € X. f is a Banach contraction if it is
an a-contraction for some o € (0, 1).

We give the simplest reasonable example of two iteratively equivalent
classes (the simplest one deals with two identical classes; incidentally, the
iterative equivalence is an equivalence relation).

EXAMPLE 1. For any fixed o € (0, 1) the class Ba of all Banach con-
tractions and the class of all a-contractions are iteratively equivalent.

Some less trivial examples for the iterative equivalence phenomenon will
be given in the next sections. We will examine classes of maps, which satisfy
a nonlinear contractive condition, that is, for each such a map f there exists
a function ¢ from R, the set of all nonnegative reals, into R, such that
p(t) < tfort>0and

d(fz, fy) < p(d(z,y)) foral z,yeX.

We also say then that a map f is ¢-contractive. In the sequel we will consider
the following classes Br, BW and M of maps satisfying nonlinear contractive
condition.

A selfmap f of a metric space (X, d) is a Browder contraction ((f,d) €
Br) if there exists a non-decreasing and right continuous function ¢ such
that f is (-contractive (cf. [2] or (3, p. 18]).

A selfmap f of a metric space (X, d) is a Boyd- Wong contraction ((f, d) €
BW) if there exists a right upper semicontinuous function ¢ such that f is
p-contractive (cf. [1] or [11, p. 38]).



On iterative equivalence of some classes of mappings 151

A selfmap f of a metric space (X, d) is a Matkowski contraction ((f,d) €
M) if there exists a non-decreasing function ¢ such that li_{'n @™ (t) = 0 for

all t € Ry and f is p-contractive (cf. [13], [3,p. 12] or [11, p. 39]).

It is known that each of the above classes has the CFPP. Moreover, Ba
C Br C BW and Br C M, and all these inclusions are proper. Classes BW
and M are incomparable. A comprehensive study of nonlinear contractive
conditions is given in [8] (also cf. [6], [9] and references therein). Here we will
show that classes Br and M are iteratively equivalent (cf. Section 3), whereas
classes BW and M are not iteratively equivalent (cf. Section 4). Also we
will give a complete characterization of these non-decreasing functions ®,
for which C,, the class of all y-contractive maps, and the class Ba are
iteratively equivalent (cf. Section 2).

Throughout this paper the letter ¢ denotes a function from R, into Ry
such that ¢(t) < t for t > 0 and ¢(0) = 0.

2. Comparison of classes Ba, Br and C,,
We omit a standard proof of the following
LEMMA 1. Let X be a nonempty subset of Ry and for z,y€ X,
d(z,y) == max {2,y} if z#y, and d(z,z):=0.

Then (X, d) is a metric space. Moreover, (X, d) is complete if and only if
either 0 ¢ X, the closure of X in R+ endowed with the Fuclidean topology, or
0 € X. Further, let a function ¢ be non-decreasing and such that e(X) C X.
Then a map f defined by f := ¢|x, the restriction of p to X, is p-contractive.

Observe that the metric d defined in Lemma 1 satisfies the inequality
d(z,y) < max {d(z,z2),d(z,y)} forall z,y,z€ X.

Such a metric is called an ultrametric or a non-Archimedean metric (cf. [4,
p. 504]).

The following result shows that, contrary to the linear case (cf. Exam-
ple 1), there does not exist a function ¢, for which classes C, and Br would
be iteratively equivalent.

THEOREM 1. Given a function ¢, there exist a complete metric space
(X,d) and a map f: X — X such that (f,d) € Br and for all k € N, f* is
not p-contractive.
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ProorF. We will define a strictly increasing and continuous function
¥ : Ry~ Ry such that 9(t) < ¢ for ¢ > 0 and ¥"(n) > ¢(n) for all » € N.
Then if we apply Lemma 1 to the ultrametric space (X, d) with X := Ry
and the map f := 1, we will be able to conclude that

d(f™n, £*0) = $™(n) > @(n) = p(d(n,0)) foral ne N

so f™ is not p-contractive, and the proof will be completed.

By induction we will define 9|(,,_; » and a family of strictly increasing
finite sequences (t("))J L with t(") € (n—1,n] for n € N. Let t{") := 1. Define
¥ljo,1) as the segment with endpomts (0, 0) and (1, (1 + (1 )) /2). Assume

that n € N and 9|(n_1 5 is defined. Then we define a sequence (t("'H));H'l1
and %|(n,nt1) as follows:

1 1 n n
max {n,n+ +;p(n+ )}<tg +1)<n+l, t£1++11) =n+1,

and for n>2 and j=2,---,n, ("+1)€(t("+1) n+1)

n 1 ,
Q/J(tg +1)) ::max{n,n+ +;p(n+1)} and for j=2,---,n+1,

" (t(n+1)) t(n+1)

‘and | (5 nt1] is the polygonal line with nodes (n,¥(n)) and (¢ ( (n+1) ¢(t("+1)))
forj=1,---,n+4+ 1.

Since all nodes of this polygonal line lie in the convex set {(0,0)} U
{(z,y): x>0, 0<y< z}, wemay infer that ¢(t) < ¢ for t > 0. Since for
all n € Ny(n—1) < »({™) and both (tg-"));;l and (1/)(t(")))J , are strictly
increasing, so is 9. Obviously, 1 is continuous. Moreover,

P (n) > zi—y>cp(n) foral neN

so v has all the properties we need. 0

In the sequel we compare classes C, and Ba.

THEOREM 2. Let a function ¢ be non-decreasing. The following state-
ments are equivalent:

(i) classes Ba and C,, are iteratively equivalent; ,

(ii) inf {e(t)/t : t > 0} > 0 and there exists k € N such that sup
{e*@)/t:t >0} <1.
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PROOF. (i) = (ii). Consider the Euclidean space (R, d.) and the map
f defined by fz := z/2 for z € R,. Obviously, f € Ba so by (i), there is
k € N such that f* € C,,. In particular,

oF = de(F*2, £°0) < ¢(de(z,0)) = p(z) forall = €Ry.

Hence ¢(z)/z > 1/2* for z > 0 and since k does not depend on z, we may
infer that inf {¢(¢)/¢: ¢ > 0} > 0.

Now consider the ultrametric space (X, d) with X := R and the map
f as in Lemma 1. Then f € C, so by (i), there exist £ € N and a € (0, 1)
such that f* is an o-contraction. In particular,

o*(z) = d(f*z, f*0) < a d(z,0) =az foral zeRy,

which implies that sup {¢*(¢)/t : t > 0} < a < 1. Therefore, (ii) holds.

(ii) = (i). Let f € C,. By monotonicity of ¢, f* is ¢*-contractive and
by (ii), ¢*(t) < a t, where o := sup {¢*(t)/t : t > 0} < 1, which implies
that f* € Ba. On the other hand, if f € Ba and « is a contractive constant
of f then, by (ii), there is £ € N such that o < inf{p(t)/t : t > 0}. Then
fFecC,. 0

A natural question arises whether in condition (ii) of Theorem 2 we
could substitute the inequality “sup{¢(t)/t :t > 0} < 1” for the condition
“sup {¢*(t)/t : t > 0} < 1 for some k € N”. Our Example 2 given below
shows that, in general, this is not possible. Nevertheless, such a substitution
can be made under some additional assumptions on a function ¢ as is done
in the following lemma. The right upper Dini derivative of a function ¢ is
denoted by D%, that is,

(D% ¢)(s) := limsup f—(-t—i————f—(—sl

t—st -8

LEMMA 2. Let a function ¢ be non-decreasing and such that
sup {p(t)/t : t > 0} = 1. Then there exists a strictly monotonic sequence
(tn)S2, of positive reals such that Hm o(t,)/t, = 1. If lim t,41/t, = 1,

n—rpoo n—rod
then for all k € N sup {p*(t)/t:t >0} =1.

In particular, such a sequence (t,)°2, exists if o is right continuous and
it satisfies one of the following conditions:



154 Jacek Jachymski

(a) ¢ is differentiable at 0 and such that either there ezists tlim p(t)/t,

—> 00

or limsup ¢(t)/t < 1;
t—00
(b) (D*¢)(0) < 1 and there ezists lim p(t)/t.
—00

ProoF. By hypothesis, there is a sequence (t,) of positive reals such
that lim ¢(¢,)/t, = 1. Clearly, (t,) cannot be constant since p(t)/t < 1
for ¢ > 0. By passing to a subsequence if necessary, we may assume that
(tn) is strictly monotonic, hence convergent to some a € Ry U {co}. We will
consider the case ¢, \, a; then a similar argument can be used in the case,
in which (t,) is increasing. Let lim t,4,/t, = 1. We show that there exists
tlni+m+ ©(t)/t. Let s, — a*. There is a sequence (k,) of positive integers such

that k,, — oo and t4, 41 < s, < tr, for sufficiently large n. Then for all such

n we have:
t t t
©(sn) < ©(tk,) _ P(te,) ti, 1
Sn tk,+1 bk, Tka41

P(on) o Plhat1) _ Pty 1) tharr

Sn T bk, b, +1 ik,

Hence we conclude that lim+ @(t)/t = 1. In particular, ¢(t) = at ast — a*
. t—a

because of monotonicity of ¢, so given an integer £ > 2 also @ (t) = a* as
t —at for j=1,---,k — 1. This easily implies that lim+ ok (t)/t = 1 since
t—a

whereas lim (¥’ (t))/¥?(t) = 1. In particular, we conclude that sup
t—a

{©*(t)/t :t > 0} = 1 since by hypothesis ©*(t)/t < 1 for ¢ > 0.

In the sequel we assume that ¢ is right continuous. If (t,) is a strictly
monotonic sequence with lim ¢(t,)/t, = 1, then either (¢,) decreases to
0, or (t,) increases to oo; for otherwise, t, — a € (0,00) and then by
monotonicity and right continuity of ¢ we have

which yields a contradiction. To finish the proof consider the following two
cases.
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Assume (a). We will prove that ltim @¢(t)/t = 1 for either a = 0, or
—a
a=o0.Ift, \,0, then

IRRT ©(tn) o T o(t)
b= =rO=in

Ift, /" oo,thenlim sup,_ . ¢(t)/t = 1, whence, due to (a), there exists tlirn
— 00
@(t)/t. Consequently, in this case tll_I)Il @(t)/t = 1. Therefore the sequence

(1/n)2, if a =0, or (n)2, if @ = oo, has the required property.

If condition (b) holds, then each sequence (t,) satisfying lim ¢(t,)/t, =
1 converges to the infinity. Since tlim ¢(t)/t exists, it equals 1 and then, for
=300

example, the sequence (n)52; has the property we need. O
Recall that a function ¢ is subadditive if
p(s+1t) <p(s)+e(t) foral s,teRy;
¢ 1s superadditive if the reverse inequality holds.

LEMMA 3. Let a function ¢ be non-decreasing and subadditive. Then
¢ s continuous and ¢ satisfies condition (a) of Lemma 2. Moreover, tlim
—00

o(t)/t < 1.

PRoOF. Since ¢(0) = 0 and ¢ is continuous at 0, we may conclude by

[15, Remark 1] that ¢ is continuous. Further, by [5, Theorem 7.11.1] there

exists tlirg+ ¢(t)/t. Hence ¢ is differentiable at 0. Finally, by [5, Theorem
_>

7.6.1], there exists lim (t)/t. Moreover,
t—00

tli_)moo e(t)/t =inf{p@)/t:t >0} < p(1) < 1.

|

LEMMA 4. Let a function ¢ be superadditive. Then ¢ satisfies condition
(b) of Lemma 2.

Proor. Observe that ¢ is non-decreasing. By [5] there exist both limits
lim ¢(t)/t and lim ¢(t)/t. Moreover,
t—0+ t-»00

#'(0) = lim, @(t)/t =inf {g(t)/t:¢> 0} < p(1) < 1

and thus (b) is satified. A 0
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As an immediate consequence of Theorem 2 and Lemmas 2-4, we obtain
the following

COROLLARY 1. Assume that a function ¢ is non-decreasing, right con-
tinuous and ¢ satisfies either condition (a), or condition (b) of Lemma 2.
The following statements are equivalent:

(i) classes Ba and C,, are iteratively equivalent;

(ii) there exist o, 8 € (0,1) such that

at<pt)<pt foral teR,.

In particular, conditions (i) and (i) are equivalent if either ¢ is non-de-
creasing and subadditive, or ¢ is superadditive and right continuous.

(Incidentally, it can be proved that in the last statement of Corollary 1 it
suffices to assume that ¢ is superadditive (not necessarily right continuous).)

Also with a help of Lemma 2 we can easily deduce that classes Br
and Ba are not iteratively equivalent. Moreover, we give below a complete
characterization of these subadditive or superadditive functions ¢, for which
there exists a ¢-contractive map with the property that none of its iterates
is a Banach contraction.

COROLLARY 2. Let a function ¢ be non-decreasing and subadditive. The
following statements are equivalent:

(i) ¥'(0) =1;

(ii) there ezists a map f € C, such that for allk € N f* ¢ Ba.

Hence classes Ba and Br are not iteratively equivalent.

Proor. (i) = (ii). (i) implies that sup {¢(t)/t : t > 0} = 1. By Lem-
mas 2 and 3, we conclude that for all £ € N, sup {¢*(t)/t : t > 0} = 1.
Consider the ultrametric space (X, d) with X := R, and the map f as in
Lemma 1. Then f € C,. Suppose that f* € Ba for some k € N. Then

¢ (z) = d(f*z, f*0) < @ d(e,0) = a2
for some « € (0, 1), which implies that sup {¢*(t)/t : t > 0} < 1, a contra-

diction. Therefore (ii) holds.
(i) = (i). By [5, Theorem 7.11.1} ¢'(0) exists and

1) ¢'(0) = sup{p(t)/t : t > 0}.

Hence ¢'(0) = 1; for otherwise, each map f € C,, would be an a-contraction
with o := ¢'(0) because of the inequality ¢(t) < at for all ¢t € R, and this
violates (ii).
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Finally, observe that C, C Br, since by Lemma 3 ¢ is continuous.
Hence and by (i) = (ii) we may deduce the last statement of Corollary 2.
a

COROLLARY 3. Let a function ¢ be superadditive and right continuous.
The following statements are equivalent:

(i) im o(t)/t=1;
o0
(ii) there exists @ map f € C,, such that for allk € N f* ¢ Ba.

ProoF. (i) = (ii). (i) implies that sup {¢(t)/t : t > 0} = 1. Then
Lemmas 2 and 4 give that for all £ € N sup {¢*(t)/t : ¢t > 0} = 1. To show
that (i) holds it suffices to consider the same function f defined as in the
proof of Corollary 2 ((i) = (ii)).

That (ii) implies (i) follows from [10, Theorem 4.7] (it suffices to assume
that f is not a Banach contraction). o

The following example shows that we cannot drop the assumption
“lm t,41/t, = 1" in Lemma 2. Moreover, also we cannot omit the assump-
tions on a behaviour of ¢(t)/t as t tends to the infinity, in conditions (a)
and (b) of the same lemma. The function ¢ defined below is even a home-
omorphism from R onto R, differentiable at 0 with ¢’(0) < 1, and ¢ has
the property that sup {p(t)/t : t > 0} = 1, but sup {@?(t)/t : t > 0} < 1.
Moreover, inf {(t)/t : t > 0} > 0 so by Theorem 2, classes C,, and Ba are
iteratively equivalent. Thus, in general, condition (ii) of Corollary 1 is not
necessary for the iterative equivalence of classes C,, and Ba.

EXAMPLE 2. Let ¢ be the polygonal line with nodes (0,0), (2*+! — 1,
27), (271, 2nt1 — 1) for n € N. Since these nodes lie in the convex set
{(0,0)}uU{(z,y) : 0 < y < =}, we may infer that ¢(t) < t for all ¢ > 0. Since
forall n € N,

0< 2t 1 ot cont2 g

and
9(0) < p(2™F1 — 1) < p(2*) < p(2"*? - 1),

we see that ¢ is strictly increasing. Obviously, ¢ is continuous. Since
tli_r)n ¢(t) = 0o, we conclude that ¢ is a homeomorphism from R, onto R,.
e o]

Clearly, sup {¢(t)/t : t > 0} < 1. Simultaneously, lim p(2"1)/2"+! = 1,

which implies that sup {¢(¢)/t : t > 0} = 1 and limsup,_, ., ¢(t)/t = 1.
Further, ¢ is differentiable at 0 and ¢'(0) = 2/3.
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We will estimate sup {¢?(t)/t : t > 0}. For t € [0,3], ¢2(t)/t = 4/9.
Assume that ¢ € [2"*! — 1,2"+1]. By monotonicity of ¢?,

(,92(t) < (’02(2n+1) _ on
t  To2ntl_ ] T ontl

2
< —
-3
since the sequence (2"/(2"+! — 1))32, is decreasing. Hence we get that

sup {(’D—Zt-(t—) ite | Jmt - 1,2”“]} < 2/3.

neN

(In fact, elementary computations show that this supremum equals 1/2.)

Assume that ¢ € [2"+1, 2742 _ 1]. Then ¢(t) € [2"*1 — 1,27*1]. This
time ¢?(2"+? — 1)/2"*! — 1 and we cannot use a similar argument as in
the preceding case. Elementary computations show that

t 2242 _ 3. 97+l 4
2) #0) = g + e

whereas for ¢ € [271! — 1, 27+1],
(3) pt) = (2" = 1) t 4272 _ 92n+1 _
By (2) and (3) one can obtain that for ¢ € [27+1,27+2 _ 1],

2 _ 271_1 2”
¥ (t)‘— on+l _ 1 t+2n+1 -1

Hence, max {¢?(t)/t : t € [27+!, 2742 — 1]} = 2 (2nH1) /on+1 = 1/9.
Combining all the above cases we get that sup {@?(t)/t : ¢ > 0} <1
(in fact, this supremum equals 1/2).
Finally, we compute inf {((¢)/¢ : ¢ > 0}. For t € [0,3], o(t)/t = 2/3.
By (3),

. (P(t) . n41 n+1 _ (‘/’(2n+1 B 1) _ 2"
mm{——t ite2 -1,2"7 5 = on T ] _2n+1_1\,

1
5-
By (2),

(p(zn+2 . 1) _ 2n+1 1
gnFr ] T giE_ M3

t
min {‘P—g—) 1t g [2ntl 2ntt 1]} =

Therefore we get that inf{p(t)/t : ¢t > 0} = 1/2.
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3. Iterative equivalence of classes Br and M

Throughout this section we assume that a function ¢ is non-decreasing.

J. Matkowski and J. Mi$ [14] gave an example of a function ¢ for which
there exists a fixed-point free ¢-contractive map. Clearly, for such a function
¢ there is a tp > 0 such that

(4) lim ¢"(to) > 0.

n-+00

With a help of Lemma 1 we can improve this result by showing that for
e v e r y function ¢ satisfying (4) there exists a ¢-contractive map, which
has no fixed points.

ProPosITION 3. Given a function ¢, the following statements are equi-
valent:

3 H n — .

(1) Jgnoow (t) =0 for allt € Ry;

(i1) given a complete metric space (X, d) and a ¢-contractive selfmap f
of X, f has a fized point.

PRrooF. The implication (i) = (ii) follows from Matkowski’s theorem
(cf. {13, Theorem 1.2] or [3, Theorem 3.2, p. 12]). To prove (ii) = (i) suppose,
on the contrary, that for some ¢y > 0 (4) holds (this limit exists because of
the assumption "¢(t) < ¢t for t > 0 and ¢(0) = 0”). Denote this limit by r.
Set t, := ¢"(to) for n € N. Then the sequence (t,) is strictly decreasing and
t, > r. Define X := {t, : » € N} and consider the ultrametric space (X, d)
as in Lemma 1. Clearly, ¢(X) C X. Thus Lemma 1 implies that (X,d) is
complete since 0 € X, and f := ¢|x is a ¢-contractive map. Obviously, f is
fixed-point free, which violates (ii). 0

Given a function ¢, define the set M, (¢) by

My () = {t >0: lim ¢(s) = t} .

LEMMA 5. Assume that lim ¢"(t) = 0 for allt € Ry. Then the set

n—00
M, (¢?) is empty.
PROOF. Suppose, on the contrary, that tg € My (¢?). Since *(s) <
¢(s) < s for all s > 0, we may conclude that lim ¢(s) = tp, that is,

+
s,

to € M4 (). By [8, Theorem 7] there is § > 0 such that for s € (tp,to + 6)
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(s} = to. Hence
to = lim_¢?(s) = p(to) < to,

8=ty

which yields a contradiction. O

THEOREM 3. Assume that f is a Matkowski contraction on a metric
space (X, d). Then f% is a Browder contraction. Hence, classes Br and M
are iteratively equivalent.

ProoF. By hypothesis, there is a function ¢ such that lim ¢"(t) =0
n—00

for all t € R, and f is ¢-contractive. Clearly, f? is ¢?-contractive because
of monotonicity of . By Lemma 5, M, (¢?) = 0 and [8, Theorem 5] implies
that f? is Browder’s contraction. On the other hand, Br C M so we may
conclude that these classes are iteratively equivalent. O

REMARK 1. In view of Proposition 2 and Theorem 3, the fixed po-
int theorem of Matkowski [13] can be derived from Browder’s theorem [2],
though the class Br is a proper subclass of M.

4. Lack of iterative equivalence of classes M and BW

Given a function ¢, define the set M_(p) by

M_(¢): = {t >0: limsup o(s) = t} .

s>t~

The following result extends Theorem 3 in [8].

THEOREM 4. Let a function ¢ be right upper semicontinuous. The fol-
lowing statements are equivalent:

(i) M_(¢) # 0;

(ii) there exist a complete metric space (X, d) and a p-contractive self-
map of X such that for all k € N f* is not a Matkowski contraction;

(iii) there exist a metric space (X,d) and a p-contractive selfmap f of
X such that f is not a Browder contraction.

Hence, classes M and BW are not iteratively equivalent.

ProOF. The implication (ii) = (iii) is obvious since Br C M. (iii) = (i)
follows from [8, Theorem 3]. We prove that (i) implies (ii). We will use the
same argument as in the proof of Theorem 3 in [8]. By (i), there is a strictly
increasing sequence (t,)52; and to > 0 such that ¢, ¢ and @(t,) 7 to.
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Without loss of generality we may assume, by passing to a subsequence if
necessary, that (t,41) > t, for n € N. Set X := {t, : n € N} and consider
the ultrametric space (X, d) as in Lemma 1. Since t, > ¢; > 0,0 ¢ X so
Lemma 1 implies that (X, d) is complete. Further, define a map f by

fty:=¢t; and ft,4q:=t, for neN
Obviously, f is a selfmap of X. If m,n € N and m > n, then

d(ftna ftm) S ftm =ty < 99(tm) = Sa(d(tmtm))

so f is ¢-contractive. Suppose, on the contrary, that for some k € N f¥ € M.
Then thereis a non-decreasing function ¢ : Ry + Ry such that 1i_r)n P (t) =
n (o]

0 for all t € Ry and d(f*z, f¥y) < ¥(d(z,y)). Hence and by monotonicity
of 1, we get in particular, that

0 < to = d(f* tpnsa, 1) < P (d(trnt2, 1)) < P (to),

which yields a contradiction. Thus none of iterates of f is Matkowski's con-
traction so (ii) holds.

Obviously, there exist a right continuous function ¢ satisfying (i) so
by (i) = (ii) we may conclude that classes M and BW are not iteratively
equivalent. 0

It turns out that there exists a Boyd-Wong contraction f with a stronger
property than that given in condition (ii) of Theorem 4: not only (f*,d) ¢ M
for all k& € N, but also (f*,p) ¢ M for all k € N and any metric p equivalent
to d. The following theorem gives a complete characterization of functions ¢,
for which such a ¢-contractive map exists. Clearly, such a function ¢ must
satisfy condition (i) of Theorem 4.

THEOREM 5. Let a function ¢ be right upper semicontinuous and
M_(¢) # 0. The following statements are equivalent:

(i) inf M- () = 0;

(i) there exist a complete metric space (X, d) and a p-contractive self-
map f of X such that for all k € N and any metric p, which induces a weaker
topology on X than d does, f* is not a Matkowski contraction on (X, p);

(iil) there exist a complete metric space (X, d) and a @-contractive self-
map f of X such that for any metric p equivalent to d f is not a Browder
contraction.

PRrooF. The implication (ii) = (iii) is obvious. (iii) = (i) follows from
[8, Theorem 4]. We show that (i) implies (ii). Again, we will use the same
construction as in [8]. By (i) we may conclude that there exist a strictly

11 ~ Annales...
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decreasing sequence (¢;)%2; and strictly increasing sequences (tslk));?f:l (ke
N) such that

ty € M_(¢p), tslk) > tegr,  te (0, t%k) Aty as n— oo (kE N),
(““’) > trpt, <,o<t£1’ill) >t (ke N), <,o(t£f)) Sty as n— oo.

Set X := { ) kne N} U{0}. Consider the ultrametric space (X, d) as in

Lemma 1. Since 0 € X, Lemma 1 implies that (X, d) is complete. Further,
define a map f on X by

fo:=0, ftl), =¥ and Y =) for kneN.

We show that f is o-contractive. Let z,y € X. We may assume, without loss
of generality, that z < y. Then d(z,y) = y. The following cases are possible.

l.z= t(k), y = t(k) and m > n. Then
d(fz, fy) = 1Ly < o (K9) = (d(z,)).

2.z = ts,p), y= ts,lf), p > k and m > 2. Then d(fz, fy) can be estimated
as in case 1.

3.z :tﬁf’), y= tgk) and p > k+ 1. Then
d(fz, 1) =1 < tip < ¢ (1) = (d(z,)).
4, 2 = t%’““), Yy = t(k). If n > 2, then

d(fz, fy) = t(k+ ) < 1 < @ (t( )) = p(d(z,y)).

If n =1, then d(fz, fy) can be estimated as in case 3.

5.2 =0,y=tH Ifm > 2 (resp., m = 1), then d(fz, fy) can be
estimated as in case 1 (resp., case 3).

Now suppose, on the contrary, that there exist £ € N, a metric p, which
induces a weaker topology on X than d does, and a non-decreasing func-
tion ¢ : Ry — Ry with nll_r)noo Y*(t) = 0 for all t € Ry, such that f* is
p-contractive on (X, p). Then thereis » > 0 such that for z € X, d(z,0) < r
implies p(z,0) < 1. Since t; — 0, there exists j € N such that t; < r.

Then t/) < r for all n € N, which 1mp11es that p(t 51),0) < 1. Since f* is
1p-contractive, we may conclude that, in particular,

0<p(11,0) = p (£71f2y1, 1*0) < 9™ (o (141,0)) < v (1),

which yields a contradiction, since ¢™(1) — 0. i
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5. Remarks on the Meir-Keeler type contractions

Meir and Keeler [16] introduced the following class MK of maps, which
also has the CFPP.

A selfmap f of a metric space (X, d) is a Meir-Keeler contraction ((f, d) €
MK) if given € > 0 there is § > 0 such that for all z,y € X,

(5) e <d(z,y)<e+d implies that d(fz, fy) <e.

REMARK 2. It can be easily verified that each Meir-Keeler contraction
satisfies the inequality d(fz, fy) < d(z,y) for all z,y € X with z # y. Hence
(5) implies that d(fz, fy) < ¢ for all z,y € X with d(z,y) <e+4.

It is easy to show that BW ¢ MK. Moreover, Meir and Keeler gave an
example of a map f € MK such that f ¢ BW. However, it can be easily
verified that the map f from this example has the property that fte BW
(in fact, f? is a Banach contraction). Thus the following problem is opened.

QUESTION 1. Are classes MK and BW iteratively equivalent?

Subsequently, the result of Meir and Keeler was extended by Matkowski,
who defined the following class Mt (cf. [11, Theorem 1.5.1}).

(f,d) € Mt if d(fz, fy) < d(z,y) for all 2,y € X with = # y, and given
€ > 0 there is § > 0 such that for all z,y € X,

(6) e <d(z,y) <e+d¢ implies that d(fz, fy)<e.

It can be easily verified that MK C Mt. Moreover, this inclusion is
proper (cf. [7], in which also other Meir-Keeler type theorems are compared).
However, it turns out that classes MK and Mt are iteratively equivalent
according to the following

PRroPOSITION 4. If (f,d) € Mt, then (f2,d) € MK.

ProOF. Let ¢ > 0. Then there is § > 0 such that (6) holds. Let £ <
d(z,y) < £+8. If d(z,y) = £ then, by hypothesis, d(f*z, f?y) < d(fz, fy) <
d(z,y) and hence d(f%z, f2y) < e. So let ¢ < d(z,y) < £ + 4. If f2z = f?y,
then we are done. If f2z # f2y, then fz # fy and by (6) we get that
d(f2z, f*y) < d(fz, fy) < €. Thus we may infer that f* € MK. O

A remarkable generalization of the Meir-Keeler theorem was given by
Leader [12], who considered the following class Le.

1>
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(f,d) € Le if f is continuous and given £ > 0 there exist § > 0 and
k € N such that for all z,y € X

(7) d(z,y) <e+J implies that d(f¥z, f*y) < e.

Then Le has the CFPP. The essential novelty of this definition is that
integer k£ may vary with ¢. If a map f is a Meir-Keeler contraction then by
Remark 2 f satisfies (7) with £ = 1. On the other hand, the very special case
of (7) with k = 2 covers the class Mt. We close the paper with the following

QUESTION 2. Are classes Le and Mt iteratively equivalent?

Since classes Mt and MK are iteratively equivalent and the relation of
iterative equivalence is transitive, we may consider, in lieu of Question 2,
the following equivalent

QUESTION 2’. Are classes Le and MK iteratively equivalent?
We suspect the answer is negative.
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